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Abstract Rhizosphere soil has a more diverse and active
microbial community compared to nonvegetated soil. Con-
sequently, the rhizosphere pyrene degrader population
(PDP) and pyrene degradation may be enhanced compared
to nonvegetated bulk soil (NVB). The objectives of this
growth chamber study were to compare (1) Bermuda grass
(Cynodon dactylon cv. Guymon) growth in pyrene-conta-
minated and noncontaminated soils and (2) pyrene deg-
radation and PDP among NVB, Bermuda grass bulk (BB),
and Bermuda grass rhizosphere soil (BR). Soils were amend-
ed with pyrene at 0 and 500 mg kg−1, seeded with Bermuda
grass, and thinned to two plants per pot 14 days after planting
(DAP). Pyrene degradation was evaluated over 63 days. The
PDP was enumerated via a most probable number (MPN)
procedure at 63 DAP. Bermuda grass root growth was more
sensitive to pyrene contamination than shoot growth.

Pyrene degradation followed first-order kinetics. Pyrene
degradation was significantly greater in BR compared to
BB and NVBwith rate constants of 0.082, 0.050, and 0.052
day−1, respectively. The PDPs were 8.01, 7.30, and 6.83
log10 MPN g−1 dry soil for BR, BB, and NVB, respectively.
The largest PDP was in soil with the most rapid pyrene
degradation. These results indicate that Bermuda grass can
grow in pyrene-contaminated soil and enhance pyrene deg-
radation through a rhizosphere effect.
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Introduction

Some polycyclic aromatic hydrocarbons (PAHs) are toxic,
recalcitrant soil pollutants (Sims and Overcash 1983) that
are by-products of fossil fuel combustion and industrial
processes (Lijinsky 1991). Soil PAH contamination arises
primarily from aerial fallout, industrial or sewage effluent
leakage, and petroleum product disposal (Giger and Blumer
1974; LaFlamme and Hites 1978). Many PAHs are known
carcinogens and/or mutagens making soil reclamation a
priority (Miller and Miller 1981).

The environmental fate of PAHs in soils has been in-
vestigated. The PAHs composed of four or more benzene
rings are strongly adsorbed to soil colloids, relatively inso-
luble in water, and rarely leach (Edwards 1983; Knox et al.
1993). Volatilization and plant uptake areminimal due to low
vapor pressures and rapid adsorption (Reilley et al. 1996;
Sims and Overcash 1983; Edwards 1983). Consequently,
their environmental fate is governed primarily by colloidal
adsorption andmicrobiological degradation (Cerniglia 1992;
Reilley et al. 1996).

Phytoremediation may expedite the reclamation of PAH-
contaminated soil through a rhizosphere effect (Anderson
et al. 1993). The rhizosphere is a carbon-enriched soil zone
under the direct influence of plant roots (Curl and Truelove
1986). Enhanced microbial numbers and activity have been
reported in PAH-contaminated rhizosphere soil compared
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to nonvegetated soil (Banks et al. 1999; Lee andBanks 1993;
Miya and Firestone 2000; Nichols et al. 1997; Reilley et al.
1996; Schwab and Banks 1995). Greater PAH dissipation
has been reported in vegetated soil compared to nonvege-
tated soil (Aprill and Sims 1990; Liste and Alexander 2000;
Miya and Firestone 2000; Schwab and Banks 1995). Con-
versely, other studies have shown that pyrene degradation
was not increased by vegetation (Lalande et al. 2003; Olexa
et al. 2000). Given the conflicting results, a research project
was designed to compare Bermuda grass growth in con-
taminated and noncontaminated soils while evaluating
pyrene degradation and the pyrene degrader population
(PDP) among Bermuda grass rhizosphere (BR), Bermuda
grass bulk soil (BB), and nonvegetated bulk soil (NVB).

Materials and methods

The Ap horizon of a Roxana fine sandy loam (coarse-
silty, mixed, nonacid, thermic Typic Udifluvents), with no
known prior exposure to PAHs, was passed through a 2-mm
sieve. Gravimetric water content was determined by dry-
ing samples at 105°C for 24 h (McInnes et al. 1994). Par-
ticle size analysis determined with the hydrometer method
(Bouyoucos 1953) was 51% sand, 46% silt, and 3% clay.
Plant nutrient soil concentrations extracted with Mehlich 3
extractant (Mehlich 1984) and measured by inductively
coupled plasma spectrometry (Soltanpour et al. 1996) were
P 54 mg kg−1, K 86 mg kg−1, Ca 508 mg kg−1, and Mg 124
mg kg−1. Soil pH (1:1) was 6.1 (Thomas 1996), and organic
matter was 0.5% as measured by the Walkley–Black pro-
cedure (Nelson and Sommers 1982).

