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Abstract Corn’s (Zea mays L.) stover is a potential nonfood,
herbaceous bioenergy feedstock. A vital aspect of utilizing
stover for bioenergy production is to establish sustainable
harvest criteria that avoid exacerbating soil erosion or
degrading soil organic carbon (SOC) levels. Our goal is to
empirically estimate the minimum residue return rate required
to sustain SOC levels at numerous locations and to identify
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which macroscale factors affect empirical estimates. Mini-
mum residue return rate is conceptually useful, but only if
the study is of long enough duration and a relationship be-
tween the rate of residue returned and the change in SOC can
be measured. About one third of the Corn Stover Regional
Partnership team (Team) sites met these criteria with a mini-

mum residue return rate of 3.9+2.18 Mg stover ha ' yr ',

D. L. Karlen

National Laboratory for Agriculture and the Environment,
USDA-Agricultural Research Service, 2110 University Boulevard,
Ames, IA 50011, USA

J. A. Lamb

Department of Soil, Water and Climate, University of Minnesota,
439 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, MN 55108,
USA

J. Baker

Soil and Water Management Research Unit, USDA-Agricultural
Research Service, University of Minnesota, 439 Borlaug Hall, 1991
Upper Buford Circle, St. Paul, MN 55108, USA

P. R. Adler

Pasture Systems and Watershed Management Research Unit,
USDA-Agricultural Research Service, Building 3702, Curtin Road,
University Park, PA 16802, USA

@ Springer


http://dx.doi.org/10.1007/s12155-013-9402-8

482

Bioenerg. Res. (2014) 7:481-490

n=6. Based on the Team and published corn-based data
(n=35), minimum residue return rate was 6.38+
2.19 Mg stover ha ' yr ', while including data from other
cropping systems (n=49), the rate averaged 5.74+
2.36 Mg residue ha' yr ', In broad general terms, keeping
about 6 Mg residue ha ' yr ! maybe a useful generic rate as a
point of discussion; however, these analyses refute that a
generic rate represents a universal target on which to base
harvest recommendations at a given site. Empirical data are
needed to calibrate, validate, and refine process-based models
so that valid sustainable harvest rate guidelines are provided to
producers, industry, and action agencies.

Keywords Bioenergy - Second generation feedstock -
Sustainable - Renewable energy

Introduction

Corn stover was identified as an abundant, nonfood, her-
baceous bioenergy feedstock because of the extensive
area upon which the crop is grown, its high-yield poten-
tial, and the farmer costs associated with residue manage-
ment [43]. A vital aspect of utilizing corn stover for
bioenergy production is to establish harvest criteria to
avoid exacerbating soil erosion or degrading soil organic
carbon (SOC) levels. Although conservation planning for
erosion control has a long history, harvesting crop residue
while also managing for SOC maintenance is a relatively
recent concern [44]. The amount of residue that is needed
on a soil to maintain SOC levels can exceed the amount
needed for erosion control [47]. A literature review that
included several crops and management scenarios estimat-
ed 2.5+1.7 Mg C ha ' yr' (n=28, 6.3 Mg ha ' yr!
aboveground residue) was needed to maintain SOC levels
[16]. Tan et al. [42] used similar empirically derived
minimum residue requirements to estimate sustainable
corn stover feedstock based on county level yield infor-
mation. They estimated that harvestable stover ranged
from 31 to 118 Tg (Tg=10’ kg), depending upon harvest
option, tillage, and soil baseline SOC levels [42]. While
these crude estimates are conceptually useful, verification
and refinement are necessary if they are to be used across
the USA for site-specific recommendations, especially in
different agricultural management systems under varying
climatic and soil conditions [46].

The Corn Stover Regional Partnership team (Team)
representing multiple agencies across the USA was organized
to address the hypothesis that a sustainable bioenergy system
can be obtained [17-19]. An overall goal of the Team was
“ensuring the soil resource indefinitely meets the demands for
food, feed, fiber, and fuel” [45]. One aspect for meeting that
goal was to empirically determine the amount of stover
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needed to be retained to sustain SOC levels, which in turn
could be used to validate and enhance process-based models
[17]. To address that challenge, data were gathered from
several locations with diverse climatic conditions and soil
properties in anticipation that the results would provide key
determinants of SOC responses to stover harvest [17] as well
as published information to refine minimum residue require-
ments for a wide range of soils. Thereby, addressing the
hypothesis that a widely applicable minimum residue require-
ment can be identified or that key variables controlling how
residue is required could be ascertained.

