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Streamflow Drought Interpreted Using SWAT Model
Simulations of Past and Future Hydrologic

Scenarios: Application to Neches and
Trinity River Basins, Texas
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Abstract: In water resources and environmental management, hydrologic indexes are often valued as decision support tools because of their
practical interpretability. This is true with the streamflow drought index (SDI), which is considered to be a relevant tool for assessing the
availability of water resources at the watershed level. Hence, the future of freshwater resources at the watershed scale could be better under-
stood by achieving a realistic projection of SDI. This study used a process-based watershed modeling approach to describe a framework for
SDI projection. Specifically, the Soil andWater Assessment Tool (SWAT) model was used to simulate distinctly two watersheds located in the
state of Texas, the Trinity and the Neches River Basins. The SWAT model was calibrated with monthly streamflow data for the period 1990–
1995. The model was subsequently validated with two decades of discharge data (1996–2015). The evaluation of the SWAT performance
during the calibration and validation stages showed acceptable values of efficiency criteria for both watersheds (i.e., Nash-Sutcliffe efficiency
ranging from 0.56 to 0.65; index of agreement from 0.79 to 0.92). The calibrated model was used to simulate runoff for the future period
2041–2070 using inputs retrieved from a future climate scenario. However, the SDI calculation requires knowledge of the probability dis-
tribution of cumulative discharge data. A Kolmogorov-Smirnov’s goodness-of-fit analysis was conducted for both observed and simulated
cumulative discharges. A lognormal distribution was considered for estimating time series of SDI. For the period 1996–2015, the SDI values
recovered from the SWAT simulations matched closely with those derived directly from the observed discharge data (0.52 ≤ R2 ≤ 0.91 for the
Neches River, and 0.79 ≤ R2 ≤ 0.89 for the Trinity River). This result demonstrated the capacity of the analytical procedure to capture and
project realistically SDI signals. However, analysis of the χ2 statistic of the SDI patterns for the past and the future periods did not reveal any
significant difference. DOI: 10.1061/(ASCE)HE.1943-5584.0001827. © 2019 American Society of Civil Engineers.

Author keywords: Drought index; Soil and Water Assessment Tool (SWAT) model; Streamflow; Watershed; Lognormal distribution;
Climate scenario.

Introduction

Drought is a complex phenomenon which generally originates from
a low-precipitation period (McKee et al. 1993). Drought is often
accompanied with diverse consequences for natural ecosystems
and the human society (Vicente-Serrano et al. 2012). Sometimes
the consequences of drought can be irreversible and long-lasting
(Sohoulande Djebou 2017). For that reason, drought has been
intensively investigated in time and space with the purpose of
thoroughly understanding the phenomenon (McKee et al. 1993).
Unfortunately, the accurate projection of drought occurrence and
severity remains a puzzle (Deo et al. 2017; Mishra and Desai
2006). This shortcoming is detrimental for achieving adequate
water resources planning in many watersheds.

Over time, different types of drought have been distinguished
and given specific attention (McKee et al. 1993; Wilhite and Glantz

1985). Among these types of drought, streamflow drought has
specific implications for aquatic ecosystems which are directly af-
fected by the quantitative availability of surface water (Smakhtin
2001). Streamflow drought is a temporary event which occurs
when the discharge during a period is below predetermined
thresholds given by the probability density function of stream-
flow (Vicente-Serrano et al. 2012). Thus, the duration of stream-
flow drought corresponds to the period in which the discharge
is below the corresponding thresholds. However, the use of the
streamflow drought index (SDI) is more practical for quantifying
the severity of this type of drought (Tabari et al. 2013; Nalbantis
and Tsakiris 2009). Specifically, the SDI is very informative be-
cause it provides scaled values of surface water anomalies at the
watershed level. Nevertheless, it is often difficult to project the
hydrologic behavior of a watershed, which normally depends on
a set of biophysical factors interacting diversely in time and space
(Tidwell et al. 2004). However, it is well established that the use of
physically based models such as the Soil and Water Assessment
Tool (SWAT) has significantly improved the capacity to represent
hydrological processes at the watershed scale (Gassman et al.
2014).

The present study evaluated the capacity of the SWAT model to
reproduce patterns of streamflow drought at the watershed level.
Two watersheds located in the state of Texas were simulated for
monthly discharge. The SDI time series derived from observed
and simulated discharges of a past period were comparatively
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analyzed to elucidate the SWAT performance at capturing stream-
flow drought signals. Afterward, an analysis was carried out with
the aim of comparing future patterns of SDI with past patterns. The
results are reported and the relevance of using SWAT simulations in
SDI projection are discussed.

