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INTRODUCTION

The State of Oklahoma is required to develop TMDLs for waters listed in Category 5
(303(d) list) of its Integrated Report.  The Category 5 of the 2002 integrated report includes
436 water body segments listed as threatened or impaired and in need of TMDLs.
Developing appropriate load allocations in  waters that are impaired solely or primarily by
nonpoint sources is essential if state water quality standards are to be met.  To accurately
and efficiently quantify current and future pollutant loads from watershed with significant
nonpoint sources, observed water quality data in combination with hydrologic/water quality
(H/WQ) models must be utilized.  USEPA has developed protocols for developing TMDLs
for nutrients and sediments (US EPA 1999a, 1999b).  However, to date a detailed protocol
designed specifically for applying comprehensive HWQ models has not been developed.

In this report we present a guidance manual for using a comprehensive hydrologic/water
quality model, SWAT (Soil and Water Assessment Tool) (Arnold et al., 1998; Srinivasan
et al., 1998), to estimate background and anthropogenic nonpoint source pollutant loads
that can be used in the TMDL process for watersheds containing significant nonpoint
sources of pollution.  These guidelines focus on runoff volume, and nutrient (nitrogen and
phosphorus) and sediment loading to streams, rivers and lakes in Oklahoma. 

SWAT is a distributed hydrologic model. Distributed hydrologic models allow a basin to be
broken into many smaller subbasins to incorporate spatial detail. Water yield and loading
are calculated for each subbasin, and then routed through a stream network to the basin
outlet.  SWAT goes a step further with the concept of Hydraulic Response Units (HRUs).
A single subbasin can be further divided into areas with the same soils and land use.
Areas inside a subbasin with the same soil and land use combination are defined as HRUs.
Processes within a HRU are calculated independently, and the total yield for a subbasin is
the sum of all the HRUs it contains.  HRUs allow more spatial detail to be included by
allowing more land use and soil classifications to be represented. SWAT is a physically
based continuous simulation model that operates on a daily time step. Long-term
simulations can be performed using simulated or observed weather data.   Relative impacts
of different management scenarios can be quantified.  Management is set as a series of
individual operations (e.g. planting, tillage, harvesting, or fertilization).  

SWAT is the combination of ROTO (Routing Outputs to Outlets) (Arnold et al., 1995) and
SWRRB (Simulator for Water Resources in Rural Basins) (Williams et al., 1985; Arnold et
al., 1990).  SWAT was created to overcome maximum area limitations of SWRRB.
SWRRB can only be used on watersheds a few hundred square kilometers in area and has
a limitation of 10 subbasins.  SWAT can be used for much larger areas.  The HUMAS
(Hydrologic Unit Model for the United States), (Srinivasan et al., 1997) project used SWAT
to model 350 USGS 6-digit watersheds in the 18 major river basins in the US. Several
models contributed to SWRRB and SWAT.  CREAMS (Chemicals, Runoff, and Erosion
from Agricultural Management Systems) (Knisel, 1980) , GLEAMS (Groundwater Loading
Effects on Agricultural Management Systems) (Leonard et al.,1987), and EPIC
(Erosion-Productivity and Impact Calculator) (Williams et al., 1984) all contributed to the
development of SWRRB and SWAT.  An extensive list of peer review articles related to the
SWAT model is given in Appendix A.
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HYDROLOGIC/WATER QUALITY MODEL APPLICATION PROTOCOL

Introduction

Planning for modeling projects is just as important as planning traditional environmental
measurements for data collection projects. To use model predictions for anything from
regulatory purposes, research, to design, the modeling effort should be scientifically sound,
robust, and defensible. To ensure this and to lead to confidence in results, the US EPA
(2002) recommends a planning process that incorporates the following elements:

• a systematic planning process including identification of assessments and related
performance criteria;

• peer reviewed theory and equations;
• carefully designed life-cycle development processes that minimize errors;
• documentation of changes from the original plan;
• clear documentation of assumptions, theory, and parameterization that is detailed

enough so others can fully understand the model predictions;
• input data and parameters that are accurate and appropriate for the application; 
• model prediction data that can be used to help inform decision making.

A Quality Assurance Project Plan and good project management in modeling projects are
closely linked. A good Quality Assurance Project Plan documents all criteria and
assumptions in one place for easy review and reference. The plan can be used to guide
project personnel through the model development or application process and helps ensure
that choices are consistent with project objectives and requirements. However, it should
be noted that many assumptions and decisions can not be made until the modeling effort
is underway. A well prepared plan can be helpful in providing guidance.  Assumptions and
decisions made during the modeling process should be documented.

Quality assurance in hydrologic modeling is the procedural and operational framework put
in place by the organization managing the modeling study to ensure adequate execution
of all project tasks, and to ensure that all modeling-based analyses are verifiable and
defensible (Taylor, 1985).  The two major elements of quality assurance are quality control
and quality assessment. Quality control addresses the procedures that ensure the quality
of the final product. The procedures include use of appropriate methodology in developing
and applying computer models, suitable verification, calibration, and validation procedures,
and proper use of the methods and model. Quality assessment is applied to monitor the
quality control procedures (van der Heijde, 1987).

Use of a modeling protocol provide several potential benefits to projects that include a
significant modeling component. These include:

! Reduces potential modeler bias
! Provides a roadmap to be followed
! Allows others to assess decisions made in modeling the system of interest
! Allows others to repeat the study
! Improves acceptance of model results
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A modeling protocol, preferably written, should be established prior to conducting a
modeling study.  To date, most hydrologic/water quality modeling projects and studies have
not utilized formal modeling protocols, rather ad hoc approaches are typically employed.
The goal of this paper is to define the contents of a modeling protocol or a modeling quality
assurance plan that can be used to help hydrologic/water quality modelers establish such
protocols for their modeling projects.

Literature Review

In following the scientific method, steps should be taken to minimize the potential influence
of scientists’ bias. The use of a modeling protocol or a quality assurance plan in modeling
projects can provide the documentation needed to assess the project and can be helpful
in reducing potential bias.  By definition, the scientific method is impartial and the results
from the application the scientific method must be reproducible.  Therefore, the modeling
protocol and associated documentation must provide enough detail to allow the modeling
project to be repeated. It should be noted that models are not hypothesis, but are simply
tools that are used to evaluate a hypothesis.  As applied to hydrologic modeling, the steps
in the scientific method may be given as:

1. Based on existing theory and data, develop a hypothesis that is consistent with the
current understanding of the system being modeled

2. Based on the hypothesis, make predictions by applying an appropriate hydrologic
model

3. Test the hypothesis by comparing model predictions with observed data
4. Accept or reject the hypothesis based on an appropriate criteria
5. If needed, modify the hypothesis and repeat steps 2-5

Refsgaard (1997) defined a modeling protocol as depicted in Figure 1. Refsgaard makes
a distinction between a model and a model code; a model is any hydrologic model
established for a particular watershed. Others might refer to Refsgaard’s definition of a
model as a model “setup” or a “parameterized” model. Refsgaard (1997) defined a model
code as a generalized software package, which without changes, can be used to establish
a model with the same basic types of equations (but allowing different parameter values)
for different watersheds. Refsgaard (1997) defined model validation as the process of
demonstrating that a given site-specific model is capable of making “sufficiently accurate”
predictions, where “sufficiently accurate” will vary by application and project needs. A model
is considered validated if its accuracy and predictive capability in the validation period have
been proven to lie within acceptable limits.  Again, acceptable limits will vary by application
and project requirements. Interestingly, Refsgaard (1997) does not include a model
sensitivity analysis in his steps. Sensitivity analyses, discussed in more detail later in the
paper, can be helpful for a variety of purposes in modeling projects.
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Figure 1. A hydrological model protocol as proposed by Refsgaard (1997).
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Developing efficient and reliable hydrologic/water quality models and applying them
requires numerous steps, each of which should be taken conscientiously and reviewed
carefully. Taking a systematic, well-defined and controlled approach to all steps of the
model development and application process is essential for successful implementation of
the model. Quality Assurance provides the mechanisms and framework to ensure that
decisions made during this process are based on the best available data and analyses.

EPA Quality Assurance 

The US Environmental Protection Agency (EPA) uses the Quality Assurance Project Plan
to help project managers and planners document the type and quality of data and
information needed for making environmental decisions. The US EPA (2002) has
developed a document, Guidance for Quality Assurance Project Plans for Modeling (EPA
QA/G-5M), to provide recommendations on how to develop a Quality Assurance Project
Plan for projects involving modeling (e.g., model development, model application, as well
as large projects with a modeling component). A “model” is defined by US EPA as
something that creates a prediction.  The guidance regarding modeling is based on
recommendations and policies from US EPA Quality Assurance Project Plan protocols, but
is written specifically for modeling projects, which have different quality assurance concerns
than traditional environmental monitoring data collection projects. The structure for the
Quality Assurance Project Plan for modeling is consistent with the US EPA Requirements
for Quality Assurance Project Plans (QA/R-5) (US EPA, 2001) and US EPA Guidance for
Quality Assurance Project Plans (QA/G-5) (US EPA, 1998), though for modeling not all
elements are included because not all are relevant.

The US EPA Quality System defined in US EPA Order 5360.1 A2 (US EPA, 2000), Policy
and Program Requirements for the Mandatory Agency-wide Quality System, includes
environmental data produced from models. Environmental data includes any
measurements or information that describes environmental processes, location, or
conditions, ecological or health effects and consequences, or the performance of
environmental technology. As defined by US EPA, environmental data includes information
collected directly from measurements, produced from models, or compiled from other
sources such as databases or literature. The US EPA Quality System is based on the
American National Standard ANSI/ASQC E4-1994.

Graded Approach to QA Project Plans

US EPA defines the graded approach as “the process of basing the level of application of
managerial controls applied to an item or work according to the intended use of the results
and degree of confidence needed in the quality of the results” (US EPA, 1998). This allows
the application of quality assurance and quality control activities to be adapted to meet
project specific needs. Models that provide an initial “ballpark” estimate or non-regulatory
priorities, for example, would likely not require the same level of quality assurance and
planning as would models that will be used to set regulatory requirements. However, US
EPA provides no explicit categorizations or other specific guidelines for applying the graded
approach (US EPA, 2002).
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In applying the graded approach, US EPA suggests two aspects that are important for
defining the level of quality assurance that a modeling project needs: (1) intended use of
the model and (2) the project scope and magnitude (US EPA, 2002). The intended use of
the model is a determining factor because it is an indication of the potential consequences
or impacts that might occur due to quality control problems. For example, higher standards
might be set for projects that involve potentially large consequences, such as
Congressional testimony, development of new laws and regulations, the development of
a TMDL, or the support of litigation. More modest levels of defensibility and rigor would
often be acceptable for data used for technology assessment or “proof of principle,” where
no litigation or regulatory action are expected, such as cost-share water quality programs
that require targeting critical source areas to focus Best Management Practices
implementation efforts. Still lower levels of defensibility would likely apply to basic
exploratory research requiring extremely fast turn-around, or high flexibility and adaptability.
In such cases, the work may have to be replicated under more stringent controls or the
results carefully reviewed prior to publication. The US EPA (2002) suggests peer review
may be substituted, to some extent, for the level of quality assurance. By analyzing the
end-use needs, appropriate quality assurance criteria can be established to guide the
program or project. The examples presented are for illustration only, and the degree of rigor
needed for any particular project should be determined based on an evaluation of the
project needs and resources.

Other aspects of the quality assurance effort can be established by considering the scope
and magnitude of the project. The scope of the model development and application
determines the complexity of the project; more complex models or modeling projects likely
need more quality assurance effort. The magnitude of the project defines the resources at
risk if quality problems lead to rework and delays.

The QA Project Plan Elements for a Model Application Project

The US EPA (2002) defined the nine following model application tasks and mapped them
into Quality Assurance Project Plan elements.