Material and Methods

Data for empirically estimating the amount of stover needed to
sustain SOC levels were collected by the Team from seven
states in 19 field management combinations (Fig. 1). Except
University Park, PA, and Florence, SC, study sites were within
the US Corn Belt. A description of the climate, soil, and
management characteristics is summarized in Table 1, while
additional information on these sites is available in Karlen and
Karlen et al. [17-19].

Each Team site provided an annual average amount of
stover returned and a corresponding change in SOC con-
centration (ASOC) at 0—-15 or 0-30 cm. Soil organic C
was determined by combustion at each location, adjusting
for the presence of inorganic C if necessary (i.e., Morris),
following recommended soil sampling and analysis pro-
tocols [25]. The ASOC was calculated (ASOC=SOC,—
SOC;), where SOC, is the concentration (g kg ') at some
time after treatment application, and SOC; is the initial
SOC concentration. Crop and stover yield was measured
at each Team site [18], and each site had at least three
stover return rates. Consistent with others [e.g., 9, 22, 47],
this approach regressed ASOC (dependent variable) as a
function of the average amount (Mg ha ' yr ') of residue
left in the field [e.g., 9, 22, 47].

This approach assumes that the kinetic rate coefficients
for humification and mineralization remain constant for
the duration of the experiment [16]. If the resultant slope
is positive, it indicates that SOC accrued proportionally to
the mass of aboveground stover biomass returned. Fur-
thermore, implying the kinetic assumptions was valid.
Therefore, when the ASOC as a function of stover
returned has a positive slope and a negative y-intercept,
the corresponding x-intercept (when ASOC is equal to
zero) empirically approximates the minimum amount of
stover needed to maintain the SOC level at a given site
and management conditions. Conversely, if the slope of
the regression was equal to or less than zero, or if the y-
intercept was greater than zero, it was not possible to use
linear regression to approximate a minimum residue
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Fig. 1 Map showing

approximate location of Corn Regional Partnership Corn Stover Team Sites

Stover Regional Partnership team
sites included in this study.
Numbers refer to sites delineated
in Table 1

removal rate. Therefore, negative slopes were treated as
zero indicating that a relationship did not exist, and the
corresponding x-intercepts (minimum residue return rates)
were treated as missing values when calculating summary
statistics and correlation analysis.

Correlation analyses were used to assess how climate, soil,
and management factors may be related to the minimum
amount of stover needed to maintain SOC as determined from
studies that had 3 or more years separating SOC sampling
time points. Data from the literature (summarized in Online

Table 1 Regional Partnership Corn Stover sites, mean annual precipitation and temperature, soil type, primary tillage (listing more than one tillage
indicates multiple fields), duration of time interval for delta SOC, and crop rotation

Site # State City/site Elev Lat Long MAP MAT Soil Tillage® Duration of Crop®
(m) CN) (W) (cm) O type* study (year)

1 IN West Lafayette 213 40 90 95 10 SL NT 5 C

2 1A Ames/Boyd 340 42 94 92 10 L CP 4 CSo
3 1A Ames/Bruner 340 42 94 92 10 CL CP 5 C

4 1A Ames/7071 340 42 94 92 10 SiCL, L CP/NT 2 C

5 MN Lamberton 350 44 95 71 6.1 CL CP/ST 2 C

6 MN Morris? 350 45 96 65 5.8 CL,L CP/NT 4 CSo
7 MN Northfield 290 44 93 71 6.1 SiC, SiL, ST/MBP 2 C

8 NE Ithaca® 1166 41 96 74 9.8 SiCL, SiL NT 9 C

9 SC Florence" 140 34 79 130 17 LS PS 4 CSo
10 SD Brookings® 490 44 96 58 6.1 SiCL NT 4 CSo
11 PA University Park 350 40 77 105 8.7 SiL, SiCL NT 5 CSocc

Elev elevation, Lat latitude, Long longitude, MAP mean annual precipitation, MAT mean annual temperature

Soil type: C clay, L loam, Ssand, Si silt

® Tillage: CP chisel plow, MBP moldboard plow, NTno-tillage, PS planter with subsoiler, ST'strip tillage