Method

The methodological approach used for this study consisted of two
analytical components, SWAT modeling and a streamflow drought
analysis. Two watersheds were targeted in the state of Texas, and
their related hydrological and spatial data were collected and as-
sessed. The study used three types of data sets: spatial, streamflow,
and weather data.

Data and Watersheds

Watersheds and Streamflow Data
The study addressed distinctly the streamflow behavior in two
watersheds located in the state of Texas. These watersheds are
the Neches River Basin and the Trinity River Basin (Fig. 1). In
the United States, the state of Texas is known for facing critical
challenges in managing surface water resources. The hydrographs
of the cumulative discharge in each of the selected watershed
showed strong patterns of high flow volumes alternated with
low flow volumes (Fig. 2). The observed sequences were irregular,
suggesting complex streamflow anomalies and the need to antici-
pate water resources concerns. This was the rationale for the selec-
tion of the Neches and the Trinity River Basins in this study. These

two basins partially share a boundary and they both pertain to the
Texas Gulf, which is a shallow regional watershed with a less
contrasted topography.

At the watershed level, a stream gauge (i.e., streamflow station)
was targeted and the corresponding monthly discharge time series
for the period 1990–2015 were retrieved from the USGS database.
Hence, in the Trinity River Basin, the stream gauge considered is
located at 31.65°N latitude and 95.79°W longitude, and it has the
USGS Hydrologic Unit Code (HUC) 12020003. In the Neches
River Basin, the stream gauge considered is located at 30.79°N
latitude and 94.15°W longitude, and its USGS HUC is 12030201.
The estimated drainage area using the SWAT watershed delineator
was 19,574 km2 for the simulated watershed in the Neches River
Basin and 33,262 km2 in the Trinity River Basin. The observed
monthly discharge time series of 1990–2015 were used during
the calibration and validation stages of the SWAT modeling. Both
selected stream gauges had no gaps in their records of monthly
streamflow data for the period 1990–2015. During the SWAT
simulations, the locations of the stream gauges served as outlets.

Spatial Data
Three categories of spatial data were used. The first category was a
30-m spatial resolution digital elevation model (DEM). The DEM
data were retrieved from the National Elevation Dataset (NED),
which is released by the USEPA. The second category was the
National Land Cover Database (NLCD) 2011, which has a spatial
resolution of 30 m and counts 16 classes of land-cover types
(Homer et al. 2015). The data were developed and released by
the Multi-Resolution Land Characteristics (MRLC) Consortium.
The third category was the State Soil Geographic database
(STATSGO), which was developed by the National Cooperative

Fig. 1. Delineated watersheds showing locations of the weather stations and the streamflow outlet considered for the SWAT modeling of the
(a) Neches River Basin; and (b) Trinity River Basin.
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Soil Survey of the USDA. The use of the STATSGO soil map data
for this study was motivated by the size of the watersheds ad-
dressed; the type of simulation (i.e., discharge); and the temporal
resolution, which was monthly (Geza and McCray 2008; Wang and
Melesse 2006). Indeed, several authors agreed that the STATSGO
soil map is appropriate when streamflow is simulated and when the
watershed is relatively large (Mukundan et al. 2010; Geza and
McCray 2008; Wang and Melesse 2006).

Weather Data
The weather data used in the study consisted of daily time series
of precipitation and temperature for past and future time slices
(i.e., 1990–2015 and 2041–2070). For the past weather data, five
weather stations were selected across each delineated watershed
(Fig. 1). For individual weather stations, the historical daily precipi-
tation, and maximum and minimum temperatures for the period
1990–2015 were obtained from the Global Historical Climatology
Network (GHCN) database of the NOAA. The geographic loca-
tions of these weather stations are presented in Table 1. The se-
lected weather stations had an average 0.2% missing data for
daily precipitation and 1.8% missing data for daily maximum and
minimum temperatures. During the SWAT simulation, the missing
weather data were replaced with values generated by the SWAT’s
weather generator. Indeed, the SWAT’s weather generator is used
as default input when a real-time measurement of a variable is
missing.