1. Needs assessment
2. Purpose, objectives, and output specifications
3. Define quality objectives, desired performance criteria, and documentation needs

for model output
4. Select the most appropriate model
5. Data development, model parameterization, and model calibration
6. Determine whether data, models, and parameters for the application meet desired

performance criteria
7. Run the computer code
8. Model output testing and peer review
9. Summarize results and document

Further details on how these modeling tasks fit within a potential modeling quality
assurance plan are described in detail in Guidance for Quality Assurance Project Plans for
Modeling (US EPA, 2002).



Page -10-

Model Application Protocol Steps

A hydrologic/water quality model application protocol is proposed based on the authors’
experiences and review of the literature including the US EPA (2002) Guidance for Quality
Assurance Project Plans for Modeling document. The authors recognize that a “graded”
approach in implementing a modeling protocol will be required, and thus not all modeling
quality assurance plans will include all sections or issues suggested. The US EPA (2002)
suggests a graded approach can be used to define the level of quality assurance effort that
a modeling project needs based on the intended use of the model and the project scope
and magnitude (Table 1). 

Table 1. Examples of Modeling Projects with Differing Intended Uses (adapted from US
EPA, 2002)

The following items or sections should be included in a hydrologic/water quality
modeling protocol:

1. Problem definition/background
2. Model application goals, objectives and hypothesis
3. Model selection
4. Model sensitivity analysis 
5. Available data
6. Data to be collected
7. Model representation issues – data, BMPs, etc
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8. Model calibration
9. Model validation
10. Model scenario prediction
11. Model output uncertainty analysis
12. Results interpretation/hypothesis testing

The proposed modeling protocol steps may be iterative. For example, the scientific
literature and a preliminary sensitivity analysis using general data may initially be used to
identify the model parameters that are the most sensitive. A more comprehensive
sensitivity analysis assessment may be performed later once more detailed location
specific data have been collected or obtained. 

Decisions made throughout the modeling effort and the rationale for these decisions should
be documented.  In most instances, it will be necessary to make various assumptions and
decisions throughout the modeling project. Many of these assumptions are best made
during the modeling project rather than before the modeling starts, since information from
prior steps may impact decisions. The amount of documentation that should be created
depends on the project goals and the consequences of decisions that will be made as a
result of the project findings.  Each of the modeling protocol steps is discussed in more
detail in the sections that follow.

Problem Definition/Background

Background information and preliminary data for the study area should be obtained to help
initially define the overall problem that will be addressed by the study. The background
information and data collected in this step will be useful to determine whether modeling will
be necessary, assist in defining the modeling objectives (if modeling is required) and to
select the model or models to be used. More detailed objectives or hypotheses to be
examined within the project are defined in the subsequent step. This initial step is similar
to the initial observation phase commonly employed within the scientific method.

Questions that may be addressed when defining the problem include: 

! What is the specific problem?

! What are the overall goals and objectives of this project that will address this
problem?

! Why should a modeling approach be used to address the problem? 

It is also important to place the problem in context to provide a sense of the project’s
purpose relative to other project and program phases and initiatives. Questions that might
be addressed include: 

1. What information, previous work, or previous data may currently exist that this
project can use?

2. Given that the problem is best solved by a modeling approach, what models
currently exist (if any) that can be used to achieve this project’s goals and
objectives? 
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3. What are the advantages and disadvantages for these models?

The presentation of background information may also include a discussion of initial ideas
or potential approaches for model application.

Model application goals, objectives and hypothesis

The specific objectives and/or hypotheses to be accomplished or tested by the modeling
effort are defined based on the background information and data collected in the first step.
The objectives or hypotheses should be stated in a manner that they can be tested or
evaluated using the model predictions.

In setting the objectives or hypotheses to be tested, one should keep in mind that models
are more accurate when making relative comparisons rather than making absolute
predictions. Thus, an objective or hypothesis might be written to compare expected
pollutant losses for different tillage systems rather than examining whether a particular
tillage system results in pollutant losses below a given magnitude. Calibration of models
can help improve absolute predictions, but data for calibration to represent the range of
conditions of interest for the location of interest are not always available.

A summary of the work to be performed and the “products” to be created by the model
application effort should be identified. These will be described in more detail in subsequent
sections. 

Model selection

An appropriate model should be selected based on the project goals, objectives or
hypotheses, how model results will be used; the characteristics of the hydrologic/water
quality system that are important to the problem, and various other factors including:

Appropriate level of detail (space and time)
Important processes
Data requirements and availability
Calibration requirements
Previous model applications and acceptance in the scientific and regulatory

communities
Ease of use
Sensitivity to processes of interest
Available resources and time

Model sensitivity analysis

A model sensitivity analysis can be helpful in understanding which model inputs are most
important or sensitive and to understand potential limitations of the model. Additional care
should be taken when estimating model parameters that are the most sensitive.  Data
collection efforts that support the modeling study may focus on obtaining better data for the
most sensitive parameters. 
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The sensitivity analysis can also identify potential limitations of the model. If a model is not
sensitive to parameters that are to be varied in testing the project objectives or hypotheses,
a different model may need to be selected.  Models are abstractions of the systems they
simulate and therefore typically represent system components with varying levels of detail.
For example, the scientific literature may indicate that differences in tillage practices
influence pesticide losses in surface runoff. In such a case, the use of a model that is not
sensitive to tillage to examine the impact of switching from conventional tillage to
conservation tillage on pesticide losses in surface runoff is likely inappropriate.  

The literature and model documentation are often excellent sources of information on
model sensitivity. For example, Muttiah and Wurbs (2002) identified the sensitivity of SWAT
to various parameters. However, it may be necessary to conduct a sensitivity analysis for
the study watershed if its conditions are significantly different than those for model
sensitivity analyses reported in the literature, since model sensitivity may be somewhat
specific to the model setup. Thus, limited data for parameterizing the model may need to
be collected prior to conducting a sensitivity analysis. Generally, the sensitivity analysis
should be completed using an uncalibrated model setup, since the sensitive parameters
and those with the greatest uncertainty are typically used for model calibration. For
example, Spruill et al. (2000) conducted a SWAT sensitivity analysis to evaluate
parameters that were thought to influence stream discharge predictions. Then during
calibration, minimization of the average absolute deviation between observed and
simulated stream flows was used to identify optimum values or ranges for each parameter.

Available Data

The goal of this step is to select the most appropriate data for the modeling effort. Data
available for the modeling effort will likely come from numerous sources. An assessment
of available data, its quality, and the time period it covers should be made. The amount of
data available for a watershed can vary greatly, as can the quality of the data.  For
example, flow and water quality data may be available for 1983 through 1988 while land
use data might have been developed for conditions in 1995. This may result in a
misrepresentation of the land uses that were present during the observed water quality
data period, especially for areas experiencing rapid urbanization.  In other instances,
differences in data collected at different dates may be negligible. For example, soil property
data used in modeling runoff from a watershed would not typically change significantly over
time, even over periods of tens of years. In instances where data, such as land use, may
have changed significantly, it may be necessary to  estimate data for the period of interest
by interpolating between data sets for different time periods or by adjusting the data from
the available time period using other sources of data and information.

The US EPA (2002) indicates that a Quality Assurance Project Plan for modeling should
address the following issues regarding information on how non-direct measurements (data
and other information that have been previously collected or generated under some effort
outside the specific project being addressed by the Quality Assurance Project Plan) are
acquired and used in the project:

• the need and intended use of each type of data or information to be acquired;
• how the data will be identified or acquired, and expected sources of these data;
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• the method of determining the underlying quality of the data; and
• the criteria established for determining whether the level of quality for a given set of data
is acceptable for use in the project.

Water quality and runoff data for the study watershed may be available from federal, state
or local government agencies. For example, the USGS is often an excellent source of
stream flow data and the EPA STORET database may provide useful water quality data.
Data sets may also be available from past studies. Such data sets may be documented in
project reports. In many instances, these data will not be identified by simply conducting
a literature search, rather contacts with local universities, state and local agencies, and
local watershed groups will likely be necessary.

Well documented and widely used datasets, such as soil properties from the USDA NRCS,
often have well understood properties and uncertainty. It is useful to understand this
uncertainty and the assumptions in the data and how these will likely impact the model
results.  Spatial or geographic information systems (GIS) data may be available from
federal, state and local government agencies. Increasingly, county and local governments
are developing detailed spatial data sets. For example, many county governments with
urban areas have developed detailed elevation data sets that provide more detail than state
and national elevation datasets. Spatial data from these sources should have metadata
available that describe the accuracy and other properties of the data that will be helpful in
understanding data quality and limitations.

Remotely sensed datasets from satellites and aerial photography can potentially provide
land use and other data needed in hydrologic/water quality modeling studies. In addition,
archived satellite data and aerial photography may be useful in creating land use
information for the past. Remotely sensed datasets will require interpretation to create the
land use or other data that are needed. Accuracy assessments of the interpreted results
should be performed to provide information regarding the quality of the land use products
created.

The scientific literature may contain some information about the study area. Project reports,
however, are more likely to contain the detailed data typically required for a model
application project. Scientific papers may also provide insight into transformation of various
data into the data required by the model. In most cases, these data must be transformed
into values and formats required by the model.

After identifying the data available and its various properties, including quality and temporal
aspects, an assessment of the suitability of the data for use in the model that has been
selected must be made. The model data requirements and the sensitivity of the model to
various parameters should be considered when evaluating and selecting the data to use.
The rationale for the data selected for use in the model should be well documented, as
should any required data transformation.

The scientific literature contains numerous studies on the impacts that various data sources
and data errors can have on model results. Chaubey et al. (1999) explored the assumption
of spatial homogeneity of rainfall when parameterizing models and concluded large
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uncertainty in estimated model parameters can be expected if detailed variations in the
input rainfall are not considered.  Nandakumar and Mein (1997) examined the levels of
uncertainty in rainfall-runoff model predictions due to errors in hydrological and climatic
data, and considered the implications for prediction of the hydrologic effect of land-use
changes. Studies such as this highlight the importance of understanding the consequences
of the data used in the project on the model results and their interpretation. 

Additional data to be collected

The project objectives and hypotheses, available data and model sensitivity should be
considered in deciding what, if any, additional data should be collected. After assessing
these issues, the modeler may conclude that additional data should be collected. Following
calibration or validation, the modeler may also decide that additional data should be
collected in an attempt to improve model performance. The collection of additional data can
be expensive as well as require a significant amount of time. An appropriate quality
assurance plan for the collection of additional data should be prepared and followed (US
EPA, 1998). 

Model representation issues – data, BMPs, etc

Models are abstractions of the systems they are simulating. Therefore, the modeler will be
required to make decisions on how to represent the various components of the system
being modeled. This may include decisions on representation of components within the
model and in the transformation of available data into the formats needed by the model.
These decisions should be documented. The expected effect of these assumptions on the
results, relative to alternative assumptions that could have been made should also be
documented.

One of the data representation issues typically faced is related to pollutant sources. It is
typically impossible to include all pollutant sources in the modeling effort. For example, if
the amount of phosphorus leaving a watershed is of interest, the modeler may decide not
to include phosphorus losses from septic systems, if they are small relative to other
sources. Criteria should be established to determine which pollutant sources to include in
the model and/or overall analysis.  A simple mass balance for water and pollutants of
interest may be helpful to identify the most important components of the hydrologic cycle
and system to model and the most important sources of pollutants to consider.  Another
option is to use the selected model to perform a simple preliminary model simulation using
limited data.  Based on such a model, criteria to exclude pollutant sources that represent
less than 1% (or other levels deemed appropriate) of the pollutant might be established.
It should be noted, however, that pollutant sources less than this threshold may be included
if these data are readily available and easy to incorporate into the model.  When potential
pollutant sources are not incorporated into the model, care in the interpretation of the final
model results is required. 