Treatments were established by packing the equivalent
of 1.3 kg dry soil in 1-l standard plastic pots to a bulk
density of 1.25 Mg m−3. Pots were covered with Saran
Wrapo and preincubated in the growth chamber for 2 weeks.
All incubations were at a constant 25°C with 12-h day/night
light cycles. Soil water content was adjusted to and main-
tained at −0.033 MPa (15% water). Pyrene was added to
soils at 0 and 500 mg kg−1 by fortifying 125-g subsamples
with 0.65 g pyrene dissolved in 50 ml acetone. Noncon-
taminated treatments received an equal volume of acetone
without pyrene. Acetone was evaporated from the fortified
subsamples for 24 h before combining and mixing sub-
samples with the appropriate soil treatments (Brinch et al.
2002). Vegetated treatments were planted with 20 Bermuda
grass seeds and then thinned 14 DAP to two plants per pot.

Samples were collected 14 through 63 DAP on a 7-day
interval. Shoot and root measurements were conducted at
each sampling period. Root fresh weight was measured, and
the sample was subsequently split to determine root dry
weight and length (Tennant 1975). Shoot and root dry
weights were determined by oven drying at 60°C to a con-
stant weight. Total root length was calculated using the dry
weight ratio.

Nonvegetated bulk and BB soil samples were collected
at all sampling periods. Bermuda grass rhizosphere soil was
collected as described by Angle et al. (1996) starting 35

DAP. Prior to 35 days, sufficient BR for analysis could not
be collected due to the limited development of the rhizo-
sphere. All soil samples collected for pyrene analysis were
stored at 4°C until analysis. Biological analyses were con-
ducted at the time of sample collection.

Each soil sample was extracted four times following
modified EPAmethods 3500 and 3550 protocols (U.S. EPA
1996). Five milliliters of hexane was combined with 3.0 g
crushed Na2SO4 and 3 g soil. The suspension was vortexed,
sonicated for 24 h, and subsequently centrifuged for 10min.
The supernatants were combined and passed through a glass
wool/Na2SO4 filter, evaporated to dryness, and brought to
volume with acetonitrile. An aliquot was removed for high-
performance liquid chromatography (HPLC) analysis on a
15 cm×4.6-mm (5-μm) LC-PAH column (Supelco, Inc.,
Bellefonte, PA) with a modular system composed of a
Shimadzu SCL-10A system controller, SIL-10A auto-
sampler, LC-10AT HPLC pump, and SPD-10AV UV–VIS
variable wavelength detector set at 254 nm (Shimadzu Sci-
entific Instruments, Inc., Kyoto, Japan). The mobile phase
was 7:3 CH3CN/H2O (v/v) with a flow rate of 1.5 ml min−1

and an injection volume of 50 μl. The limit of pyrene quan-
tification was 1 mg kg−1. Samples were corrected for a
92±3% recovery.

The PDPs were enumerated 63 DAP by a modified MPN
procedure described byWrenn and Venosa (1996). A 40-ml
n-pentane solution containing 10 mg ml−1 pyrene was filter
sterilized with a Millex-gs 0.22-μm filter unit. A 10-μl
aliquot of the n-pentane solution was added to sterile flat
bottom microplate wells containing 270 μl of Bushnell–
Haas (BH) medium (Bushnell and Haas 1941). For each
rhizosphere sample, fresh roots with attached rhizosphere
soil were placed in 99-ml dilution bottles for the 10−2 di-
lution. Vegetated and nonvegetated bulk soil dilutions were
performed by adding 1 g moist soil to the 10−2 dilution. A
tenfold serial dilution was made with phosphate buffer so-
lution (Greenburg et al. 1992). For each dilution, 30 μl was
pipetted into five separate microplate wells. Positive and
negative controls were included for the procedure. Micro-
plates were placed in partially sealed Zip-locke bags and
incubated at 28°C for 21 days. Positive wells were iden-
tified with iodonitrotetrazolium violet (Haines et al. 1996).
Each MPN was determined from the appropriate table
(Cochran 1950) and expressed as log10 MPN g−l dry soil.