¢ Crops: C corn, So soybean, cc cover crop
9From 13

°From 4

fFrom 30

£ From 10, 40
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Resource 1) were utilized in addition to the Team data. Twelve
variables were included as indicators of climatic conditions
(elevation, latitude, longitude, mean annual temperature
(MAT), mean annual precipitation (MAP)), soil properties
(bulk density, pH, silt plus clay, SOC;), and management
practices (study duration, sampling depth, and tillage depth).
These variables do not represent all factors that may
influence a change in soil C but were chosen because they
were commonly reported or readily obtained. Slope or
slope position may also be important in soil C processes
but because most of the Team sites were on flat fields or
the data was not readily available; slope was excluded
from the current analysis. Silt plus clay concentration
was included as a soil-defining property because of its
potential role in sequestering C [11, 41]. Simple descrip-
tive statistical summary data and Pearson correlation co-
efficients were calculated using SAS statistical software
[37]. Multiple regression models with a maximum R*
option [37] were used to empirically identify factors that
contributed to a relationship between ASOC and biomass
inputs. Three datasets were included: (1) Team data

(Tables 1 and 2), (2) Team plus previously published data
from corn-based systems (Online Resource 1), and (3)
Team plus all previously published data from any crop
system (Online Resource 1).

Results and Discussion

The Team had 11 sites across seven states (Fig. 1 and Table 1).
The elevation ranged from 140 to 1,166 m. Florence, SC, site
(#9) was the most southern (latitude 34°N) and warmest
(17 °C), and Morris, MN, site (#6) was the most northern
(45°N) and coldest (5.8 °C). University Park, PA, site (#11)
was the most eastern (latitude 77°W), and Ithaca, NE, site (#8)
was the most western (latitude 96°W). Brookings, SD, (#10)
represents the site with the lowest MAP (58 cm), and Flor-
ence, SC, (#9) represents the site with the highest MAP
(130 cm). These sites contained a range of soil types that were
managed with continuous corn or corn—soybean (Glycine max
(L.) Merr.), while two sites (Brookings, SD, #10 and Univer-
sity Park, PA, #11) had cover crops included in the rotation.

Table 2 Initial surface properties, tillage depth at sites established to assess slope (ASOC Mg ' biomass yr '), x-intercept, which is the minimum

biomass needed to maintain SOC (Mg ha ' yr ")

Site BD pH Sand Clay P K SOC; Sample Tillage  Slope X-intercept
#  (gem?) gke) (gkg) (mgkg) (mgkg) (gkg’)  depth  depth  (ASOCMg' ~ (Mgha'yr')
(cm) (cm) biomass yr ')

1.3 5.8 180 100 14 112 16.9 30 0 0.48 CNM

1.4 6.7 400 200 22 95 19.0 15 20 0.22 5.85
3 12 7.7 350 350 32 134 394 15 20 1.32 3.98
4a 13 6.3 300 325 33 176 237 15 20 0.07 CNM
4 13 6.4 300 325 32 164 23.7 15 0 0.27 CNM
5a 1.8 6.4 350 350 12 167 16.3 30 20 —-0.16 CNM
5 1.8 6.0 350 350 12 167 17.2 30 20 0.10 CNM
6a 1.3 6.8 350 260 17 163 229 30 20 —0.06 CNM
6b 14 6.2 370 250 18 172 21.0 30 —-0.02 CNM
6c 14 6.4 410 230 19 146 37.0 30 0.21 4.18
7a 1.0 6.0 210 300 45 306 37.0 30 20 1.03 CNM
76 1.0 6.4 210 300 45 306 36.7 30 25 -1.63 CNM
8 13 6.6 150 300 15 NA 13.1 30 0 033 2.65
9 13 4.8 730 20 26 74 18.0 15 30 0.12 6.48
10a 14 63 60 470 50 195 27.1 30 0 0.17 0.47
10b 14 6.3 60 470 50 195 27.1 30 0 0.22 CNM
Ila 12 64 190 360 74 178 114 30 0 —-0.22 CNM
11b 12 64 190 360 74 178 11.4 30 0 0.31 CNM
Ile 12 6.4 190 360 74 178 114 30 0 0.002 CNM

4a=chisel plow, 4b=Iowa no tillage, Sa=Lamberton chisel plow, Sb=Lamberton strip tillage, 6a=Morris chisel plow, 6b=no tillage since 2005, 6¢c=no
tillage since 1995, 7a=Northfield strip tillage, 7b=Northfield moldboard plow, 10a=Brookings no cover crop, 10b=Brooking cover crop, 1la=
University Park continuous corn without rye, 11b=University Park continuous corn with rye, and 11c=University Park corn soybean rotation

BD bulk density, CNM one or more criteria necessary to calculate a minimum residue rate not met, N4 not available, SOC; initial soil organic carbon,
ASOC change in soil organic carbon concentration
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Study duration ranged from 2 to 9 years at the time of soil
sampling. Four sites (Ames #4, Lamberton #5, Morris #6, and
Northfield #7) provided data from more than one tillage
management system.