An understanding of the model sensitivity to various parameters and model representations
can be useful in making decisions regarding representation issues within the model and in
understanding how uncertainty in data will affect the model results.
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The representation of BMPs within the model may not be well defined. Model
documentation and the scientific literature can often provide guidance in BMP
representation (Bracmort et al., 2003). However, in most instances, these sources do not
fully describe how a specific BMP, such as a grassed waterway, should be represented
within a particular model; rather the modeler must exercise judgment in the BMP
representation decision. Therefore, the modeler will need to determine how BMPs will be
represented in the application of a model to a given location. 

The accuracy of hydrology/water quality models also depends in part on how well model
input parameters describe the relevant characteristics of the watershed. Data that are
obtained for a watershed will typically require some transformation and interpretation to
create the inputs required by the model. For example, soil properties in the SSURGO
database are often reported with a range of values, while the model will require a single
value for each soil property. The model documentation and scientific literature can often
provide guidance in transforming commonly available data into the inputs required by the
model. These data used and the decisions made in data transformations should be
documented.

Input parameter aggregation may have a substantial impact on model output. For example,
Fitzhugh and MacKay (2000) used SWAT to determine how the size or number of
subwatersheds used to partition the watershed affect model output, and the processes
responsible for model behavior. Mankin et al. (2002) explored the errors introduced when
translating GIS data into model–input data. Watershed modelers using GIS data should be
aware of the issues related to appropriate grid cell sizes, generation of land–management
practice GIS coverages, accuracy of GIS data, and accuracy of interface algorithms.

Refsgaard and Storm (1996) indicated that a rigorous model parameterization procedure
is crucial to avoid methodological problems in subsequent phases of model calibration and
validation. They suggest the following points are important to consider in model
parameterization:

1. Parameter classes (soil types, vegetation types, etc) should be selected so it is easy
in an objective way to associate parameter values. Thus, when possible parameter
values in the classes should be determined based on available field data.

2. Determine which parameters can be assessed from field data or the literature and
which will require calibration. For parameters subject to calibration, the physically
acceptable intervals for the parameter values should be estimated and documented.

3. The number of calibration parameters should be minimized both from practical and
methodological points of view. Fixing a pattern for a spatially varying parameter but
allowing its value to be modified uniformly throughout the watershed can help
minimize the number of calibrated parameters.

Model Calibration

The US EPA (2002) indicates that if no nationally recognized calibration standards exist,
the basis for the calibration should be documented. Quality Assurance Project Plan
guidance indicates that calibration for data collection efforts address calibration of the
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analytical instruments that will be utilized to generate analytical data. In modeling projects
by analogy, the “instrument” is the predictive tool (the model) that is to be applied (US EPA,
2002). All models, by definition, are a simplification of the processes they are intended to
represent. When formulating the mathematical representations of these processes, there
are relationships and parameters that need to be defined.  Estimating parameters for these
relationships is called calibration. Some model parameters may need to be estimated for
every application of the model using site-specific data. Similar to an analytical instrument,
models are calibrated by comparing the predictions (output) for a given set of assumed
conditions to observed data for the same conditions. This comparison allows the modeler
to evaluate whether the model and its parameters reasonably represent the environment
of interest. Statistical methods typically applied when performing model calibrations include
regression analyses and goodness-of-fit methods. An acceptable level of model
performance should be defined prior to the initiation of model calibration. The details of the
model calibration procedure, including statistical analyses that are involved, should be
documented.

Calibration Procedures
Model calibration is often important in hydrologic modeling studies, since uncertainty in
model predictions can be increased if models are not properly calibrated. Factors
contributing to difficulties in model calibration include calibration data with limited metadata,
data with measurement errors, and spatial variability of rainfall or watershed properties
poorly represented by point measurements. Model calibration can be done manually or by
a combination of manual and automatic procedures. Manual calibration can be subjective
and time-consuming (Eckhardt and Arnold, 2001).  Initial values can be assigned to
parameters which are then optimized by an automatic procedure (Gan et al., 1997).
Chanasyk et al. (2002) calibrated SWAT until the predicted and observed results were
visibly close. Many studies use comparable ad hoc approaches in calibration. However,
approaches that use only visual comparison should be avoided. One of the advantages of
an automated approach to calibration is that it uses a systematic approach in adjusting the
model parameters, thereby removing potential modeler bias. With an ad hoc calibration
approach, the modeler could potentially adjust model parameters during calibration that
would create a model setup or parameterization that would be more likely to provide
desired results when testing the project objectives or hypotheses.  

Santhi et al. (2001a) presented a flow chart with the decision criteria used during the
calibration of SWAT. This flowchart has been adapted by Bracmort et al. (2003) and others
for calibration of SWAT, and an adapted version is presented in Figure 2.  In some
instances, this approach is too rigid to be strictly followed due to interactions between
model parameters, and thus the modeler may need to deviate from strictly following such
an approach. 

The approach that will be followed in calibrating the model should be identified prior to
beginning calibration. Performance criteria should also be established prior to beginning
model calibration so that the modeler knows when the model has been successfully
calibrated. The scientific literature can often provide an idea of the likely performance of the
model following calibration. Statistical measures can be used to identify performance
criteria for determining whether the model has been calibrated successfully. For some



Page -18-

efforts, an ad hoc calibration approach may be acceptable, while in other instances it will
be desirable to have a specific calibration protocol..

For projects supporting regulatory decision making, the US EPA (2002) suggests the level
of detail on model calibration in the Quality Assurance Project Plan should be sufficient to
allow another modeler to duplicate the calibration method, if the modeler is given access
to the model and to the data being used in the calibration process. For other projects (e.g.,
some basic research projects), it may be acceptable to provide less detail on this issue for
the Quality Assurance Project Plan. In some instances, projects may use procedures that
are somewhat different from standard calibration techniques, such as “benchmarking”
procedures, and therefore the level of detail may differ from what is generally portrayed for
calibration. 

Examples of features that the model calibration portion of the Quality Assurance Project
Plan may address include the following:

• objectives of model calibration activities, including acceptance criteria;
• details on the model calibration procedure;
• method of acquiring the input data;
• types of output generated during model calibration;
• method of assessing the goodness-of-fit of the model calibration equation to
calibration data;
• method of quantifying variability and uncertainty in the model calibration results;
• corrective action to be taken if acceptance criteria are not met.

The calibration plan should identify the parameters that will be adjusted, the order in which
they will be adjusted, and ranges in which the adjusted parameters must fall. The ranges
of parameters used in calibration and the calibration results obtained should be
documented during calibration.

Not all models must be calibrated prior to use of the model to test the project objectives or
hypothesis. However, in most cases calibration of the model for the study watershed(s)
conditions can reduce the uncertainty in model predictions. If models are not calibrated,
they should still be validated for the study watershed if possible.

For hydrologic/water quality models, the hydrology components are usually calibrated first.
In the calibration of the hydrology components of the model, it may be necessary to
separate stream flow into direct or surface runoff and base flow. The model is typically
calibrated first to obtain acceptable performance in the hydrology components, then for
erosion, and finally for nutrients and pesticides. 

Calibration Data
Data that will be used for calibration should be identified. One common method is to split
observed data into a dataset for calibration and one for validation. A common practice is
to split data sets equally or approximately equally into calibration and validation data sets.
It is important that the calibration and validation data sets each have observed data of
approximately the same magnitudes. For example, both calibration and validation data sets
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should have periods with high and low flows when the hydrologic portion of the model is
being calibrated. 

Yapo et al. (1996) used varying lengths of calibration data and found that approximately
eight years of data were needed to obtain calibrations that were insensitive to the
calibration period selected for their watershed.  Gan et al. (1997) indicate that ideally,
calibration should use 3 to 5 years of data that include average, wet, and dry years so that
the data encompass a sufficient range of hydrologic events to activate all the model
components during calibration.  However, the required amount of calibration data is project
specific.

Calibration Statistics
The goodness-of-fit statistics to be used in describing the model’s performance relative to
the observed data should be selected prior to calibration and validation. The ASCE Task
Committee (1993) recommended graphical and statistical methods useful for evaluating
model performance. In most instances, both visual comparisons of predicted and observed
data as well as goodness-of-fit statistics should be used. Plotting of predicted results and
observed results along with the 1:1 line can be helpful in identifying model bias. The
percent deviation of predicted values from observed values is one numerical goodness-of-
fit criterion. A second basic goodness-of-fit criterion recommended by the ASCE Task
Committee (1993) is the Nash–Sutcliffe coefficient or coefficient of simulation efficiency.
Legates and McCabe (1999) evaluated various goodness-of-fit measures for hydrologic
model validation and suggested that correlation and correlation-based measures (e.g., the
coefficient of determination) are oversensitive to extreme values and are insensitive to
additive and proportional differences between model estimates and observed values. Thus,
correlation-based measures can indicate that a model is a good predictor, even when it is
not. Legates and McCabe (1999) concluded that measures such as the Nash-Sutcliffe
coefficient of efficiency and the index of agreement are better measures for hydrologic
model assessment than correlation-based measures. Legates and McCabe (1999)
suggested a modified Nash-Sutcliffe coefficient that is less sensitive to extreme values may
be appropriate in some instances. They also suggested additional evaluation measures
such as summary statistics and absolute error measures (observed and modeled means
and standard deviations, MAE and RMSE) should be reported for model results. 

There are no standards or a range of values for goodness-of-fit statistical parameters that
will adjudge the model performance as acceptable (Loague and Green, 1991).
Ramanarayanan et al. (1997) suggested values of goodness-of-fit statistics for determining
the acceptable performance of the APEX model.  They indicated that values close to zero
for the correlation coefficient and/or the Nash-Sutcliffe coefficient indicated the model
performance was unacceptable or poor. They judged the model performance as
satisfactory if the correlation coefficient was greater than 0.5 and the Nash-Sutcliffe
coefficient was greater than 0.4. Santhi et al. (2001a) assumed a Nash-Sutcliffe coefficient
greater than 0.5 and a goodness of fit (R2) greater than 0.6 indicated acceptable model
performance when calibrating SWAT.  However, acceptable statistical measures are project
specific.

The literature can provide typical ranges of goodness-of-fit statistics for models. For
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example, Saleh et al. (2000) obtained Nash-Sutcliffe coefficients for average monthly flow,
sediment, and nutrient loading at 11 locations with values ranging from 0.65 to 0.99,
indicating reasonable SWAT predicted values. SWAT also adequately predicted monthly
trends in average daily flow, sediment, and nutrient loading over the validation period with
Nash-Sutcliffe coefficients ranging from 0.54 to 0.94, except for NO3-N which had a value
of 0.27.  Fernandez et al. (2002) developed a GIS–based, lumped parameter water quality
model to estimate the spatial and temporal nitrogen–loading patterns for lower coastal plain
watersheds in eastern North Carolina. Predicted nitrogen loads were highly correlated with
observed loads (correlation coefficients of 0.99, 0.90, and 0.96 for nitrate–nitrogen, TKN,
and total nitrogen, respectively). However, note the limitations of correlation coefficients as
discussed previously.  Spruill et al. (2000) evaluated SWAT and its parameter sensitivities
for streamflow from a small central Kentucky watershed and concluded the model
adequately predicted the trends in daily streamflow, although Nash-Sutcliffe coefficient
values were –0.04 and 0.19 for validation and calibration, respectively. The Nash-Sutcliffe
coefficients for monthly total flows were 0.58 for validation and 0.89 for calibration.

In some instances, model calibration may not yield results that are acceptable based on
the predefined model performance criteria.  If this occurs, the observed flow and pollutant
data as well as the model input data should be examined for potential errors.  The poor
model performance may be an indication that more detailed model inputs are required.  In
other cases, this may be an indication that the model is unable to adequately represent the
processes of interest for this watershed.
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Figure 2. Example SWAT Calibration Flowchart (adapted from Santhi et al. (2001a) and
Bracmort et al. (2003)).