The study used simulated weather data for the future period
2041–2010. These data were developed by the North American
Regional Climate Change Assessment (NARCCAP) (Wehner
2013). Specifically, the study used daily precipitation and daily
maximum/minimum temperature data of the NARCCAP Regional
Climate Model 3 (RCM3). The NARCCAP RCM3 is driven by
boundary conditions defined by the Geophysical Fluid Dynamics
Laboratory (GFDL) (Mearns et al. 2012). Several authors reported

the consistency of the NARCCAP simulations over the conter-
minous United States (Ahmed et al. 2013; Mearns et al. 2012).
The NARCCAP simulation is based on Scenario A2 of the Inter-
governmental Panel on Climate Change’s Special Report on
Emissions (IPCC-SRES), which assumed a world population of
10 billion by 2050 with a projected CO2 concentration of 575 ppm
(Nakicenovic et al. 2000). The NARCCAP RCM3-GFDL simula-
tions are released as gridded time series with a 50-km spatial res-
olution. However, for the SWAT simulations, the study used the
geographic coordinates listed in Table 1, then retained the nearest
grids in lieu of the five weather stations of Fig. 1. The NARCCAP
future climate simulations are released only for the period 2041–
2070, which justified the use of the same time slice for the SWAT
simulation of the future period. Several authors used RCM simu-
lations in SWAT modeling, and reported them to be useful for
understanding future hydrological patterns at the watershed scale

Fig. 2. Hydrographs showing the sequences of cumulative discharges during consecutive hydrologic years from 1996 to 2015 in the (a) Neches River
watershed at outlet 30.79° N, 94.15° W; and (b) Trinity River watershed at outlet 31.65° N, 95.79° W. A USGS hydrologic year is a period spanning
from October of year Y to September of year Y þ 1.

Table 1. Locations of weather stations used for SWAT modeling

Watershed Station ID
Latitude
(°N)

Longitude
(°W)

Elevation
(m)

Neches USW00093987 31.24 94.75 87.8
USC00411711 31.50 94.35 100.6
USW00093915 31.78 95.60 141.7
USC00419207 32.31 95.30 167.6
USC00417841 31.80 95.15 219.5

Trinity USC00412019 32.08 96.47 129.5
USC00415094 33.03 96.48 155.4
USC00411063 33.21 97.78 234.4
USC00410691 32.65 97.45 240.8
USC00416130 33.65 97.37 306.3

Note: Station ID provided by the Global Historical Climatology Network,
which is an integrated database for ground-based stations.
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(Zabaleta et al. 2014; Gassman et al. 2014). The present study used
the historical streamflow and weather data of period 1990–2015
during the stages of calibration (1990–1995) and validation (1996–
2015) of the SWAT model. Subsequently, the future weather data
were used as inputs during the SWAT simulation of the future
period.

SWAT Modeling

ArcSWAT version 2012.10.19 was used to model streamflow in the
Neches and the Trinity watersheds. The described spatial and
weather data were used as inputs during the modeling. The SWAT
modeling procedure consisted of three stages, the calibration
(1990–1995), the validation (1996–2015), and the future period
simulation (2041–2070).

Model Calibration
Using the observed monthly discharge of the period 1990–1995 as
a reference, the SWAT model was manually calibrated for the
Neches and Trinity watersheds. The calibration was performed by
adjusting the input parameters. According to Vrugt et al. (2008),
most of the parameters cannot be inferred through direct observa-
tion in the field, but by using an adjustment process. This justifies
the relevance of the manual adjustment, but the success of the pro-
cess depends also on the modeler’s ability (Eckhardt and Arnold
2001). In the case of the studied watersheds, the most sensitive
parameters were found to be Curve number CN2 and the available
soil water content, Soil-AWC. These two parameters were adjusted
iteratively, and the operation was repeated several times until
acceptable efficiencies were reached. The SWAT model perfor-
mance was assessed by calculating three different indicators of
fitness, the Nash-Sutcliffe efficiency (NSE) [Eq. (1)], the index
of agreement d [Eq. (2)], and the RMS error (RMSE) [Eq. (3)]
(McCuen et al. 2006; Legates and McCabe 1999; Willmott 1981).
The first year, 1990, was considered as a warming period while
running the SWAT model. Therefore, the values of the year 1990
were not included in the performance evaluation

NSE ¼ 1 −
P

N
i¼1 ðQi − Q̂iÞ2P
N
i¼1 ðQi − Q̄Þ2 ð1Þ

Index of agreement ðdÞ ¼ 1 −
P

N
i¼1 ðQi − Q̂iÞ2P

N
i¼1 ðjQ̂i − Q̄j þ jQi − Q̄jÞ2 ð2Þ

RMSE ¼
�XN
i¼1

ðQi − Q̂iÞ2
N

�0.5
ð3Þ

where N = number of months during the simulation period; Qi and
Q̂i = observed and simulated discharge, respectively, for month i;
and Q̄ = observed average discharge.

Model Validation and Future Streamflow Simulation
The calibrated SWAT model was used to simulate separately the
streamflow for past and future time slices (1996–2015 and 2041–
2070). The relatively large period (i.e., 2 decades) used for the
validation period was relevant because the study evaluated the
SWAT model’s capacity to capture streamflow drought signals
during a multidecadal time frame and enable a comparison with
the future-period SWAT simulations (i.e., 2041–2070). The perfor-
mance of the model during the validation period was addressed
using NSE, d, and RMSE. Following a satisfactory validation
stage, the calibrated SWAT model was used in an application for
the future period 2041–2070. This step used the daily weather
data obtained from the NARCCAP RCM3-GFDL simulations.