Data were available for 19 fields located among the 11
Team sites (Table 2). Bulk density on these fields ranged from
1.0 (#7a) to 1.8 g cm > (#5a and #5b). All the field sites were
on highly managed agricultural soils with adequate to high
levels of P and K. Soil pH in the surface 30 cm was 4.8 (#9) to
7.7 (#3) because some sites had inorganic C; we report SOC
rather than total soil C. Baseline SOC ranged from 11.4 to
39.4 g kg '. The sample depth included for the current anal-
ysis was 15 or 30 cm. Roughly, half of the fields were
managed without tillage, and the most common tillage prac-
tice was tilling (~20 cm) with a chisel plow.

The change in ASOC as a function of biomass inputs was
linearly regressed for each field, unless the time between soil
C sample dates was <2 years. Only six fields met the criteria of
a positive slope, negative y-intercept with regression coeffi-
cient (data not shown) that suggested a meaningful relation-
ship between ASOC as a function of biomass inputs, such that
a minimum residue return rate could be calculated from the x-
intercept (Table 2). Using these fields, minimum residue re-
turn rate averaged 3.93+2.18 Mgha ' yr !, n=6 (Tables 2 and
3). All but one of these fields were tilled annually. A prior
literature syntheses estimated the minimum residue require-
ment at 6.25+4.5 Mg ha ' yr ', n=28 [16]. Minimum residue
return rate based on the Team plus published corn dataset
averaged 6.4+2.2 Mg ha' yr !, n=35, and when other

cropping systems (e.g., wheat (Tiiticum aestivum L.)) were
included, it averaged 5.74+2.36 Mgha ' yr !, =49 (Table 3).
The minimum residue return rate based on the Team fields
was within these ranges.

Climatic, soil, and management data were correlated to the
slope and minimum residue return rates. Based on the Team
data, correlation analysis identified positive correlation coef-
ficients between slope (ASOC Mg ™' biomass yr ') and pH
(¥=0.533, P<0.1) and between slope and SOC; (=0.532, P<
0.1, Table 4). Using the Team plus published data from
the corn systems dataset, a significant negative correla-
tion between slope (ASOC Mg ' biomass yr ') and
silt+clay (r=—0.419, P<0.05) and a positive correlation
with tillage depth (P<0.1) was identified. Using the
Team plus published data from any crop system, sample
depth (»=0.361, P<0.01) and tillage depth (+=0.246, P<
0.1) were positively correlated with slope. Based on the
Team data, minimum residue rate (Mg ' biomass yr ')
required the rate correlated positively with MAP (r=
0.816, P<0.05) and tillage depth (=796, P<0.1), and
negatively with silt+clay (»=—0.914, P<0.01) and sam-
ple depth (r=—0.871, P<0.05). The Team plus published
data from corn systems found sample depth (r=—0.345
P<0.05) negatively and tillage depth (»=0.317, P<0.1)
positively correlated to the minimum residue return rate.
Using data from the Team plus previously published
data from any crop system, minimum residue rate was
positively correlated with MAP (r=0.387, P<0.01),
SOC; (r=0.296, P<0.05), and tillage depth (r=0.356,

Table 3 Summary statistics of the three database sets: Corn Stover Regional Partnership team (Team) data, Team plus previously published data from
corn-based systems, and Team plus previously published data from any crop system

Team Team plus published corn-based ~ Team plus previously published data from
systems any crop system