Separate surface runoff (SR) and baseflow (BF) from total flow (TF) for observed daily flow 
(1975-1978) using BF filter program (http://www.brc.tamus.edu/swat/swatbase.html0) 

Run SWAT 1970-1979

If average of sim 
SR is ± 15%  

of average obs SR 
and  

ENS ?  0.5  
R2 ?  0.6 

If average of sim 
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of average obs TF 
and  

ENS ?  0.5  
R2 ?  0.6 
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R2 ?  0.6 
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sim Min, Org or Sol N & P 
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Model Validation
 
When possible, it is important to reserve some observed data (e.g., flow and water quality
data) for model validation. Additional discussion of the data for validation and calibration
can be found in the Model Calibration section.  Prior to beginning model validation, the
criteria used to validate, that is, accept, reject, or qualify, the model results should be
documented (US EPA, 2002). The same statistics used and reported for model calibration
should be used in model validation. Typically, the values of these statistics are lower for
validation than calibration. Acceptable levels of performance may be difficult to identify.
Acceptable model performance levels that have been proposed are discussed in the Model
Calibration section. The scientific literature can provide suggestions for levels of
performance that might be anticipated for a given model. The specific purpose of the study,
the available data and other factors should be considered when establishing the
performance criteria.  For example, the time period considered can impact model
performance. Typically, model performance is poorer for shorter periods than for longer
periods (e.g., daily versus monthly or yearly).  For example, Yuan et al. (2001) found that
AnnAGNPS provided an R2 of 0.5 for event comparison of predicted and observed
sediment yields while the agreement between monthly data had an R2 of 0.7.  

In some instances, acceptable model performance may not be obtained during the
validation step.  Note that the utility of the model may not depend on a single performance
indicator and therefore some judgment will be required by the modeler.  The uncertainty
associated with models and model setups that do not attain the desired level of
performance during validation will be greater than those for which model performance is
deemed acceptable.  Unacceptable model performance for validation can be an indication
that the validation period data ranges or conditions are significantly different than those for
the calibration period.  Therefore, care in the selection of the data for calibration and
validation periods is needed.  In other cases, poor performance during validation may be
an indication that the model has not been adequately or properly calibrated.  It is possible
that numerous model setups or parameterizations can provide acceptable model results
for calibration.  However, during validation such setups may provide poor results. In such
cases, the model should be re-calibrated and then validation attempted again.  In addition,
in some cases the lack of acceptable validation may be the result of inaccurate validation
data.

If data are unavailable for validation,, other approaches might be used to evaluate the
potential performance of the model. The literature on the model may provide an indication
of the model’s expected performance. However, care should be taken in inferring the
model’s likely performance for the study watershed based on validation results found in the
literature.  These data used and model parameterization for studies reported in the
literature are not often described with enough detail to allow a good assessment of the
model’s likely performance in other watersheds. Further, if the model study reported in the
literature included calibration, assessment of the model’s likely performance in the study
watershed will be even more difficult since the model will not be calibrated for the study
watershed. 

Observed runoff and water quality data from a similar watershed could potentially be used
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to determine the likely performance of the model for the study watershed. Sogbedji and
McIsaac (2002) demonstrated the expected performance of the ADAPT model through
calibration of the model using data from a comparable watershed and then applying it to
similar watersheds. However, it may be desirable not to calibrate the model for the similar
watershed but rather simply validate the model for such watersheds, since data are
unavailable for calibration of the model in the study watershed. 

The US EPA (2002) indicates that a model can be evaluated by comparing model
predictions of current conditions with similar field or laboratory data not used in the model
calibration process, or with comparable predictions from accepted models or by other
methods (uncertainty and sensitivity analyses). The results of a simple mass balance model
could be compared with those of the model used in the study to see how well results
match. Multiple comprehensive models might also be applied to the study watershed if data
are unavailable for calibration and validation. If multiple models provide similar results,
confidence in the results that are obtained may be increased. One must be cautious though
with the interpretation of results in such a case, especially if the models use similar
modeling components or approaches.

If validation is not possible, varying ranges of model inputs might be used in later stages
of the modeling effort to determine the sensitivity of the model results to the model inputs.
The use of Monte Carlo techniques and other approaches can also be used to identify
confidence limits on outputs. “Biasing” the model inputs may also be used in later stages
of the modeling effort to determine the sensitivity of the results to assumptions in model
inputs. In such a situation, the model inputs would be set to extreme values in their
expected ranges. If the same conclusions are reached with these inputs, the confidence
in the conclusions reached would be increased since the conclusions are not sensitive to
model input assumptions.

Model scenario prediction

Once the model has been validated and the results are deemed acceptable, the model is
ready to be parameterized to the conditions of interest (e.g., a land use change,
implementation of BMPs, etc.). The parameterization of the model and the rationalization
for decisions regarding data and representations within the model should be documented
to allow others to recreate the model setup (see Model representation issues section).
These data and representation decisions should be consistent with those used in setting
up the model for calibration and validation.

The uncertainty in model predictions when parameterized for the condition(s) of interest
should be explored. The results from the validation stage provide some basis for expected
model performance and level of uncertainty. Monte Carlo and other techniques can also
be used to place confidence intervals on the expected results.  For example, Kuczera and
Parent (1998) used two Monte Carlo-based approaches for assessing parameter
uncertainty in complex hydrologic models.  

An approach that can be helpful in exploring the extremes in the uncertainty of model
predictions is to bias model inputs in a direction that would be expected to represent the
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“worst case.” If the model results for such a case result in the same conclusion being
reached, the confidence in the conclusion should be high.  

Results interpretation/hypothesis testing

The model results should be interpreted accounting for the expected uncertainty in the
modeled results. Typically, the uncertainty in models cannot be quantified due to complexity
of interactions, and thus it will be necessary to qualitatively assess the objectives or
hypotheses taking into account the expected uncertainty in the results.  The approach to
be utilized in testing the objectives or hypotheses should be identified and documented
prior to initiating the modeling.

The literature contains numerous examples of interpretation of model results. For example,
Kirsch et al. (2002) tested the SWAT model within pilot watersheds and then applied it
throughout a larger watershed in Wisconsin and quantify impacts from the application of
basin–wide BMPs. Modeling results indicated that implementation of improved tillage
practices (predominantly conservation tillage) could reduce sediment yields by almost 20%.
They deemed this a significant reduction relative to current conditions.  Santhi et al. (2001b)
applied SWAT, which had been validated for flow and sediment and nutrient transport, to
a watershed to quantify the effects of BMPs related to dairy manure management and
municipal wastewater treatment plant effluent. King and Balogh (2001) used SWAT running
99–year simulations for three locations for continuous corn, a forested environment, a golf
course built in a previously agricultural setting, and a golf course constructed in a previously
forested setting. Differences in hydrologic, nitrate–nitrogen, and pesticide impacts were
examined using Tukey’s pairwise comparison to determine whether differences were
statistically different.

Summary

Data collection for environmental projects typically follows a quality assurance/quality
control plan. Quality assurance planning for environmental modeling projects is just as
important as planning traditional environmental measurements for data collection projects.
A modeling protocol, preferably written, should be established prior to conducting a
modeling study.  Twelve issues that should be addressed in hydrologic/water quality model
application plans were identified based on the authors’ experience and the literature,
including recent guidance from the US EPA. The issues that should be addressed in a
modeling plan include:

1. Problem definition/background
2. Model application goals, objectives and hypothesis
3. Model selection
4. Model sensitivity analysis
5. Available data
6. Data to be collected
7. Model representation issues – data, BMPs, etc
8. Model calibration
9. Model validation



Page -25-

10. Model scenario prediction
11. Model output uncertainty analysis
12. Results interpretation/hypothesis testing

The extent of documentation that should be prepared for each of these items depends on
various factors, including the purpose of the modeling study.
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GIS DATA SOURCES

Several sources and resolutions of GIS data may be used for a particular modeling project.

Soils

There is currently only one GIS coverage for soils nationwide, STATSGO (State Soil
Geographic Database), which were compiled by the NRCS (Natural Resource
Conservation Service). These data are most commonly used with SWAT, and are available
in the BASINS database. STATSGO was created from generalizations of other soil surveys.
The minimum mapping area is 625 ha. No soil group smaller than 625 ha is included.  Each
map unit consists of several soils.  An associated MUIR (Map Unit Interpretations Record)
database contains the properties and distribution of soils in each map unit.  

Other more detailed soil data may be available depending on the study area. The NRCS
is currently working on SSURGO (Soil Survey Geographic Database).  SSURGO is far
more detailed, but not available for all areas.  SSURGO is a digitized version of the NRCS
county-level soil survey, and is the most accurate soil data available.  Other soil data also
available are a 200-meter resolution MIADS (Map Information Assembly and Display
System) data from the Oklahoma NRCS, and other digitized soil surveys similar to
SSURGO.  

Topography

Digital Elevation Model (DEM) are used to define topography for SWAT.  The US
Geographic Survey (USGS) provide DEMs at a variety of scales. DEMs are available in a
raster format at resolutions of 30, 60, 120, and in very limited areas at 10 meters.
Topographic data included in BASINS have a resolution of 300 meters.  

Land Cover

Land cover is more complicated to compare than soils or topography.  Land cover can
change over a relatively short time frame.  Soils and topography take much longer to
change significantly.  Land cover is perhaps the most important GIS data used in SWAT.
Several choices are available.  The least detailed and easiest data to use with SWAT is
USGS LULC (Land Use Land Cover) data. These data are available nationwide.  The scale
of these data is 1:250,000 and 1:100,000 for limited areas.  Dates range from the late 70's
to the early 80's. These data are available in the BASINS data set and are readily used by
SWAT.

Several other sources of land cover data are available.  The USGS and the EPA recently
released the NLCD (National Land Cover Database) using early 1990's imagery, which
have a 30 meter resolution.  Another land cover data set is from GAP (Gap Analysis
Project).  The GAP project maps vegetation based on 30 meter Landsat Thematic Mapper
satellite imagery.  The primary purpose of this information is to predict the range of native
vertebrate species. However, the categorical information between these two data sets is
quite different.  Project specific land cover data can also be developed using satellite
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imagery and/or areal photography.  If historical land cover data are used, we recommend
comparing the data to recent aerial photography to determine if significant changes may
have occurred.
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EFFECT OF DATA DETAIL ON SWAT MODEL PREDICTIONS

The Lake Eucha and Great Salt Plains Basins were used to evaluate the effect of data
detail on the SWAT model.  The contrast between these two basins makes them a good
combination.  Both are located at a similar latitude, but have radically different precipitation,
land cover,  topography, and soils (Figure 3).  

Figure 3. Study basin locations.

Data Types 

Topography

DEMs (Digital Elevation Models) are used to define topography for SWAT (Figure 4). DEMs
are available in a raster format at resolutions of 30, 60, 120, and in very limited areas at 10
meters. Thirty meter data are the most detailed that is addressed by this study.  Thirty-
meter data developed for use in SWAT BMP simulations were resampled to 60, 120 and
300 meters.  These four levels of DEM resolution were included in the study. Individual
1:24,000 thirty meter DEMS were stitched together to construct a DEM for the entire basin.
When tiled, 1:24,000 DEMS often have missing data at the seams. These missing data
must be replaced.  A 3x3 convolution filter was applied to the DEM to produce a seamless
filtered DEM.  Any missing data at the seams of the original DEM were replaced with data
from the filtered DEM.  The resulting seamless DEM retains as much non-filtered data as
possible.  Filtering tends to remove both peaks and valleys from a DEM thereby reducing
the perceived slope.  For this reason the use of filtered data were kept to a minimum.
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Figure 4. Lake Eucha Basin and Salt Fork Basin elevation derived from 30 meter Digital
Elevation Models
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Soils

STATSGO was created from generalizations of other soil surveys. The minimum mapping
area is 625 ha and thus each map unit consists of several soils.  An associated MUIR (Map
Unit Interpretations Record) database contains the properties and distribution of soils in
each map unit.  Both low detail soils coverage were classified by MUID (Map Unit
IDentification) (Figures 5 and 6).

High detailed soils for both basins were developed using a combination of sources.  The
soils layer for the Eucha basin was derived from the Oklahoma portion is 200-meter
resolution MIADS data from the Oklahoma NRCS and the Arkansas portion is a 1:20,000
order II soil survey digitized by the University of Arkansas.