The simulated streamflow data were subsequently processed, and
values of the streamflow drought index were estimated for the
entire period 2041–2070.

Streamflow Drought Index

In their effort to characterize streamflow drought, scientists devel-
oped a variety of indexes which have practical implications for
water resources and environmental management (Tabari et al.
2013; Vicente-Serrano et al. 2012). The present study emphasized
the streamflow drought index as reported by Nalbantis and Tsakiris
(2009). The SDI is analogous to the standardized precipitation
index (SPI) and it has relevant applicability at the watershed
scale (Tabari et al. 2013; Nalbantis and Tsakiris 2009). The SDI is
probability-based and formulated such that both seasonal and in-
terannual variability of the streamflow are represented (Tabari et al.
2013; Nalbantis and Tsakiris 2009). Nalbantis and Tsakiris (2009)
highlighted five categories of streamflow drought: no drought
(0 ≤ SDI), mild (−1 ≤ SDI < 0), moderate (−1.5 ≤ SDI < −1), se-
vere (−2 ≤ SDI < −1.5), and extreme (SDI < −2). The calculation
of the SDI involved a consideration of USGS hydrologic year. The
USGS hydrologic year, or water year, is defined as the period from
October of year Y to September of year Y þ 1 (Slack and Landwehr
1992). Assuming the USGS hydrological year definition, a time
series of monthly streamflow discharge of an n-year period can
be defined by a series of dischargeQτ ;ϕ, where τ denotes the hydro-
logical year and ϕ represents the month within the year (i.e., ϕ ¼ 1
for October, ϕ ¼ 2 for November, ϕ ¼ 3 for December, ϕ ¼ 4
for January, : : : , ϕ ¼ 12 for September). The computation of
SDI is associated with reference periods of the hydrological year
denoted here by θ. Thus θ ¼ 1 for the cumulative period October–
December, θ ¼ 2 for October–March, θ ¼ 3 for October–June, and
θ ¼ 4 for October–September. For individual hydrologic years,
four values of SDI were then calculated in accordance with the
reference periods of the hydrological year (i.e., θ ¼ 1, 2, 3, and 4).
As a result, the time series of SDI can be addressed separately for
each referential period. The computation of SDI requires knowl-
edge of the probability distribution of the cumulative discharge
data. Given a time series of discharge Qτ ;ϕ, a corresponding cumu-
lative discharge Vτ ;θ can be retrieved, and then the SDIτ ;θ is calcu-
lated using

SDIτ ;θ ¼
Vτ ;θ − Vθ

sθ
ð4Þ

V̄θ ¼
Xn
τ¼1

Vτ ;θ

n
; Sθ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
τ¼1

ðVτ ;θ − V̄θÞ2
n

s
ð5Þ

Vτ ;θ ¼
X3θ
ϕ¼1

Qτ ;ϕ; τ ¼ 1; 2; : : : ;n; θ ¼ 1; 2; 3; 4;

ϕ ¼ 1; 2; : : : ; 12 ð6Þ

In principle, ϕ in Eq. (6) could be any month of the year
(i.e., ϕ ¼ 1; 2; : : : ; 12). However, for the computation of SDI, this
study only considered cumulative periods based on the USGS
hydrologic year, which starts from October (ϕ ¼ 1 = October).
The use of these indexing equations [Eqs. (4)–(6)] is adequate when
the cumulative discharge probability distribution is normal or
transformed into a normal distribution (Ben-Zvi 1987). When the
probability distribution of the cumulated discharge is skewed, the
use of a logarithmic transformation can help to approach the nor-
mal distribution. Hence, Nalbantis and Tsakiris (2009) addressed
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streamflow drought using a logarithmic transformation of cumula-
tive discharge data

SDIτ ;θ ¼
yτ ;θ − ȳτ ;θ

sτ ;θ
; τ ¼ 1; 2; : : : ; n; θ ¼ 1; 2; 3; 4 ð7Þ

yτ ;θ ¼ lnðVτ ;θÞ; τ ¼ 1; 2; : : : ; n; θ ¼ 1; 2; 3; 4 ð8Þ

In general, the shape of a watershed can influence the empirical
probability distribution of the discharge data (Kroll and Vogel
2002). Subsequently, the use of a standard probability distribution
is not straightforward. For small watersheds, the probability distri-
bution of the cumulative discharge is often skewed and approxi-
mate to the gamma distribution family (Nalbantis and Tsakiris
2009; Ben-Zvi 1987). In such cases, the data can be transformed
to fit a normal distribution. In this study, a logarithmic transforma-
tion of the cumulative discharge data was found necessary follow-
ing a goodness-of-fit analysis. The goodness-of-fit analysis was
separately conducted for both observed and simulated cumulated
discharge data of individual watershed. The gamma [Eq. (9)] and
lognormal [Eq. (10)] probability density function (PDF) parameters
were estimated and reported