Variable (units) N Mean SD Min Max N Mean SD Min Max N Mean  SD Min  Max
Slope (ASOC Mg ' biomass yr ') 13 026 035 000 132 35 039 085 0 386 46 0.71 2.44 0 16.1
Minimum residue Mg ha ' yr') 6 393 218 047 648 35 638 219 0 9.1 49 574 2.36 0 9.1
Elevation (m) 13 406.1 2462 140 1166 42 439 286 20 1384 57 461 269 20 1384
Latitude (°N) 13 41.7 3.1 340 45 42 4239 229 34 45 56 429 2.7 34 48
Longitude (°W) 13 893 84 770 96 42 940 75 77 122 56 971 10.1 77 122
MAP (cm) 13 86.97 20.83 62.00 130 42 81.8 264 40 143 56 734 293 25 143
MAT (cm) 13 878 330 5.00 173 42 858 250 5 173 56  8.66 2.61 5 17.3
BD (g cm_3) 13 133 0.12 120 16 42 132 0.12 1.11 1.7 55 1.32 0.12 1 1.7
Duration (year) 13 500 129 4.00 9 42 888 522 4 29 54 11.09 886 4 45
pH 13 637 064 480 7.7 40 647 051 48 77 52 650 0.62 4.8 8.3
Silt+clay (g kg ™" 13 721 183 270 940 42 772 178 150 985 53 779 163 150 985
SOC initial (g kg ") 13 21.21 931 1140 394 42 218 9.12 8 394 57 19.66 8.78 8 39.4
Sample depth (cm) 13 2423 6.72 1500 30 42 21.86 7.05 15 30 54 2431 1210 15 60
Tillage depth (cm) 13 692 11.09 0.00 30 41 1346 1270 0 35 55 1400 1240 0 35

MAP mean annual precipitation, MAT mean annual temperature, BD bulk density, SOC; initial soil organic carbon, ASOC change in soil organic carbon
concentration, N number of observations, SD mean standard deviation, Min minimum, Max maximum
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P<0.05). The correlation coefficients of other variables
were not significant at least P<0.1. These results high-
light the importance of climatic, soil, and management
factors rated to ASOC and biomass input relationships.

The concept of a minimum residue return rate assumes a
linear relationship between ASOC and biomass inputs. How-
ever, about two thirds of the Team fields lacked evidence of
the relationship between ASOC and biomass inputs. Several
plausible but not mutually exclusive processes may have
contributed to these observations. Belowground biomass pro-
vided sufficient inputs to support SOC, the rate kinetics relat-
ed to humification and/or mineralization were not stable,
spatial and temporal variability related to measuring SOC
prevented the detection of changes, study duration (time be-
tween soil sampling) was insufficient to detect changes in
stable organic C, and/or the soil was approaching C saturation.

Belowground C inputs play a critical role in building and
maintaining SOC. It has been estimated that roughly two
thirds of SOC originated from belowground inputs [1, 14]. If
corn stover is harvested, belowground C inputs remain, such
that belowground C provides a larger percentage of the overall
C inputs with an even greater role in SOC balance. Roots are
not uniformly distributed through the soil profile, which may
confound soil C measurements despite removing visible roots
prior to measuring SOC. While in some instances, below-
ground C inputs may be sufficient to support SOC, the current
analysis is insufficient to suggest that this as a plausible

explanation for a lack of relationship between ASOC and
biomass inputs. This is especially relevant since several of
the Team sites represented less than 5 years of study, which is
too little time to detect changes in a stable organic C pool.
Based on a laboratory incubation study, the half-life of corn
roots was about twice as long as that of stover, both exceeding
2 years [14, 15]. Field studies also reported corn roots and
shoots taking more than a year to decompose [7]. Residue
decomposition is part of the overall humification process
converting plant residue into stable soil organic matter. An-
other plausible explanation for the lack of a relationship is a
shift in humification and or mineralization rate kinetics.

Our current analysis was not designed to directly address
soil C process kinetics even though humification and miner-
alization may be impacted directly or indirectly by harvesting
stover. For example, removing stover can impact soil albedo
and, subsequently, energy dynamics altering kinetics via shifts
in soil temperature and moisture [16]. The ensuing soil mi-
crobial response is mediated by soil moisture and temperature
fluctuations [33]. In very general terms, decomposition rates
are expected to increase as temperature and precipitation
increase to an optimum before declining [20]. Soil fauna
(e.g., microbes and worms) has key roles in SOC processes,
which respond negatively when stover is removed [16]. Ad-
ditional discussion describing how stover harvest impacts the
soil microbial community is provided by Lehman et al. within
this issue [23]. Stover harvest is expected to impact SOC,

Table 4 Pearson correlation coefficients (7) for the Team dataset, Team plus published data from corn-based systems dataset, and Team plus previously

published data from any crop system dataset for slope and minimum residue

Variable Slope Minimum Slope Minimum residue Slope Minimum residue
residue
Team Team plus published Team plus previously
data (r value) data from corn-based published data from
systems (» value) any crop system (» value)