The soils layer for the Salt Fork basin was derived from three separate GIS coverages. The
Alfalfa County, Oklahoma portion is 200-meter resolution MIADS (Map Information
Assembly and Display System) data from the Oklahoma NRCS. The Woods County,
Oklahoma portion is certified SSURGO (Soil Survey Geographic) soils data from the
Oklahoma NRCS. The Kansas portion is 1:24,000 detailed soils digitized by Kansas State
University.  These highly detailed soils data are difficult to use with the SWAT model.  The
SWAT model has an internal database of soil properties based on STATSGO data.
SSURGO data contains soils that are not available in this database. The most similar soils
listed in the SWAT database were substituted for these unavailable soils.  Similarity was
based on soil properties weighted by their relative importance. Only soils with the same
hydrologic soil group were considered for substitution.  A score from zero to 1000 was
given based on the formula:

Score =1000 -3(Relative difference at parameter * Parameter importance) 

Parameter importance is given in Table 2.  A score of 1000 is a perfect match but any
score above 800 was assumed to be a reasonable match (Figure 7). Any soils with
matching S5IDs are automatically assigned a score of 1000.  A program was written to
search all soils in the STATSGO database for Oklahoma, Texas, and Kansas. The ten
highest ranking soils were recorded and the best among them were manually selected.

Soil GIS data are required by SWAT to define soil types. SWAT uses STATSGO (State Soil
Geographic Database) data to define soil attributes for any given soil. The GIS data must
contain the S5ID (Soils5id number for USDA soil series), or STMUID (State STATSGO
polygon number) to link an area to the STATSGO database.  Soils of the Eucha Basin were
linked to SWAT by S5ID (Soils 5 IDentifier) (Figure 8). Soils of the Salt Fork Basin were
linked using a modified MUID know as STMUID (STate Map Unit IDentification) which
simply substitutes a two digit number for each state abbreviation and a sequence number
(Figure 9). The addition of a soil sequence specifies a particular soil in each MUID. 
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Parameter Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Fine earth fraction 15 10 8 5 2
Permeability low 10 7 5 4 2
Permeability high 10 7 5 4 2
Clay content low 8 6 4 3 2
Clay content high 8 6 4 3 2

Organic matter content low 8 6 4 3 2
Organic matter content high 5 6 4 3 2

Layer depth 8 4 4 3 2
Available water low 8 6 4 3 2
Available water high 8 6 4 3 2

Bulk density low 7 6 4 3 2
Bulk density high 7 6 4 3 2

% passing #4 sieve low 5 4 4 3 2
% passing #4 sieve low 5 4 4 3 2

% passing #200 sieve low 5 4 4 3 2
% passing #200 sieve low 5 4 4 3 2

Table 2.   Parameter importance used to match SSURGO (Soil Survey Geographic) Soils
to the STATSGO (State Soil Geographic) database included with SWAT.

Figure 5. STATSGO (State Soil Geographic) derived soil data for the Lake Eucha Basin.
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Figure 6.  Low resolution STATSGO (State Soil Geographic) derived soil data for the Salt
Fork Basin.
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Figure 7.  Results of high detail soils to SWAT soils  matching algorithm. 
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Figure 8. High resolution soils data for the Lake Eucha Basin.
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Figure 9. High resolution soils data of the Salt Fork Basin.
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Land Cover

Land cover is more complicated to compare than soils or topography.  Land cover can
change over a relatively short time frame.  Soils and topography take much longer to
change significantly.  Land cover is perhaps the most important GIS data used in SWAT.
Several choices are available.  The least detailed, easiest data to use with SWAT is USGS
LULC (Land Use Land Cover) data. These data are available nationwide.  The scale of
these data is 1:250,000 and 1:100,000 for limited areas.  Dates range from the late 70's to
the early 80's. These data are available in the BASINS data set and are readily used by
SWAT. LULC data were used to define the land cover for low detail simulations of both
basins (Figures 10 and 11).

Several other sources of land cover data are available.  The USGS and the EPA recently
released  NLCD (National Land Cover Database) using early 1990's imagery, which have
a 30 meter resolution. These data were used to define land cover for the Salt Fork Basin
(Figure 12).  Land cover for the Eucha basin was derived from Oklahoma and Arkansas
GAP (Gap Analysis Program) data (Figure 13). The GAP project mapped vegetation based
on 30 meter Landsat Thematic Mapper satellite imagery. The 19 primary purpose of this
information was to predict the range of native vertebrate species. GAP land cover defines
many native vegetation categories, but very few agricultural categories. We simplified GAP
categories to pasture, forest, urban, and water. The basin is composed of 43.2% pasture,
55.0% forest, 1.7% water, and 0.1% urban. These data were then combined to produce a
seamless coverage of the entire area.

Figure 10. USGS LULC (Land Use Land Cover) derived land cover data for the Lake Eucha
Basin.
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Figure 11. USGS LULC (Land Use Land Cover) derived land cover data for the Salt Fork
Basin
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Figure 12. Thirty-meter resolution USGS NLCD (National Land Cover Data) derived data
for the Salt Fork Basin.
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Figure 13. GAP (Gap Analysis Project) derived land cover data for the Lake Eucha Basin.

Methods

Each basin was examined separately with a model run for each combination of GIS data.
A factorial experimental design was used (Table 3).   Twenty average annual data points
were  taken from 25 year simulations, with the first 5 years removed to allow the model to
“warm up”. The following  parameters were examined:

! Water yield
! Surface Runoff
! Baseflow
! Sediment yield
! Soluble Phosphorous yield
! Sediment-bound Phosphorous 
! Nitrate in surface runoff
! Evapo-Transpiration
! Sediment-bound Nitrogen

The model was not calibrated since the calibration would tend to make all results similar
regardless of the included data.  Comparisons between model runs were made relative to
the baseline or most detailed model run.  Relative results across multiple parameters are
more easily compared than absolute results because they are more similar in magnitude.
The number of subbasins and HRUs remain nearly constant for all simulations of a
particular basin.  It is not possible to use the same number of subbasins and HRUs for
each simulation. These are based partly on the input data which vary by simulation. This
level of subdivision was selected based more on practicality than the recommendations of
previous research (Binger et al., 1997). The approximate number of subbasins for each
basin is 50.  A stream threshold area of 1,000 ha was used for Lake Eucha Basin, and
10,000 ha for the Salt Fork Basin. HRU threshold settings were set as close to 10% land
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DEM Resolution (m) Soils Detail Land Cover Detail
30 High High
30 High Low
30 Low High
30 Low Low
60 High High
60 High Low
60 Low High
60 Low Low

120 High High
120 High Low
120 Low High
120 Low Low
300 High High
300 High Low
300 Low High
300 Low Low

use over subbasins area and 9% soil over subbasin area as possible for both basins.  Two
simulations for the Salt Fork Basin required the soil over subbasin threshold to be reduced
to 8% from the default value of 20%.

Table 3. Combinations of DEM resolution, soils, and land cover compared.

Results were derived from non-routed model outputs obtained using a custom VBA
(Visual Basic for Applications) program.  Annual subbasin data were summarized on a
per unit area basis to determine a basin average for each output studied.  This program
was also used in the Salt Fork Basin BMP study.

Results

Data from each of the 32 simulations were analyzed to determine the effect of changing
data types or resolutions.  Table 4 contains the mean from each simulation and averages
across each level of GIS data type.  Model predictions were analyzed using SAS (Statistical
Analysis Software). The SAS programs are available in Appendix B.  A factorial  design
was chosen to enable a comprehensive statistical analysis.  Interaction between the
different data types prohibited the analysis of main effects. One way to overcome this
problem is to analyze  only the simple effects. Because there are two basins, each with a
4x2x2 factorial experimental design and nine study parameters, analysis of simple effects
is a prohibitively difficult task.  In addition, all these simple effects would be very difficult to
display in any meaningful manner in the context of this report.  To overcome these
difficulties only a select few simple effects were included in the statistical analysis. 
 
At a DEM resolution of 30 meters land cover detail has a significant impact on more
parameters than soils detail. Table 5 contains soils and land cover low detail simulations
compared to the baseline condition.  The effect of land cover detail is the result of more
than simple detail differences.  Each land cover type in the original GIS data must be
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matched to a corresponding category in SWAT by a conversion table.  SWAT is able to
incorporate LULC data directly using a conversion table, which is included in the interface.
This table may not be accurate for all areas.  A large portion of the Eucha basin was
determined to be AGRL (Generic Agriculture) when the LULC data were imported. In
reality, these areas are improved pastures which have dramatically different characteristics.
This results in the dramatic changes when low detail land cover was included in the
simulation.  This problem is far less evident in the Salt Fork Basin, the LULC conversion
table is more suited to this type of area.

Statistical comparison for DEM resolution levels are displayed in Table 6.  These are simple
effects  calculated from only a fraction of the entire data set. DEM resolution has the
greatest effect on sediment and sediment-bound nutrients. Presumably because slope is
derived from the DEM.  The resolution of the DEM also has other affects in the SWAT
model.  All additional GIS data included in the model are resampled to the same resolution
as the DEM by the interface. This is thought to contribute to the interaction that prevented
statistical analysis of main effects.  

Figures 14 to 21 display graphical representation of some of the information displayed in
Table 4.  Figure 14 to 17 show how DEM resolution affects both basins.  Figures 14 and
16 were constructed using the entire data set without concern for land cover and soils.
Very large sediment yields in Figure 15 were the result of the incorporation of low detail
land cover data. These spikes are not seen in Figure 17, which does not include the LULC
data for the Lake Eucha Basin; however, the overall treads of reduced sediment with
decreased resolution are similar.

Figures 15 and 17 are the simple effects, which have corresponding statistical tests in
Table 6. Only high resolution soils and land cover were considered in these figures.
Figures 18 to 21 contain comparison between soils and land cover combinations. Figures
18 and 20 contain averages across all levels of DEM. Figures 19 and 21 display only
simple effects. The effect of adding LULC data to the Eucha Basin is illustrated in Figure
21, which resulted in a 94 fold increase in sediment.  The addition of low detail soils data
had the opposite effect on sediment and  sediment-bound nutrients.
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Basin DEM Soils Land 
Cover Runoff Water 

Yield ET Sediment Organic 
N

Sed-
Bound P

Nitrate in 
runoff

Soluble 
P

Ground 
water

30 High High 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
30 High Low 1.39 1.35 0.97 2.10 1.49 1.21 0.85 0.82 1.01
30 Low High 0.94 1.02 0.99 0.91 0.93 0.95 1.04 0.95 2.41
30 Low Low 1.35 1.37 0.95 2.07 1.44 1.24 0.92 0.84 1.96
60 High High 1.01 0.99 1.00 0.73 0.82 0.84 1.02 1.02 0.79
60 High Low 1.37 1.33 0.97 1.55 1.29 1.11 0.84 0.82 1.11
60 Low High 0.94 1.01 0.99 0.69 0.79 0.83 1.05 0.95 2.53
60 Low Low 1.35 1.36 0.96 1.55 1.24 1.14 0.93 0.86 2.06

120 High High 1.01 0.99 1.00 0.52 0.64 0.66 1.03 1.02 0.98
120 High Low 1.40 1.34 0.97 1.12 1.05 0.97 0.85 0.82 1.14
120 Low High 0.94 1.01 0.99 0.50 0.63 0.67 1.06 0.96 2.57
120 Low Low 1.36 1.36 0.96 1.08 0.99 0.96 0.94 0.86 2.11
300 High High 1.17 1.11 0.99 0.47 0.60 0.59 1.06 1.06 0.65
300 High Low 1.38 1.32 0.97 0.75 0.79 0.79 0.84 0.81 1.18
300 Low High 0.93 0.99 0.99 0.34 0.46 0.49 1.04 0.94 2.63
300 Low Low 1.35 1.34 0.96 0.76 0.79 0.79 0.93 0.85 2.12
30 X X 1.17 1.19 0.98 1.52 1.22 1.10 0.95 0.90 1.59
60 X X 1.17 1.17 0.98 1.13 1.03 0.98 0.96 0.91 1.62