fðVÞ ¼
1

βαΓðαÞ
Vα−1e−V=β ð9Þ

fðyÞ ¼
1

σy

ffiffiffiffiffiffi
2π

p exp

�
− 1

2

�
y − μy

σy

�
2
�

where y ¼ lnðVÞ ð10Þ

where V = cumulative discharge value; y ¼ lnðVÞ = natural loga-
rithm of V; μy and σy = mean and variance of y, respectively; α and
β = shape parameter and scale parameter, respectively, of the
gamma PDF, where α > 0 and β > 0; V > 0 satisfies the condition
of the gamma distribution; and meanðVÞ ¼ α × β and variance
ðVÞ ¼ α × β2.

The goodness-of-fit analysis was conducted using the
Kolmogorov-Smirnov (K-S) test. The Kolmogorov-Smirnov test
for goodness-of-fit is performed to evaluate how closely the empir-
ical cumulative discharge data and the transformation follow
each of the theoretical probability density functions, namely the
gamma and lognormal PDF (Vicente-Serrano et al. 2012). The
Kolmogorov-Smirnov test statistic, D, is

D ¼ maxfjFðxÞ −GðxÞjg ð11Þ

where F = theoretical cumulative distribution function; and G =
empirical probability distribution of the cumulative discharge being
tested. The calculated D value is compared with a critical value. At
p-value ¼ 0.05, the critical value of D is given by Dcritical ¼
1.358 × N−0.5, where N represents the size of the tested sample.
If Dcalculated < Dcritical, the sample data are assumed to be a good
fit with the theoretical distribution; otherwise, the null hypothesis
of a good fit is rejected (Lopes 2011).

Results

Performance of SWAT Model

The delineated watershed in the Neches River Basin expands over a
spatial domain of 19,574 km2, whereas the one in the Trinity River
Basin covers 33,262 km2. In the Neches River Basin, a total of 209
subbasins and 11,374 hydrologic response units (HRUs) were iden-
tified during the SWAT modeling process. Similarly, 391 subbasins
and 12,485 HRUs were identified in the Trinity River Basin. The
SWAT calibration was successfully conducted using the period of
1990–1995, but the year 1990 was considered as a warming period.
Hence, the performance indicators were only computed for the
simulated period 1991–1995 (i.e., October 1990–September 1995).
The performance of the calibrated SWAT model is reported in
Table 2. The NSE was 0.65 for the Neches watershed, and the
NSE was 0.64 for Trinity. The calibrated SWAT model was later
validated using a 2-decade time frame (i.e., October 1995–
September 2015). The overall performance of the model at this
stage is depicted in Fig. 3. Although peak discharges were over-
predicted during certain years of the validation period, the overall
performance of the SWAT model was acceptable based on the ef-
ficiency indicators reported in Table 2 (NSE ¼ 0.62 for Neches and
NSE ¼ 0.56 for Trinity). The values of the calculated index of
agreement d and RMSE (Table 2) also confirmed the consistency
of the calibration and validation.

Streamflow Drought Assessment

The procedure developed for the streamflow drought assessment
included three steps. The first step consisted of the goodness-
of-fit test of gamma and lognormal distributions of observed and
simulated cumulative discharge data. This step is reported to show
that the cumulative discharge data were skewed and needed a
normal approximation in order to apply SDI (Ben-Zvi 1987). The
second step was the computation of SDI time series for past and
future periods, and the third step was the comparative analysis of
SDI signals.

Goodness-of-Fit Analysis of Streamflow Data
The goodness-of-fit analysis was conducted separately for the ob-
served and simulated data (i.e., cumulative discharge), using the
Kolmogorov-Smirnov test. The K-S test was carried out distinctly
for the Neches and the Trinity watersheds. The results of the K-S
test for the observed data (period 1996–2015) and the simulated
data (periods 1996–2015 and 2041–2070), are reported in Table 3
and portrayed in Fig. 4. The outcomes of the K-S tests indicated
that the raw cumulative streamflow (observed and simulated) ini-
tially fit the family of gamma distribution functions (Table 3).
Hence, to use the SDI Eqs. (4)–(6), it was important to transform
the cumulative discharge probability distribution into a normal
distribution (Ben-Zvi 1987). The results in Table 3 and Fig. 4 show
that the logarithmic transformation of the data can help to approxi-
mate the theoretical normal distribution. Hence, the study used the