Elevation 0.031 —0.533 —0.009 -0.114 —-0.017 —0.182
Latitude —0.024 —0.596 0.172 0.053 0.016 —0.172
Longitude 0.243 —0.658 0.004 0.028 0.282 —0.133
MAP 0.042 0.816* —0.226 0.305 —0.226 0.387*+*
MAT 0.210 0.565 —0.140 —0.034 0.064 0.018
BD —0.251 0.420 0.257 —0.222 0.135 —0.194
Duration 0.135 -0.177 0.172 0.120 0.015 —0.045
pH 0.533 -0.327 0.086 —0.208 —0.151 —0.204
Silt+clay 0.003 —0.914* —0.419* —0.082 —0.044 —0.076
SOG; 0.532 —0.150 —0.067 0.126 —0.124 0.296*
Sample depth —0.264 —0.871* —0.241 —0.345* 0.361* —0.090
Tillage depth 0.234 0.796 0.319 0.317 0.246 0.356*

For the Team dataset, n=13 for slope and #=6 for minimum residue. For the corn-based system database, #=35 for slope and minimum residue. For the
Team plus previously published data from any crop system, n=44 for slope and minimum residue

MAP mean annual precipitation, MAT mean annual temperature, BD bulk density, SOC; initial soil organic carbon

Significant coefficients are in bold print denotes Pis < 0.1, if followed by * denotes P is < 0.05, while ** denotes Pis < 0.01
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when the rate of mineralization and humification are constant,
such that the SOC accrual is proportional to the biomass input
rate. When the rates are constant, a dynamic equilibrium may
be achieved, which provides the underpinning for estimating a
minimum biomass or residue input. However, if a soil is
approaching C saturation [41], changes in C as a function of
biomass inputs approach zero.

Saturation kinetics may occur when a finite number of
mineral binding sites are available. Saturation kinetics has an
asymptote beyond which there is little response. For exam-
ple, SOC has been shown to increase as silt plus clay
concentration increases, because finely textured soils have
more binding sites for organic compounds [35]. Thus, if the
binding sites are saturated, the ASOC as a function of inputs
would approach zero. Conversely, if SOC is below the
asymptote, it should be possible to detect a ASOC as a
function of inputs. Presumably, a minimum level of inputs
exists even if all binding sites are saturated. If a soil is C-
saturated, it is reasonable to assume that if residues are
repeatedly withheld, SOC dynamics will move back into
an unsaturated state. Based on 14 long-term experiments,
C saturation occurred at about 40 Mg C ha ™' [41]; using the
inflection point of this saturation curve suggests between 1
and 2 Mg C ha™' yr! are necessary to maintain C satura-
tion. Assuming that biomass has a C concentration of 42 %,
an annual input of 4.76 Mg residue ha ' yr ' would be
needed to maintain SOC. This is slightly lower than an earlier
estimate of 6 Mg residue ha ' yr ' by Larson [22] and is
casily within 1 standard deviation of the overall mean (5.74+
2.4 Mg residue ha ' yr ') determined using the Team and all
cited studies (Table 3). It is more challenging to detect a
change in SOC and to empirically determine a precise min-
imum input requirement for soils that are nearing their satu-
ration level. Thus, the inability to measure a change in SOC is
not an evidence that a soil does not have minimum input
requirement. Likewise, failure to detect a change in SOC or a
relationship between ASOC and biomass inputs alone does
not provide conclusive evidence for C saturation. At saturated
and unsaturated conditions, spatial and temporal variability
hampers the detection of SOC changes [9, 12, 32].

The inability to detect changes in SOC at many Team
sites may simply be due to the short study duration between
soil sampling dates, which was 5 years or less, except at the
Ithaca, NE, site (Table 1). Others have reported little or no
change during the first 2 to 5 years after a management
change [6]; in some instances, it takes 10 or more years to
measure a change in the SOC levels [12]. Most of our Team
studies have not existed long enough to conclusively estab-
lish a function between ASOC and biomass inputs. Further-
more, inherent variability across the landscape and within
the soil profile may hamper our ability to detect SOC
changes, which is why published data were included in the
correlation analyses.