120 X X 1.18 1.17 0.98 0.80 0.83 0.81 0.97 0.91 1.70
300 X X 1.21 1.19 0.98 0.58 0.66 0.66 0.97 0.92 1.65
X High X 1.22 1.18 0.98 1.03 0.96 0.90 0.94 0.92 0.98
X Low X 1.15 1.18 0.97 0.99 0.91 0.88 0.99 0.90 2.30
X X High 0.99 1.02 0.99 0.64 0.73 0.75 1.04 0.99 1.70
X X Low 1.37 1.34 0.96 1.37 1.14 1.03 0.89 0.84 1.59
30 High High 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
30 High Low 1.36 1.13 0.92 94.19 10.99 3.82 0.76 0.32 0.90
30 Low High 1.07 0.98 1.00 0.23 0.13 0.12 1.14 1.08 0.92
30 Low Low 1.42 1.11 0.93 18.06 7.40 3.79 0.83 0.33 0.79
60 High High 1.00 0.99 1.01 0.72 0.46 0.46 0.99 1.00 1.01
60 High Low 1.36 1.13 0.93 69.12 10.03 3.73 0.76 0.32 0.90
60 Low High 1.07 0.98 1.00 0.17 0.08 0.07 1.13 1.08 0.93
60 Low Low 1.42 1.11 0.93 13.26 6.11 3.74 0.83 0.33 0.79

120 High High 1.00 1.00 1.00 0.44 0.14 0.14 1.01 1.01 1.02
120 High Low 1.36 1.12 0.93 43.22 8.79 3.62 0.76 0.32 0.91
120 Low High 1.07 0.98 1.00 0.15 0.12 0.08 1.15 1.09 0.94
120 Low Low 1.42 1.10 0.93 8.55 4.58 3.56 0.83 0.33 0.79
300 High High 1.00 0.98 1.01 0.24 0.04 0.03 1.00 1.01 1.01
300 High Low 1.36 1.12 0.93 23.12 6.62 3.28 0.76 0.32 0.91
300 Low High 1.07 0.98 1.00 0.06 0.05 0.05 1.14 1.08 0.93
300 Low Low 1.42 1.10 0.93 4.58 2.68 2.30 0.83 0.33 0.79
30 X X 1.21 1.05 0.96 28.37 4.88 2.18 0.93 0.68 0.90
60 X X 1.21 1.05 0.97 20.82 4.17 2.00 0.93 0.68 0.91

120 X X 1.22 1.05 0.96 13.09 3.41 1.85 0.94 0.69 0.91
300 X X 1.21 1.04 0.97 7.00 2.35 1.42 0.93 0.69 0.91
X High X 1.18 1.06 0.97 29.00 4.76 2.01 0.88 0.66 0.96
X Low X 1.25 1.04 0.97 5.63 2.64 1.71 0.99 0.71 0.86
X X High 1.04 0.99 1.00 0.37 0.25 0.24 1.07 1.04 0.97
X X Low 1.39 1.11 0.93 34.26 7.15 3.48 0.80 0.33 0.85

Eucha

Salt Fork

Table 4.  The effect of data detail on several SWAT output parameters. All values are
fractions relative to the most detailed simulation (30m DEM with high soils and land cover).
“X” indicates averages across all categories.



Page -43-

Basin Coverage Runof f
Water 
Y ield ET Sediment

Organic 
N

Sed-
Bound P

Nitrate in 
runof f

Soluble 
P Groundw ater

Land Cover <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 0.962
Soils 0.103 0.505 0.003 0.350 0.255 0.220 0.099 0.016 <.001

Land Cover <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001
Soils <.001 0.052 0.696 0.813 0.010 <.001 <.001 0.177 <.001

Salt Fork

Eucha

Basin DEM Runof f
Water 
Y ield ET Sediment

Organic 
N

Sed-
Bound P

Nitrate in 
runof f

Soluble 
P Groundw ater

30 1.01  a 0.99  a 1.00  a 0.73  a 0.82  a 0.84  a 1.02  a 1.02  a 0.79  a
60 1.01  a 0.99  a 1.00  ab 0.73  a 0.82  b 0.84  b 1.02  ab 1.02  a 0.79  a

120 1.01  a 0.99  a 1.00  b 0.52  b 0.64  c 0.66  c 1.03  ab 1.02  a 0.98  a
300 1.17  b 1.11  b 0.99  a 0.47  b 0.6  d 0.59  c 1.06  b 1.06  a 0.65  a
30 1.00  a 1.00  a 1.00  a 1.00  a 1.00  a 1.00  a 1.00  a 1.00  a 1.00  a
60 1.00  a 0.99  ab 1.01  a 0.72  a 0.46  ab 0.46  b 0.99  a 1.00  a 1.01  a

120 1.00  a 1.00  a 1.00  a 0.44  a 0.14  b 0.14  c 1.01  a 1.01  a 1.02  a
300 1.00  a 0.98  b 1.01  b 0.24  a 0.04  b 0.03  c 1.00  a 1.01  a 1.01  a

Salt Fork

Eucha

Table 5. Parameters which show a significant difference when compared to the 30m high
detail soils and land cover simulation.

Table 6. Means and multiple comparison tests of simple effects for levels of DEM. Soils and
land cover detail are high for all tests.  Main effects cannot be analyzed due to interaction.
Values in a column with the same letter are not significantly different from each other at
"=0.05.
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Salt Fork Basin -- DEM Effect
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Figure 14.  The effect of DEM resolution on the Salt Fork Basin  averaged across all levels
of soils and land cover. Displayed as a fraction of the 30m high detail soils and land cover
simulation.

 

Figure 15.  The effect of DEM resolution on the Salt Fork Basin at high detail soils and land
cover. Displayed as a fraction of the 30m high detail soils and land cover simulation. 
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Eucha Basin -- DEM Effect
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Figure 16.  The effect of DEM resolution on the Lake Eucha Basin  averaged across all
levels of soils and land cover. Displayed as a fraction of the 30m high detail soils and land
cover simulation.

Figure 17.  The effect of DEM resolution on the Lake Eucha Basin at high detail soils and
land cover. Displayed as a fraction of the 30m high detail soils and land cover simulation.
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Salt Fork Basin 
Soils and Land Cover Effects all DEMs
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Salt Fork Basin
Soils and Land Cover Effect with 30 meter DEM
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Figure 18.  The effect of soils and land cover detail across all levels of DEMs for the Salt
Fork Basin. Displayed as a fraction of the 30m high detail soils and land cover simulation.

Figure 19.  The effect of soils and land cover detail across 30 meter DEMs for the Salt Fork
Basin. Displayed as a fraction of the 30m high detail soils and land cover simulation. 
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Eucha Basin 
 Soils and Land Cover all DEMs

57.41 11.119.11 5.19

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

High-All Low -All All-High All-Low

Soils Detail - Land Cover Detail

Runoff
Water Yield
ET
Sediment
Organic N
Sed-Bound P
Nitrate in runoff
Soluble P
Groundwater

Eucha Basin
 Soils and Land Cover Detail at 30 meter DEM

94.19 18.0610.99 7.40

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

High-High High-Low Low -High Low -Low

Soils Detail - Land Cover Detail

Runoff

Water Yield

ET

Sediment

Organic N

Sed-Bound P

Nitrate in runoff

Soluble P

Groundw ater

Figure 20.  The effect of soils and land cover detail across all levels of DEMs for the Lake
Eucha Basin. Displayed as a fraction of the 30 m high detail soils and land cover
simulation. 

Figure 21.  The effect of soils and land cover detail across 30 meter DEMs for the Salt Fork
Basin. Displayed as a fraction of the 30 m high detail soils and land cover simulation. 
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Conclusions

The goal of this study was to evaluate the following hypotheses:

1)  Soil data source has a significant effect on model output.

H0: SWAT simulations using SSURGO (or high resolution equivalent) soils are significantly
different as compared to simulations using STATSGO soils.

H1:  Choice of soil data source has no significant effect on SWAT predictions.  STATSGO
data are adequate.

H0 was not rejected.  

Soils data type had little effect for the majority of outputs for both basins, but there were
significant differences between basins. For instance, sediment and sediment-bound
nutrients showed much greater differences for the Eucha Basin than for Salt Fork Basin.
The importance of soils data is largely a function of how the model is to be used. In some
situations, soil detail effects would not be significant, i.e. you are interested only in total
water yields.   Typically, it would be very advantageous to use low detail soils data due to
the difficulty incorporating highly detailed soils data.

2)  DEM resolution has a significant effect on model output.

H0: SWAT simulations at DEM resolutions of 30, 60, 120, and 300 meters are significantly
different.

H1: SWAT simulations at various DEM resolutions are not significantly different.

H0 was not rejected. 

Sediment and sediment-bound nutrients decreased as DEM resolution increases.  This
trend was apparent in both basins. If sediment and sediment-bound nutrients were of no
interest, there would be little benefit in using very high resolution DEMs.  Only the 300
meter Salt Fork simulations showed any significant difference in runoff. 

3) Land cover data source has a significant effect on model output. 

H0: SWAT simulations using LULC, GAP, and NLCD are significantly different. 

H1: Land cover data source is not important.  LULC land cover data are adequate.

H0 was not rejected.

Land cover was the single most influential data type tested.  Land cover exhibited a
significant effect at almost ever parameter of both basins. Land cover variations produced
the largest departure from the baseline outputs for both basins.  All SWAT simulations
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Data type Coverage Relative Difficulty 1-10

LULC 2
GAP 4
NDLC 3

SSURGO 10
MIADS 5

STATSGO 4
30 m DEM 6
60 m DEM 5

120 m DEM 4
300 m DEM 2

Land Cover

Soils

Topography

should use the most detailed and recent land cover available.

An additional goal of this research was to rate the difficulty of manipulating and including
the various data types discussed into the SWAT model (Table 7). The purpose was to
provide additional information to SWAT users to help them choose which data to include.
These measurements are subjective in nature, but are the product of significant experience
both using and teaching SWAT.

Table 7. Subjective relative difficulty developing and including selected GIS data types
and resolution into SWAT (10 = high level of difficulty; 1 = minimal difficulty). 

Summary 

The purpose of this study to determine how the inclusion of low detail data effects the
SWAT model. SWAT was recently included in the release of the EPA hydrologic modeling
suite BASINS 3.0 (Better Assessment Science Integrating Point and Nonpoint Sources).
Along with BASINS, a data set of all necessary GIS data was compiled.   The data set
released with BASINS is far less detailed than that currently available from other sources,
but is very easy to use.  More detailed data may significantly improve results, or may not
be worth the additional effort. 

GIS layers of soils, land cover, and topography were examined in the SWAT model.  Each
basin was examined separately with a model run for each combination of GIS data.
Comparisons between model runs were made relative to the baseline or most detailed
model run.  The number of subbasins and HRUs remain nearly constant for all simulations
of a particular basin.  Results were derived from non-routed model outputs obtained using
a custom VBA (Visual Basic for Applications) program.
The following are conclusions drawn from this study:

1. Soils data detail had little effect for the majority of outputs for both basins. 
2. Sediment and sediment-bound nutrients decreased as DEM resolution increases.
3. Land cover was the single most influential data type tested.  Land cover exhibited

a significant effect at almost ever parameter for both basins.
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RECOMMENDED METHODS TO COMPARE SWAT MODEL OUTPUT

SWAT is a distributed model with both routed and unrouted outputs. SWAT provides output
at the HRU, subbasin, and stream reach levels, thus there are many ways to evaluate
model output. Model output must be evaluated during model calibration and validation, and
to make predictions when testing scenarios or BMPs. Calibration is the process by which
a model is adjusted to make its predictions agree with observed data. Validation is similar
to calibration except the model is not modified.  Validation tests the model with observed
data that is not used in the calibration.  How the model will be compared should be
considered during the initial stages of modeling. Points of interest must be added as
subbasin outlets so that SWAT will generate output at that location. All data that will be
used should be in hand before the final model is constructed.