The experimental design was a randomized complete
block with three replications and a 4×8 factorial treatment
structure having four pyrene–Bermuda grass combinations
including 0.0 mg kg−1 BR, 500 mg kg−1 BR, 0.0 mg kg−1

BB, 500 mg kg−1 BB, and eight sampling times. The nat-
ural logarithm of pyrene concentration was regressed on
time with a first-order kinetics model. The initial 14-day lag
period was not considered in the data analysis. Analysis of
covariance determined if slopes differed among BR, BB,
and NVB. The PDPs were analyzed by analysis of vari-
ance. Means were separated with Fisher’s LSD. Statistical
significance was defined as p values ≤0.05. All statistical
analyses were carried out with SAS version 6.12 (SAS
Institute, Cary, NC).
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Results and discussion

Bermuda grass roots were more sensitive to pyrene than
shoots. Pyrene reduced root length at ≥28 days, root dry
weight at ≥42 days, and shoot dry weight at 63 days (Table 1).
These trends remained evident throughout the study. Sim-
ilar trends are reported for alfalfa grown in pyrene- and
anthracene-contaminated soil (Reilley et al. 1996). Shoots
may be less sensitive to PAH contamination compared to
roots since pyrene translocation is minimal (Pradhan et al.
1998; Reilley et al. 1996; Sims and Overcash 1983; Edwards
1983).

Pyrene degradation exhibited a 14-day lag phase (Fig. 1)
that is not uncommon since acclimation of the degrader
population depends on soil, contaminant concentration,
temperature, aeration status, and other undefined factors
(Alexander 1994; Lalande et al. 2003; Olexa et al. 2000).
An adaptation period is often necessary before indigenous
soil microorganisms can effectively degrade the added
pyrene (Binet et al. 2000). A reduced adaptation period for
pyrene mineralization and a higher pyrene degradation rate
were reported for ryegrass-planted systems compared to
unplanted systems (Ferro et al. 1999). The first-order rate

constant (k) was greater in rhizosphere soil (BR) compared
to BB or NVB (Table 2). The rate constants were not dif-
ferent between BB and NVB suggesting that enhanced
pyrene dissipation in vegetated system was attributed to the
rhizosphere. Greater contaminant dissipation in the rhizo-
sphere compared to nonvegetated soils has been reported
for pesticides (Anderson et al. 1994; Anderson and Coats
1995; Marchand et al. 2002; Perkovich et al. 1996) and
PAHs (Miya and Firestone 2000). Plant root exudates have
been associated with enhanced rhizosphere contaminant
dissipation (Burken and Schnoor 1996; Miya and Firestone
2001; Nichols et al. 1997; Siciliano and Germida 1998;
Yoshitomi and Shann 2001). Root exudates may facilitate
the cometabolic transformation of recalcitrant compounds
(Hsu and Bartha 1979). Cometabolism was the suggested
mechanism for enhanced 14C-pyrene mineralization in al-
falfa rhizosphere soil supplemented with organic acids
(Schwab and Banks 1995). Another explanation for en-
hanced rhizosphere degradation is selective degrader pop-
ulation enrichment.

Selective enrichment of a degrader population in rhizo-
sphere soil compared to bulk soil has been reported for
hydrocarbons (Miya and Firestone 2000; Nichols et al.

Table 1 Bermuda grass shoot and root growth in pyrene-contaminated and noncontaminated soils

Parameter Treatment 14 days 21 days 28 days 35 days 42 days 49 days 56 days 63 days

Shoot dry weight (g pot −1) Noncontaminated 0.003a NDa 0.144a ND 1.850a 2.483a 2.930a 4.10a
Contaminated 0.001a 0.002 0.019a 0.113 0.926a 1.570a 2.564a 2.230b

Root dry weight (g pot −1) Noncontaminated 0.000a ND 0.021a ND 1.188a 2.101a 2.925a 3.456a
Contaminated 0.000a 0.000 0.002a 0.017 0.1666b 0.651b 0.933b 1.652b

Root length (cm pot−1) Noncontaminated 11.2a ND 523.5a ND 11,376.7a 9,744.2a 17,455.6a 10,755.3a
Contaminated 6.8a 7.1 55.8b 295.8 1,226.7b 2,226.5b 8,440.5b 4,162.3b

Initial pyrene concentration for contaminated treatments was 500 mg kg−1. Treatment means followed by different letters are significantly
different at p<0.05 for each parameter and time
aData not collected