Horizon thickness within the soil profile may be inherently
variable (e.g., Morris and Lamberton, MN) due to geological
development (i.e., glaciation). Typical of Wisconsin-aged gla-
cial till soils, the depth of the mollic epipedon overlaying a
highly calcareous subsoil is highly variable [38]. The sam-
pling scheme was based on predefined depth increments;
therefore, it is likely that varying amounts of calcareous sub-
soil may be included within a soil core. Returning to the same
GPS-sited location helps reduce this source of variability, but
nonetheless, it will impact the ability to accurately and pre-
cisely determine ASOC. The challenge of vertical variability
is a rationale for incremental sampling based on soil profile
characteristics. However, this makes pooling soil cores within
a plot complicated if depth is not uniform. It is beyond the
scope of this article to discuss the pros and cons of soil
sampling protocols [21]; rather, it is to highlight potential
sources of variability. Closely related are the stratification of
SOC and nutrients in no-tillage situation [5] and redistribution
of SOC by tillage [39] that can also complicate detecting
ASOC.

The impact of tillage on ASOC per unit biomass (slope) is
influenced by the soil depth considered (Table 4). This is
consistent as both modeled [3] and empirical [31] results
demonstrate that even if SOC in the surface topsoil increases,
SOC may decrease at other depth increments or within the
entire profile [3, 31]. For example, results from SC demon-
strated that under no-tillage management with all crop residue
returned, SOC in the surface 0-3 cm increased but decreased
in the 3- to 15-cm increment [31]. In contrast, results from NE
showed that no-tillage management increased SOC through-
out the profile even if stover was harvested, albeit at a reduced
rate compared to returning stover [4]. These results illustrate
that tillage can impact SOC stratification differentially, which
makes the prediction of residue removal throughout the profile
difficult.

Wilhelm et al. [47] suggested that fields managed with no-
tillage management may need less residue returned compared
to those managed using tillage. Others (e.g., [29, 34]) also
assumed that converting to no-tillage management would
increase the amount of stover that could be harvested. Tillage
depth was positively correlated with minimum residue return
rate (Table 4), supporting the supposition that more stover or
other crop residues may be available for harvest compared to
fields managed with tillage. Other factors such as microcli-
mate, root growth, soil texture, SOM inaccessible to microbes
due to occlusion within aggregates, and climate interact with
management necessitating tools that can integrate multiple
interrelated factors.

One approach is to utilize multiple regression model anal-
ysis using a maximum R option for determining empirically
those factors contributing to the relationship between ASOC
and biomass inputs. The best overall model and best two-
component models for identifying climatic, soil, and
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Table 5 Maximum R* model regression analysis and best two-component model based on three datasets

Model with Max R and significant model P*

Best two-component model

Dependent variable Max B Model P Variables

No. of Max B Model P Variables

variables

Team data only

Slope (n=13) 09537  0.0196

MAP, MAT, BD, duration, 8

0.5810 0.0129 MAT and pH

silt plus clay, SOC;,
sample depth, and

tillage depth
Long, MAT, and silt+clay 3

0.9703 0.0442
Team data plus previously published data from corn-based systems
Slope (n=34) 0.5285 0.0296

Minimum residue (#=6)

Lat, Long, MAP, MAT, 12

0.8934 0.0348 Long and silt+clay

0.2352 0.0157 Lat and silt+clay

BD, duration, silt+clay,
pH, SOC;, and sample

depth

Minimum residue (=32)  0.6011 0.0438

Elev, Lat, Long, MAP, 12

0.2014 0.0383 MAP and tillage depth

MAT, BD, duration,
pH, silt+clay, SOC;,
sample depth, and

tillage depth

Team data plus previously published data any crop system
Slope (n=40) 0.4991 0.0399

Elev, Lat, Long, MAP, 12
MAT, BD, duration,

0.2341 0.0072 Duration and sample

depth

pH, silt+clay, SOC;,
sample depth, and

tillage depth
Elev, Lat, Long, MAP, 12
MAT, BD, duration,

Minimum residue (n=38)  0.5465 0.0252

0.2403 0.0082 MAP and tillage

depth

pH, silt+clay, SOC;,
sample depth, and

tillage depth

Elev elevation, Lat latitude, Long longitude west, MAP mean annual precipitation, MAT mean annual temperature, BD bulk density, SOC; initial soil