Acceptable Comparisons for Uncalibrated Models

The calibration of a model significantly improves the reliability of the model predictions.
Although the calibration of a model is preferred, it is not always possible. Model calibration
requires a significant amount of data, both water quality and stream flow measurements,
and generally takes from several days to weeks to complete. Depending on the objectives
of a particular project, calibration may not be necessary.  SWAT does not require
calibration or validation to evaluate scenarios or BMPs, however the lack of calibration does
limit the predictive accuracy of the model due to high uncertainty. Model results may be
compared on an absolute or relative basis. Absolute predictions describe a quality of a
particular parameter, i.e. “the sediment load under the new BMPs changed from 750 to 500
Mg/yr”.  Relative comparisons typically evaluate results from a scenario or BMP to a
baseline condition as a fraction or percent change, i.e “the sediment load under the new
BMPs reduced by 33 %”. Relative comparisons are more robust than absolute predictions
because they reduce systematic errors common in uncalibrated models. Absolute
comparisons from uncalibrated models contain far more uncertainty and should be
presented in that context. Sometimes the objectives of a project permit results with high
uncertainty and an uncalibrated model is easier.

Acceptable Comparisons for Calibrated Models

Calibration and validation require that model output be compared with measured data. It
can be difficult to determine the best comparison, because SWAT’s numerous outputs
allow so many ways to make comparisons. The types of comparisons acceptable for
calibrated models depends greatly on how the model was calibrated and the quality and
detail of the data used in the model and its calibration.

Selecting the Output Time Step 

SWAT provides output on an annual, monthly, or daily basis. The proper time step on which
to make comparisons depends on the objectives of the project and the data used in the
SWAT model.  Annual predictions are in general more reliable and require less detailed
data to be incorporated into SWAT than monthly or daily predictions. To get reliable daily
predictions, significantly more accurate and detailed model input and calibration data are
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required than what is generally available. Monthly predictions are an excellent compromise,
allowing the objectives of most projects to be met with readily available model input
datasets. 

Average Annual Comparisons

Average annual comparisons are the most basic of model comparisons requiring the least
sophisticated or detailed model inputs. Weather data for simulations using average annual
comparisons may be simulated using SWATs internal weather generator provided the
comparison will be made over many years ( at least 10 to 20 years). The weather generator
uses statistics from local stations provided by an internal database. Most model calibrations
begin by comparing average annual conditions before proceeding to other comparisons
where the calibration if further refined.  These are typically displayed in a table (Table 8).

Table 8. Example comparison of average annual model output.

Annual Comparisons

Annual comparisons are performed year by year. Observed weather data are required due
to the annual weather variability. These comparison can be made either in a table or
graphically (Figure 22).

Monthly Comparisons

Monthly comparisons are typically the limit for most modeling endeavors using SWAT.
Refining the model further to daily would typically require vastly more detailed weather and
management information. Monthly comparisons capture the seasonal trends that are often
important in many analyses (Figure 23).  Average monthly comparison, i.e. average of all
Januaries, average of all Februaries, etc., is particularly useful to identify systematic errors
associated with baseflow and surface runoff. These seasonal trends are often lost in the
noise of monthly variations due to weather (Figure 24).  

Daily Comparisons

Daily data are common in observed datasets (i.e. streamflow and water quality
measurements), thus it is tempting to view model results on a daily basis (Figure 25).
However, that may not be the best approach.  Weather is the driving force for any
hydrologic model and thus uncertainty in the rainfall or the rainfall distribution across the
watershed is important. Highly detailed rainfall data such as NEXRAD Weather
Surveillance Radar 88D (WSR-88D), day by day management, and point source discharge
data are preferred.  The inclusion of NEXRAD derived weather data should improve the

Relative Error
Total Flow Surface Runoff Baseflow Total Flow Surface Runoff Baseflow Total Flow

Blackhollow 0.109 36% - 22% 78% - 64% 0.094 53% 47% -13.7%
Beaty Creek 1.33 59% - 52% 48% - 41% 1.37 52% 48% 2.9%

Spavinaw Creek 3.3 60% - 43% 57% - 39% 3.45 48% 52% 4.4%

Observed PredictedGage
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accuracy of the model and reduce this limitation.  Rainfall can be quite variable in
Oklahoma, especially in the spring and summer when convective thunderstorms produce
precipitation with a high degree of spatial variability.  It may rain heavily at one location, but
be dry a short distance away.  Instream processes become important when making daily
predictions for monthly and annual predictions these are generally ignored. On an average
annual or average monthly basis, these kinds of errors have less influence since they are
typically not additive.

Comparing Modeled to Observed Data - Objective Functions

There are may ways to determine how well a model is performing by comparing predictions
to  observed data. These comparisons may be subjective visual comparisons using graphs
or objective functions that calculate a “goodness of fit”. The most common include R2

(Figure 26), Relative Error (Table 8), and Nash Sutcliffe Efficiency. Most modelers will use
a combination of visual comparisons and objective functions. Visual comparisons and
relative error calculations are typical relied upon during calibration when a modeler needs
to know not only how good the fit is, but what should be changed to improve it. 

Comparing Streamflow

Stream flow has two primary sources, surface runoff and ground water. Ground water
contributions to stream flow are known as baseflow.  When possible, the SWAT model
should be calibrated on both surface runoff and baseflow.  These fractions are not treated
separately by the model once they enter a reach.  It is possible to determine the amount
of surface runoff and baseflow before they enter the reach. These data are in the
Basins.BSB file. However, these data do not account for direct stream precipitation,
evaporation, transmission losses, and other in-stream processes. An area weighted
average of these data must be combined with the total routed flow to estimate the amount
of surface runoff and baseflow. This problem is discussed further in Chapter 33 of the
SWAT2000 User's Manual. 

Comparing Model Predictions to Observed Water Quality Data

Direct comparisons of water quality sample values to SWAT model predictions requires
daily model output. Daily model output should only be generated when input data are of
sufficient quality, which is seldom the case.  To circumvent this limitation water quality data
are combined with stream flow to generate monthly or annual pollutant loads, which can
be compared directly to the SWAT predictions. Estimating pollutant loads can be as simple
as taking the flow weighted average concentration multiplied by the stream flow, depending
on the required accuracy. More accurate methods develop relationships between
concentration and flow, and these may be simple linear relationships or complex multi-
variate relationships requiring eight or more parameters to be estimated. 

There are several computer programs available to aid in the development of nutrient loads.
Currently the most user friendly program is the USGS DOS program LOADEST2
(Crawford, 1996). This program was developed by Charles Crawford (USGS Supervisory
Hydrologist) to estimate loading using the rating curve method.  The software has ten
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models from which to choose, and will develop both seasonal and daily load estimates. A
far more comprehensive discussion of load estimation methods can be found in Estimation
of Pollutant loads in Rivers and Streams: A guidance Document for NPS Programs (P.
Richards 1999).

Routed vs Unrouted Comparisons

SWAT contains two distinctly separate models, an upland model and an instream model.
The upland model predicts how much water, sediment, nutrients, etc. reach the stream
system from each subbasin. The instream model routes the water, sediment, and nutrients
from each subbasin to the watershed outlet. Instream processes define the difference
between routed and unrouted model predictions. Routed data are subject to these
processes as simulated by SWAT, unrouted are not.  During the routing process SWAT
simulates evaporation and seepage, sediment deposition and reentrainment, and nutrient
transformations.  In most stream systems the routed and unrouted water yield will be
similar at the month and year time scales. However, instream water storage and
transportation lags become important when making daily stream flow predictions.

SWAT nutrient instream processes are based on the Enhanced Stream Water Quality
Model QUAL2E  (Brown and Barnwell 1987). There are limitations in SWAT’s instream
model with regard to nutrients, although work is progressing in that area (White et al., 2003;
Wade et al., 2001; Viney et al., 2000; Santhi et al., 2001). We currently recommend that
SWAT’s built in instream nutrient processes be disabled. This presents a problem because
when we measure water quality parameters by collecting a sample, it has been subjected
to these processes. When we develop loads from these water quality data, the loads have
been subject to these instream processes as well.  We seldom have observed data to
predict upland loads directly, but plot and field scale studies can sometime provide
guidance to ensure that our loads are reasonable (Beaulac and Reckhow 1982). The extent
to which the instream processes have modified nutrients depends on the particular stream
system and where the sample was collected.  In general the lower the stream order the
less modification occurs by instream processes.

Instream nutrient processes cannot destroy nutrients, they are simply converted to other
forms or detained in biota and sediments. Some nutrient transport by wildlife and domestic
animals certainly occurs. Wildlife transport is likely negligible, however cattle can directly
deposit significant quantities of nutrients into streams.  In dimensionally stable streams total
phosphorus can often be treated as conservative in the long term. Nitrogen, however, can
leave the stream system as N2 or NH3 and may not be treated as conservative under all
conditions. Both phosphorus and nitrogen may be converted from one form to another
many times as they are transported downstream in a process refereed to as nutrient
spiraling (House 2003). 

In order to calibrate the model we must make some assumptions.

• Assume that the instream processes are insignificant, and calibrate using our loads
derived from observed water quality data.
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• Assume that over long periods (greater than one year) nutrients are conservative
and restrict nutrient calibration to total phosphorus and total nitrogen.

Honesty in Predictions (Dealing with Uncertainly)

We can predict nutrient loads from a watershed next year only as accurately as we can
predict the weather for the next year. Rainfall is the driving force behind nutrient transport.
Because rainfall is so important, it represents a major source of uncertainty. The
uncertainty associated with water quality models is difficult to fully quantify.  According to
MacIntosh et al. (1984), there are two major types of uncertainty, knowledge uncertainty
and stochastic uncertainty.  Knowledge uncertainly stems from measurement errors and
the inability of the model to accurately simulate the physical, chemical, and biological
processes.  Stochastic uncertainty is due to the random nature of natural systems, like
rainfall. One method to quantify this uncertainty is to perform many simulations of the same
scenario using different rainfall records. In this manner we can quantify the stochastic
uncertainty associated with natural temporal variability in rainfall.  The uncertainly due to
rainfall is generally larger than the benefit from most BMPs. Thus the impact of a BMP can
be masked by natural variations in rainfall form year to year.  We currently lack the science
to quantify knowledge uncertainty, however we can make some qualitative statements
about uncertainty that apply to all SWAT simulations.

• Scenarios involving radical departures from calibration conditions result in greater
uncertainty.  Although calibration assures the user that the results reflect the range
of conditions encountered at the watershed, they do not assure the model will be
accurate for drastic changes in land use or management. 

• There is uncertainty associated with specifying uniform management for a land
cover category.  It is not practical to specify management for every field in a large
basin, and thus a typical management is selected and applied basin-wide for each
land cover type.  Management operations include grazing, fertilization, tillage,
planting, and harvesting.

Each watershed is unique and the model built to represent it will have it’s own sources of
uncertainty. Hydrologic models will always have limitations, because the science behind
the model is not perfect nor complete, and a model by definition is a simplification of the
real world. Understanding the limitations helps assure that accurate inferences are drawn
from model predictions.
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Figure 22. Example of annual comparison.

Figure 23. Example of monthly comparison.
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Figure 24. Example of average monthly comparison.

Figure 25. Example of daily predictions compared to water quality observations.
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Figure 26. Example of Monthly scatter plot with regression R2 and 1:1 line.
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ADDITIONAL SWAT RESEARCH NEEDS

There are limitations to any hydrologic/water quality model, including SWAT.  A good
hydrologic/water quality model is continually being tested and updated as new data,
modeling approaches, and processes are identified and quantified.  The following are
suggested areas for additional research and improvements for the SWAT model.  Please
note that some of these item may be in the new SWAT 2003 release.