Fig. 1 Percent pyrene remain-
ing over time in Bermuda grass
rhizosphere (BR), Bermuda
grass bulk (BB), and nonvege-
tated bulk (NVB) soil. The
symbol for Bermuda grass rhi-
zosphere soil does not appear
until 35 days due to insufficient
rhizosphere development. Bars
indicate ±1 standard error
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1997) and pesticides (Sandmann and Loos 1984). In this
study, the Bermuda grass rhizosphere PDP was selectively
enriched compared to both NVB and BB (Fig. 2). Pyrene
degrader populations were 8.01, 7.30, and 6.83 log10 MPN
g−1 dry soil for BR, BB, and NVB, respectively. Noncon-
taminated treatments had PDP less than the minimum de-
tectable number of 3.09 log10 MPN g−1 dry soil. In a silt
loam soil amended with 2,000 mg pyrene kg−1 soil, total
bacterial or fungal numbers were not affected by pyrene
contamination, but pyrene degrader numbers increased from
less than the undetectable level of 2.77 to 7.09 log10 de-
graders g−1 soil (Gentry et al. 2003).

Plant root exudates, specifically phenolic analogs, may
facilitate the selective enrichment of a degrader population
(Nichols et al. 1997; Sandmann and Loos 1984). Laboratory
studies have demonstrated that polychlorinated biphenyl
(PCB) analogs enhance PCB-degrading bacterial popula-
tions by selectively improving their growth over non-PCB
degrading microbes (Bedard et al. 1987). Data indicate that
rhizosphere degrader enrichment is not a prerequisite for

enhanced biodegradation (Miya and Firestone 2001). How-
ever, in this study, the largest PDP was associated with the
largest pyrene degradation rate constant. This trend has
been reported for other contaminants (Jayachandran et al.
1998) and is logical since the probability for contaminant
and contaminant–degrader contact is proportional to degrad-
er population (Holden and Firestone 1997).

The pyrene degrader MPN method estimates microbial
numbers that have the potential to degrade pyrene but does
not provide information on the actual pyrene degradation
activity of the microorganisms. The MPN method can
underestimate PDP and does not account for cometabolism
by microbial consortia (Johnsen et al. 2002). The incon-
sistency between the PDP (Fig. 2) and the first-order pyrene
degradation rate constants (Table 2) could reflect a shift in
the microbial community structure of the degraders that
was not evident in the MPN determinations (Parrish et al.
2004) In the BR, there was a significant increase in pyrene
degrader numbers and activity that was reflected in a more
rapid degradation of pyrene. In the BB and NVB soils, the
differences in PDP could be related to possible rhizosphere
degraders inadvertently being included in the BB sample.
In the NVB, there was only bulk soil and no roots that could
have served as a possible source of rhizosphere PDPs. Ad-
ditionally, the MPN determinations were conducted follow-
ing the 63-day incubation and only reflect the numbers at
that specific time.

Bermuda grass root growth is more sensitive to pyrene
contamination than shoot growth. However, Bermuda grass
was established from seed and grew in pyrene-contami-
nated soil. Moreover, both pyrene degradation and pyrene
degrader populations were greater in Bermuda grass rhi-
zosphere soil compared to bulk soil. The pyrene degrader
population was largest in soil with the most rapid pyrene
degradation rate. These results indicate that the Bermuda
grass rhizosphere can be important in stimulating pyrene
degradation.

Fig. 2 Pyrene degrader popu-
lations in pyrene-amended soil
at 63 days after planting for
Bermuda grass rhizosphere
(BR), Bermuda grass bulk (BB),
and nonvegetated bulk (NVB)
soil. Means followed by differ-
ent letters are significantly dif-
ferent at p<0.05. Bars indicate
±1 standard error

Table 2 First-order rate constant (k), standard error, r2, and T1/2 for
Bermuda grass rhizosphere (BR), Bermuda grass bulk (BB), and
nonvegetated bulk (NVB) soil

Treatment Rate constant
(k) (day−1)

Standard error
(day−1)

r2 T1/2
a

(day)

Bermuda grass
rhizosphere (BR)

0.082a 0.011 0.76 8.4

Bermuda grass
bulk (BB)

0.050b 0.005 0.89 13.9

Nonvegetated
bulk (NVB)

0.052b 0.005 0.82 13.3

Rate constants followed by different letters are significantly different
at p<0.05
aT1/2=0.693/(k) and does not include the 14-day lag phase that was
observed
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