Table 2. Performance of SWAT model during calibration and validation stages

Statistics

Neches River Basin Trinity River Basin

Calibration
(1991–1995)

Validation
(1996–2015)

Calibration
(1991–1995)

Validation
(1996–2015)

Nash-Sutcliffe efficiency (NSE) 0.65 0.62 0.64 0.56
Index of agreement, d 0.92 0.86 0.86 0.79
RMS error [RMSE (m3=s)] 103.65 118.65 147.97 146.46
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lognormal distribution for the SDI estimate. These results are con-
sistent with those reported by Nalbantis and Tsakiris (2009) who
also used the lognormal distribution to estimate SDI. Ultimately,
Eqs. (7) and (8) were included in the calculation of SDI time series
in both watersheds.

SDI Signals Captured by SWAT Model
Fig. 5 portrays the performance of the SWAT model in reproducing
signals of streamflow drought. The plotted SDI time series were
estimated based on the observed streamflow and the SWAT model
simulated flow for period 1996–2015. The SDI values were esti-
mated distinctly for the Neches and Trinity watersheds using the

procedure described in subsection “Streamflow Drought Index.”
In addition, the computation of SDI was carried out separately
for the reference periods of the hydrological year, namely θ ¼ 1
(October–December), θ ¼ 2 (October–March), θ ¼ 3 (October–
June), and θ ¼ 4 (October–September). For each of these reference
periods, Table 4 reports significant correlations between the SDI
values retrieved from observed discharges and those estimated from
SWAT simulations. This pattern is sustained by Fig. 5, which show
the time series of SDI of observed and simulated discharges for
each reference period. The gaps between the SDI of observed
and simulated discharges varied depending on the watershed and
the reference period of the hydrologic year. The SWAT model

Table 3. Goodness-of-fit analysis of observed and SWAT-simulated discharges in Neches and Trinity watersheds with gamma and lognormal theoretical
distributions using Kolmogorov-Smirnov test

Watershed Discharge data

Gamma distribution Lognormal distribution

α β K-S test (D) μy σy K-S test (D)

Neches Observed (1996–2015) 1.26 2,046.08 0.07a 7.30 1.22 0.11a

Simulated (1996–2015) 1.49 2,584.78 0.08a 7.74 1.22 0.15a

Simulated (2041–2070) 0.81 4,175.93 0.09a 7.32 1.53 0.07a

Trinity Observed (1996–2015) 1.01 2,642.76 0.10a 7.25 1.29 0.10a

Simulated (1996–2015) 1.28 2,749.79 0.06a 7.61 1.23 0.14a

Simulated (2041–2070) 0.88 7,694.12 0.10a 7.98 1.62 0.11a

Note: Estimated parameters of gamma and lognormal PDFs are reported. The critical value of D is given by D0.95 ¼ 1.358N−0.5, where N is the sample size
(for the test, N ¼ 40 and D0.95 ¼ 0.21).
aCalculated D value is below the critical value at p-value ¼ 0.05, meaning the null hypothesis cannot be rejected.

Fig. 3. Validation of SWAT model simulation of two-decade monthly discharge in the (a) Neches River Basin; and (b) Trinity River Basin.
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captured 52%–91% (0.52 ≤ R2 ≤ 0.91) of SDI variance in the
Neches watershed, and 79%–89% (0.79 ≤ R2 ≤ 0.89) of SDI vari-
ance in the Trinity watershed (Table 4). Interestingly, these values
of R2 obtained with SDI analysis are high, and this suggests that
the SWAT model captures more closely the streamflow drought
signals. As a result, the use of SWAT model simulation for SDI
projections may turn to be a robust estimate of streamflow patterns
at the watershed scale.

Analysis of Future Streamflow Drought Patterns

As mentioned previously, the calibrated SWAT model was used to
simulate future streamflow (i.e., 2041–2070). The simulation used
data of future climate scenario projected by the NARCCAP RCM3-
GFDL (Wehner 2013) for weather inputs. As indicated in section
“Goodness-of-Fit Analysis of Streamflow Data” (Table 3), the
probability density of the cumulative discharge (simulated data)
for the period 2041–2070 can be fitted to a theoretical lognormal