Model

1. Detailed riparian model
2. Alternative instream model
3. Improvement to the current instream model
4. Improved vegetated buffer strip model
5. Surface application of animal wastes algorithm
6. Improvement in soil phosphorus pools and parameters
7. Alternative erosion algorithms
8. More robust ground water model
9. Improved nitrogen and phosphorus subsurface transport model
10. Carbon transport model
11. Supplemental cattle feed option
12. More accurate and detailed Curve Numbers for cattle grazing
13. Multiple/competing plant growth model

Interface

1. Grid-cell interface
2. Slope and distance to stream by HRU
3. Autocalibration routines
4. Grid-cell based weather input
5. Improve management editor
6. More flexibility in output options
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APPENDIX B
SAS Programs

*FILENAME STATS.SAS;
DATA ONE;
INFILE 'A:STATS.PRN';
INPUT year Tillage$ grazing$ PRCP SURQ GWQ ET SYLD SEDP NSURQ SOLP NO3L
Orgn LATN;
*PROC PRINT;
PROC MIXED;
CLASS YEAR TILLAGE GRAZING;
MODEL PRCP = TILLAGE|GRAZING/DDFM=SATTERTH;
RANDOM YEAR;
LSMEANS TILLAGE*GRAZING/SLICE=(TILLAGE GRAZING) DIFF;
LSMEANS TILLAGE GRAZING/DIFF;
PROC MIXED;
CLASS YEAR TILLAGE GRAZING;
MODEL SURQ = TILLAGE|GRAZING/DDFM=SATTERTH;
RANDOM YEAR;
LSMEANS TILLAGE*GRAZING/SLICE=(TILLAGE GRAZING) DIFF;
LSMEANS TILLAGE GRAZING/DIFF;
PROC MIXED;
CLASS YEAR TILLAGE GRAZING;
MODEL GWQ = TILLAGE|GRAZING/DDFM=SATTERTH;
RANDOM YEAR;
LSMEANS TILLAGE*GRAZING/SLICE=(TILLAGE GRAZING) DIFF;
LSMEANS TILLAGE GRAZING/DIFF;
PROC MIXED;
CLASS YEAR TILLAGE GRAZING;
MODEL ET = TILLAGE|GRAZING/DDFM=SATTERTH;
RANDOM YEAR;
LSMEANS TILLAGE*GRAZING/SLICE=(TILLAGE GRAZING) DIFF;
LSMEANS TILLAGE GRAZING/DIFF;
PROC MIXED;
CLASS YEAR TILLAGE GRAZING;
MODEL SYLD = TILLAGE|GRAZING/DDFM=SATTERTH;
RANDOM YEAR;
LSMEANS TILLAGE*GRAZING/SLICE=(TILLAGE GRAZING) DIFF;
LSMEANS TILLAGE GRAZING/DIFF;
PROC MIXED;
CLASS YEAR TILLAGE GRAZING;
MODEL NSURQ = TILLAGE|GRAZING/DDFM=SATTERTH;
RANDOM YEAR;
LSMEANS TILLAGE*GRAZING/SLICE=(TILLAGE GRAZING) DIFF;
LSMEANS TILLAGE GRAZING/DIFF;
PROC MIXED;
CLASS YEAR TILLAGE GRAZING;
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MODEL SOLP = TILLAGE|GRAZING/DDFM=SATTERTH;
RANDOM YEAR;
LSMEANS TILLAGE*GRAZING/SLICE=(TILLAGE GRAZING) DIFF;
LSMEANS TILLAGE GRAZING/DIFF;
PROC MIXED;
CLASS YEAR TILLAGE GRAZING;
MODEL NO3L = TILLAGE|GRAZING/DDFM=SATTERTH;
RANDOM YEAR;
LSMEANS TILLAGE*GRAZING/SLICE=(TILLAGE GRAZING) DIFF;
LSMEANS TILLAGE GRAZING/DIFF;
PROC MIXED;
CLASS YEAR TILLAGE GRAZING;
MODEL Orgn = TILLAGE|GRAZING/DDFM=SATTERTH;
RANDOM YEAR;
LSMEANS TILLAGE*GRAZING/SLICE=(TILLAGE GRAZING) DIFF;
LSMEANS TILLAGE GRAZING/DIFF;
PROC MIXED;
CLASS YEAR TILLAGE GRAZING;
MODEL LATN = TILLAGE|GRAZING/DDFM=SATTERTH;
RANDOM YEAR;
LSMEANS TILLAGE*GRAZING/SLICE=(TILLAGE GRAZING) DIFF;
LSMEANS TILLAGE GRAZING/DIFF;
RUN;



Page -72-

APPENDIX C

Application of SWAT 2000 to Basins with Significant NPS Components
Training Session/Short Course

December 9-13, 2002
Department of Biosystems and Agricultural Engineering

Oklahoma State University, Stillwater, Oklahoma

Precourse Reading Assignment

To make the best use of our limited classroom time, we have assembled a list of
materials for review prior to the short course.  These materials fall into two categories,
ArcView review and SWAT theory.  You may not need to review both depending on
your experience. 

ArcView Review:

The University of South Carolina has an excellent set of ArcView materials. We cannot
provide copies due to copyright restrictions, but you may download them via the web.
We recommend the following be reviewed prior to the course:

Introduction to GIS Concepts ftp://ellie.cla.sc.edu/pub/gis_webdocs/concepts.pdf
Introduction to ArcView ftp://ellie.cla.sc.edu/pub/gis_webdocs/av_intro.pdf
Raster GIS ftp://ellie.cla.sc.edu/pub/gis_webdocs/av_raster.pdf
Other Sections: http://wagda.lib.washington.edu/help/tools.html

SWAT Theory:

We have included a link to SWAT2000 manuals and some pertinent journal articles for
review (30 MB). We will provide hard copies of the manuals at the time of the short
course. If you wish to have your hard copy sent to you before the course, please contact
Mike White at mjwhite@okstate.edu. Please review the following articles and sections of
the manuals prior to the short course.  

Articles:
Large Area Hydrologic Modeling and Assessment Part 1: Model Development
Large Area Hydrologic Modeling and Assessment Part 2: Model Application

Manuals:
Introduction (Chapter 1) - S.W.A.T. Theoretical Documentation

ArcView Interface for SWAT 2000 User’s Guide - A detailed review of the manual is not
required, but skimming it will help you get a feel for how the interface functions. A step-
by-step tutorial is given in Section 15 if you wish to get a head start. 
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Course Outline

Instructors:

Dr. Dan Storm Mike White
Professor  Research Engineer
dstorm@okstae.edu mjwhite@okstate.edu
(405) 744-8422 (405) 744-8429

Description:

This is an applied modeling course that will be conducted in a computer laboratory in a
“hands on” fashion. The materials are geared toward professionals with working knowledge
of ArcView and a background in hydrology. A set of precourse materials will be given to
allow students to review and prepare for the course. Upon completion of the course, you
will be able to create and calibrate a basic SWAT model for any basin in the USA.

The course will consist of 14 sections, each increasing in complexity and building on the
knowledge gained in the previous section. Sections are shown below:

Section Description

Introduction Soil and Water Assessment Tool (SWAT): Background and Theory

1 Introduction to SWAT
2 ArcView Review
3 Spavinaw Creek - Step by Step Modeling
4 Battle Branch - GIS Data Layers
5 Battle Branch - Tabular Data
6 Battle Branch - Baseline Model
7 Battle Branch - Flow Calibration
8 Illinois River - Baseline model
9 Illinois River - Model Refinement
10 Illinois River - Hydrologic Calibration
11 Illinois River - Nutrient Calibration
12 Illinois River - Scenarios
13 Estimating Loads using Loadest2

Location:

The course will be held at the Biosystems and Agriculture Engineering Department
Laboratory. Temporary parking permits will be provided.
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Section Descriptions

Section 1 Introduction to SWAT

The purpose of this section is to introduce some of the more important concepts related to
the SWAT model. It is not intended as a theoretical guide and presents only simplified
explanations. More detailed explanations are available in the SWAT User’s Manual and
theoretical documentation.

Section 2 ArcView Review

A working knowledge of ArcView is a prerequisite for this training. We will however, review
some basic ArcView concepts, and install some extensions that we will need later on.
ArcView 3.x is a powerful GIS software package distributed by Environmental Systems
Research Institute, Inc (ESRI). The versatility of ArcView stems from the use of an object
oriented programming language called Avenue, which makes ArcView fully customizable.
ArcView was also designed to utilize modules called extensions to increase its capabilities.
The SWAT interface is an ArcView extension. There are a great number of extensions
written by ESRI, third party organizations, and individuals. Some are freely available and
may be downloaded via the Internet.

Section 3 Spavinaw Creek - Step by Step Modeling

In this exercise we will set up the SWAT model for the Spavinaw Creek Watershed. The
intent is to introduce you to SWAT using a very detailed step by step methodology. No
calibration will be performed for this basin, however we will look at model output and the
SWAT Calibration Tool. Spavinaw creek is located on the Arkansas/Oklahoma border.
Note: All page numbers reference the SWAT ArcView manual.

Section 4 Battle Branch - GIS Data Preparation

The purpose of this exercise is to develop data layers required for SWAT. The following
data layers will be created. Much of these data are available from the EPA BASINS 3
dataset. All the GIS used in SWAT will be converted into the projection UTM27 Zone 15.

Section 5 Battle Branch Watershed – Tabular Data

Weather Data

SWAT2000 can use a variety of observed weather data. In this exercise we will incorporate
the most important two, daily precipitation and temperature. SWAT can also utilize solar
radiation, wind speed, and relative humidity. All climate data used in this exercise will come
from COOP stations. A COOP (Cooperative) weather station is a station at which
observations are taken or other services are rendered by volunteers. NOAA has a
database of 19,000 stations across the US.

Baseflow Separation
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With the Battle Branch watershed, digital daily flow data are available. These data are
located at C:\shtcrs\data\battle\Battle_flow.xls. Before calibration we must estimate the
surface runoff and baseflow fractions. There are a number of methods to perform baseflow
separation. The USGS HYSEP Method was selected because it is easy to use and works
well with daily stream flow data.

Section 6 Battle Branch – Baseline Model

The goal of this exercise is to set up the SWAT model for Battle Branch. Data layers
developed in sections 4 and 5 will be used in the SWAT model.

Section 7 Battle Branch - Flow Calibration

The purpose of this section is to calibrate the SWAT model for surface runoff and baseflow
during our simulation period. Calibration is a trial and error process. The section is setup
accordingly.

Section 8 Illinois River Baseline Model

The Illinois River Basin is located in eastern Oklahoma and western Arkansas. Because
the basin contains scenic rivers, the basin is a hotbed of activity and policy. The remainder
of this course will be dedicated to this basin.

Section 9 Illinois River - Model Refinement

Putting data into the ArcView SWAT interface and running the model is only part of
modeling. The model needs to be refined to bypass limitations in the interface or to
accommodate special circumstances particular to the basin. A major issue in the Illinois
River Basin is the application of poultry manure to pastures in the basin. Over time it is
thought that this practice has led to the high levels of STP observed in the area. We will
include both the application of litter and the elevated STP in the model. In addition we will
improve the estimates of slope by defining different slopes for land covers in each
subbasin. SWAT normally uses the same slope for all land covers in a subbasin.

Section 10 - Illinois River – Calibration Hydrologic and Nutrient Calibration

We will perform the hydrologic and nutrient calibration by comparing model predictions with
observed USGS stream gage and water quality data.

Section 11 - Illinois River – Scenarios

In this section we will alter the calibrated model to simulate a variety of scenarios. These
scenarios are listed below:

1. ½ litter export
2. Pasture STP levels of 120 lb/acre with ½ litter export
3. All forested basin
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Section 12 Estimating Nutrient Loads Using Loadest2

Loadest2 is a USGS program developed to compute loads using the rating-curve method.
Loadest2 outputs several estimates of load calculated using different methods. Of primary
concern are the Maximum Likelihood and Linear Attribution methods.