organic carbon

management factors associated with slope and minimum res-
idue requirement rate are summarized in Table 5. The best
two-component model based on the Team database (R*=0.58,
P=0.01) and for the Team plus the corn databases (R*=0.24,
P=0.02) identified climatic (MAT or latitude) and soil prop-
erties (pH or silt plus clay) as factors associated with slope. In
contrast, including data from other cropping systems, duration
and sample depth were the factors included in the best two-
component model associated with slope. Based on the Team
data, the best overall model (R*=0.95, P=0.02) for slope
identified included indicators of climate (MAP and MAT),
soil properties (BD, silt+clay, SOC;), and management (dura-
tion, sample depth, tillage depth). All variables were included
in the model with significant maximum R* for both the other
datasets with slope as a dependent variable. Evaluating the
Team data variables identified longitude and silt plus clay as
the best two-component model (R*=0.89, P=0.03), while the
best overall model (R*=0.97, P=0.04) included three factors,
longitude, MAP, and silt plus clay, as the factors associated
with minimum residue rate. The same best two-component
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model (MAP and tillage depth) and best overall model (all 12
variables) were identified from the other two datasets as the
factors associated with minimum residue rate. These observa-
tions are consistent with complex dynamic nature of the soil
processes involved responding to multiple and interrelated
factors.

Process-based models are useful tools for integrating mul-
tiple interrelated factors. The process-based soil C balance
model CQESTR [24, 36] was used to simulate stover harvest
based on experiments located at the Morris, MN, sites [3]. The
model predicted SOC below 30 cm to decline irrespective of
tillage management. Based on the model predictions,
3.65 Mg residue ha ' yr ' was needed to maintain SOC (0—
30 cm) [3]. The model prediction was similar to the empirical
estimate of 4.18 Mg residue ha™' yr™' for the Morris site that
was managed with no tillage since 1995 (site 6¢), but not for
the other two Morris sites managed using tillage with a chisel
plow (site 6a) or without tillage since 2005 (site 6b). An
empirical estimate for minimum residue required rate could
not be estimated for Morris sites 6a or 6b. A similar simulation
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of residue harvest for a SC sandy loam soil predicted that
conservation tillage could offset, but not preventa SOC loss, if
residues were harvested [8]. Building a sustainable biobased
economy without sacrificing soil quality through increased
erosion or loss of SOC requires integrated empirical and
modeling approaches at multiple sites and scales.

Muth et al. [27] conducted a comprehensive sustainable
harvest assessment evaluation using an integrated modeling
strategy, which included soils, climate, and environmental
process model modules. Their criterion for a sustainable har-
vest was defined as having an erosion risk that is less than the
tolerable soil loss (7 value) and a Soil Conditioning Index
(SCI) greater than or equal to zero [26]. In the integrated
model using the US 2011 yields, it was estimated that
123 Tg corn stover could be sustainably harvested [27]. Muth
and colleagues [28] used process-based models at a subfield
level, which identified areas that would be overharvested or
underutilized compared to a conventional field level conser-
vation plan. The subfield work by Muth was based on fields in
IA. Bonner et al. [2] modeled data from five regional partner-
ship fields using an integrated modeling framework. They
concluded that biomass removal must be based on the subfield
scale to conserve soil resource and to support economically
viable bioenergy platforms.

Conclusion

A sustainable bioeconomy must also ensure that soil quality is
safe guarded, such that the soil resource can meet that
society’s demands for food, feed, fiber, and fuel. For this
current analysis, maintaining SOC was the constraining fac-
tor; recognizing other constraints also exists. Determining
how much residue is needed to maintain the SOC levels using
empirical data is fraught with challenges. In this study, using
the Team and published datasets, we estimated that the aver-
age minimum residue return needed was 5.74+
2.4 Mgha ' yr! (n=49) to sustain the SOC levels. This mean
only includes those studies that a relationship between ASOC
as a function of biomass inputs can be determined. Clearly, it
would be naive to assume that we could predict a universal
estimate of residue input to answer the question of how much
residue could be removed without reducing the SOC levels.
Even if the mean is accurate on average, the standard error
makes it abundantly apparent that an empirically derived
mean cannot be used to predict how much residue is needed
to remain on a given field. In terms of a broad average, the
concept is useful for discussion, but it should not be used as a
predictive management tool. The extensive dataset demon-
strates the vast variability within sites due to soil and manage-
ment interactions and among sites, which are also impacted by
climatic variation. Can the mass of crop residue needed to
maintain the SOC levels be determined? Yes, but empirical

estimates can take many years to determine and do not provide
a universal estimate. Does this negate the value of the ap-
proach? No, but it does highlight the critical need for empirical
data to calibrate and validate process-based models, which are
needed to provide biomass estimates at both a subfield and
national scale. Cooperative efforts such as those carried out by
the Team provide synergy among agencies, soil scientists,
agronomists, and modelers and are a critical step on the
journey to a viable and sustainable bioeconomy.
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