function to enable the SDI computation. Eqs. (7) and (8) were
therefore considered in the calculation of the corresponding SDI
values. This subsection evaluates how much the future patterns
of streamflow drought departed from the past patterns in each
watershed (i.e., Neches and Trinity). The SDI values for future
and past periods (2041–2070 and 1996–2015) were classified
within the five categories of streamflow drought. The resulting his-
tograms of frequencies of SDI corresponding to the reference peri-
ods (i.e., θ ¼ 1 = October–December, θ ¼ 2 = October–March,
θ ¼ 3 = October–June, and θ ¼ 4 = October–September) are pre-
sented in Fig. 6. This analysis is complemented with a χ2 statistic
test of homogeneity which evaluated how well the distribution of
SDI during the future period 2041–2070 reflects the past period
1996–2015 (Bangdiwala 2016; Franke et al. 2012). Specifically,
the χ2 statistic tested the null hypothesis H0 that the distributions
of SDI within the five categories of streamflow drought [i.e., no
drought (0 ≤ SDI), mild (−1 ≤ SDI < 0), moderate (−1.5 ≤ SDI <
−1), severe (−2 ≤ SDI < −1.5), and extreme (SDI < −2)] were

Fig. 4. Fitting the empirical cumulative probability distribution of observed and simulated cumulative streamflow data with the expected gamma and
lognormal cumulative probability distributions.
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Fig. 5. Time series of SDI derived from observed cumulative discharge compared with those derived from SWATmodel simulations during the period
1996–2015.
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identical during the future period 2041–2070 and the past period
1996–2015. The calculation frame for the χ2 statistic is reported in
Table 5 which drew the absolute frequencies of drought categories.
The statistic value χ2

calculated is calculated using

χ2
calculated ¼

X2
λ¼1

X5
ρ¼1

ðXλ;ρ − Xλ;:X:;ρ=X:;:Þ2
Xλ;:X:;ρ=X:;:

with df ¼ 4 ð12Þ

where df = degrees of freedom; λ indicates period, where λ ¼ 1 =
1996–2015 and λ ¼ 2 = 2041–2070); ρ indicates SDI categories
(Table 5); and X represents absolute frequencies.

The critical value χ2
α at p-value ¼ 0.05 and df ¼ 4 is equal to

9.49 [i.e., χ2
0.05 ðdf ¼ 4Þ ¼ 9.49]. The calculated statistics are

χ2
calculated ¼ 3.24 in the Neches watershed and χ2

calculated ¼ 5.32
in the Trinity watershed. In both cases, χ2

calculated < χ2
α, and thus

we did not reject the hypothesis H0. This means that the future pat-
terns of streamflow drought in each watershed will likely be similar
to those observed in the past. However, the inferences driven in this
analysis are based on assumptions associated with the NARCCAP
RCM3-GFDL simulation. Probably, different results would be ob-
served if a different climate scenario were assumed. Nevertheless,
this estimate of SDI using climate model outputs is relevant and
useful to get insight into surface water resources availability under
the imminent fact of climate disturbance (Chattopadhyay et al.
2017; Bucak et al. 2017).

Discussion

This study evaluated how well the SWAT model captures stream-
flow drought pattern over a long run (multiple decades). Two
watersheds, namely the Neches and Trinity River Basins, were con-
sidered and simulated separately. The SWAT model was calibrated
using monthly discharge time series of 1990–1995. Thereafter, the
calibrated model was used to simulate monthly discharge for past
period 1996–2015 (validation) and future period 2041–2070.
Although the accuracy of the SWAT simulation is highly dependent
on the quality of the input data, there is no perfect model simulation
(Gassman et al. 2014; Mukundan et al. 2010; Geza and McCray
2008). An evaluation of the SWAT model performance based on
efficiency criteria (i.e., NSE and index of agreement d) indicated
acceptable simulations during both calibration and validation peri-
ods. The simulations of the future period 2041–2070 are a probable
representation of the future flow even though there are limitations
associated with the inputs used in the future scenario simulations
(i.e., the NLCD 2011 used as default input for land-cover data, and
the uncertainties associated with the NARCCAP RCM3-GFDL
inputs).

Following the SWAT model simulation, SDI values were esti-
mated for both observed and simulated discharges. However, the

SDI formulation used in the study requires a knowledge of the
probability distribution of the cumulative discharge. The SDI com-
putation reported by Nalbantis and Tsakiris (2009) is applicable
when the PDF of cumulative discharge is normal or transformed
into a normal distribution. When the cumulated discharge proba-
bility is skewed (e.g., gamma distributed), a normal transformation
is needed before applying SDI (Nalbantis and Tsakiris 2009;
Ben-Zvi 1987). The Kolmogorov-Smirnov’s goodness-of-fit analy-
sis conducted on both observed and simulated data suggested a fit-
ting of the cumulative discharge to the lognormal distribution for
SDI application (Nalbantis and Tsakiris 2009). The logarithmic
transformation of the observed and simulated discharge data was
then used to estimate SDI values in each watershed. The SDI values
were computed for each of the reference periods (i.e., θ ¼ 1 =
October–December, θ ¼ 2 = October–March, θ ¼ 3 = October–
June, and θ ¼ 4 = October–September). Interestingly, for the
period 1996–2015, the SDI time series derived distinctly from the
observed discharge were closely analogous to the SDI estimated
based on the SWAT simulation for the same period (Fig. 5 and
Table 4). However, the accuracy of the SWAT simulations’ SDI
seems to depend on the watershed and the reference period of the
hydrologic year (Table 4). This disparity could be, in part, attrib-
uted to the difference of efficiency during the SWAT simulation
(NSE ¼ 0.62 for Neches, and NSE ¼ 0.56 for Trinity). Regardless
of these variations, the overall results obtained for the period 1996–
2015 demonstrated the capacity of the SWAT model to capture and
closely reproduce streamflow drought signals over a multidecadal
time frame. Therefore, the SWAT model simulations of discharge
for period 2041–2070 were considered for projecting future pat-
terns of SDI in the Neches and the Trinity watersheds.

Even though a visual analysis of the histograms in Fig. 6 may
suggest slight differences, the frequency distributions of projected
SDI for the period 2041–2070 were found to be statistically homo-
geneous to the distributions of SDI for the past period 1996–2015.
The physical meaning of this statistical result is that the two water-
sheds are likely to experience similar patterns of streamflow in the
future. However, this inference is based on the assumptions asso-
ciated with the inputs used during the SWAT modeling process.
These assumptions are notably related to the NARCCAP RCM3-
GFDL and the land-cover input, which was assumed to be the same
as that of NLCD 2011. Regardless of these shortcomings, a sim-
ilarity of SDI patterns between past and future periods may not
imply systematically that the water resources will be sufficient
to satisfy societal needs in the future. For instance, given the actual
growth rate of the population, freshwater demand is expected to
increase consequently in both watersheds. Hence, the project SDI
pattern is probably an early warning for freshwater security at the
watershed scale. This is true because the quantitative availability of
streamflow in a watershed is vital for natural ecosystems and
human society as well (Poff et al. 1997).

A watershed represents a physical interface in which animals,
plants, and humans live, interact, and share the same water resour-
ces (Tidwell et al. 2004; Montgomery et al. 1995). As a major com-
ponent of surface water, the regime of streamflow is likely to reflect
the biophysical functionality of a watershed (Sohoulande Djebou
and Singh 2016; Sohoulande Djebou 2015). Interannual and intra-
annual variability of streamflow regimes are inherent to natural
watersheds, but the scientific understanding of this variability is
useful for decision-making in water resources and environment
management (Sohoulande Djebou 2018; Montgomery et al. 1995).
In the case of the Neches and Trinity watersheds, the observed
signals of SDI indicate that the lower categories of streamflow
drought are dominant. However, this overall dominance should
not rule out the alert related to severe streamflow drought episodes

Table 4. Estimating the correlations between observed SDI and SWAT
simulated SDI over period 1996–2015 for different referential periods of
hydrological year

Referential period
of hydrological year

Sample
size

Coefficient of
determination R2

Neches
River

Trinity
River

θ ¼ 1 (October–December) 21 0.52 0.79
θ ¼ 2 (October–March) 20 0.81 0.89
θ ¼ 3 (October–June) 20 0.87 0.87
θ ¼ 4 (October–September) 20 0.91 0.89
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Fig. 6. Frequencies of streamflow drought categories during the past (1996–2015) and future (2041–2070) periods. The streamflow drought
index SDI of the future period were estimated based on SWAT model simulations. Cumulative discharges for October–December, October–March,
October–June, and October–September were analyzed separately.
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which can be costly for the environment and society (Smakhtin
2001; Montgomery et al. 1995).

Conclusion

In water resources planning, the streamflow drought index SDI is
very useful because it allows a probabilistic interpretation of flow
fluctuation in time and space (Tabari et al. 2013). With the ongoing
trend of freshwater depletion, a projection of SDI is needed to sus-
tain water resources planning on the long-term. This paper reported
a case study which used SWAT model simulations to estimate SDI
for past and future periods. It was found that the SWAT model sim-
ulations captured sufficiently the variance of SDI during the differ-
ent periods of the hydrologic year. The capacity of SWAT to closely
reproduce streamflow drought signals over a multidecadal period
was also outlined. Hence, it is concluded that the SWAT model
could be considered to project SDI patterns at the watershed level.
However, the projections are dependent on the climate scenario
included in the SWAT simulations. Thus, the interpretation of
the future SDI patterns described in this paper must consider the
assumptions related to the NARCCAP future climate data incorpo-
rated into the SWAT model simulations.
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