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An analysis of the link between strokes and soils in the South
Carolina coastal plains

THOMAS F. DUCEY1, JARROD O. MILLER1, WARREN J. BUSSCHER1, DANIEL T. LACKLAND2

and PATRICK G. HUNT1

1Coastal Plains Soil, Water, and Plant Research Center, Agricultural Research Service, USDA, Florence, South Carolina, USA
2Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, USA

The Stroke Belt is a geographical region of the Southeastern United States where resident individuals suffer a disproportionately higher
rate of strokes than the rest of the population. While the “buckle” of this Stroke Belt coincides with the Southeastern Coastal Plain
region of North and South Carolina and Georgia, there is a paucity of information pinpointing specific causes for this phenomenon.
A number of studies posit that an exposure event–potentially microbial in nature–early in life, could be a risk factor. The most likely
vector for such an exposure event would be the soils of the Southeastern Coastal Plain region. These soils may have chemical and
physical properties which are conducive to the growth and survival of microorganisms which may predispose individuals to stroke.
To this aim, we correlated SC stroke mortality data to soil characteristics found in the NRCS SSURGO database. In statewide
comparisons, depth to water table (50 to 100 cm, R = 0.62) and soil drainage class (poorly drained, R = 0.59; well drained, R =
−0.54) both showed statistically significant relationships with stroke rate. In a 20 county comparison, depth to water table, drainage
class, hydric rating (hydric soils, R = 0.56), and pH (very strongly acid, R = 0.66) all showed statistically significant relationships
with stroke rate. These data should help direct future research and epidemiology efforts to pinpoint the exact exposure events which
predispose individuals to an increased stroke rate.

Keywords: Environmental exposure, geostatistical analysis, soil, South Carolina, SSURGO, Stroke Belt, stroke buckle.

Introduction

Higher stroke mortality rates in the southeastern United
States, when compared to the rest of the country, have re-
sulted in this region being labeled the “Stroke Belt” (SB).
The “buckle” of the SB covers the coastal plain region
of Georgia (GA), North Carolina (NC), and South Car-
olina (SC), and exhibits some of the highest rates of stroke
mortality per capita in the United States. Although the un-
derlying factors in this geographic pattern remain largely
unresolved,[1] nativity has been implicated as a significant
risk marker.[2]

Similarly, additional studies demonstrate that residence
in the SB during childhood result in significantly increased
risk of stroke,[3,4] regardless of whether or not individu-
als migrate out of the SB.[4] It has been hypothesized that
these findings are indicative of early-life, region-specific ex-
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posures to environmental factors, which may include infec-
tious disease processes. This is supported by an additional
study that puts forth the hypothesis of acute-exposure
events in people within the SB, and strongly considers in-
fectious agents as one of the possible culprits.[5]

Although environmental exposure and infectious disease
may serve as potential underlying causes for elevated stroke
risk, very little research has been conducted to elucidate
which environmental factors or etiological agents may fall
into these geographically constrained categories.[1] Recently
however, the clarion call has been sounded to delve deeper
into elucidating the potential risk markers plaguing the
geographical region known as the SB.[5]

Spatial epidemiology recognizes that disease can be lim-
ited by geography, where disease clusters are associated with
a variety of environmental and socioeconomic factors.[6–8]

This field of research is becoming more prevalent as the use
of geographic information systems (GIS) increases.[9]

The field has also been advanced through institu-
tional support, newly developed interactive maps, increased
amounts of site-specific data, and advanced software that
can handle and analyze the data.[10,11] Using GIS and geo-
statistics, predictions about disease risk have been made
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Analysis of link between strokes and soils in South Carolina coastal plains 1105

using environmental vectors, vertebrate reservoirs, or ac-
tual human cases; of these, associating actual human cases
with surrounding environmental variables produces better
predictive maps.[7]

These tools have been used to create risk maps to predict
hantavirus pulmonary syndrome, develop projections for
future distribution of falciparum malaria, as well as identify
geographical features that would serve as risk factors for
mosquito-borne, La Crosse encephalitis.[7] Likewise, a GIS
study of Lyme disease correlated disease risk with slope,
soil type, and forest edges,[12] yet another study determined
that a 1% increase in soil clay particle content resulted in
an 8.9% increased risk of prion infection.[13]

Infectious disease processes have been previously linked
to stroke. A study by Wimmer et al. demonstrated that the
presence of IgA antibodies and circulating IgG immune
complexes, directed towards Chlamydia pneumoniae, were
more prevalent in people who had suffered a stroke.[14] The
presence of C. pneumoniae has also been detected in soils
and a wide-range of non-human hosts, indicating the possi-
bility for human infection by environmental exposure.[15,16]

To our knowledge however, very little work has been done
to look at the environmental conditions conducive to C.
pneumoniae propagation, or the bacterial load of C. pneu-
moniae in various geographic regions. If C. pneumoniae, or
another infectious organism which is capable of being ac-
quired through the environment, can serve as risk factors
for stroke, then approaches need to be taken to help re-
searchers target geographic locations where such hypothe-
ses can be effectively tested.

To this aim we have taken a preliminary look at the soils
of SC and compared them to stroke data collected from
1996–2006. Our objective was to link strokes to some aspect
in the environment in SC by comparing stroke mortality
rates within the region. We do not believe that any partic-
ular soil type per se will be linked to stroke; rather strokes
would be linked to some aspect of soil(s). Our hypothesis
therefore is that certain soil characteristics may serve as
risk markers for stroke and can be determined by geostatis-
tical analysis. Once the general relationship has been identi-
fied, more specific field sites can be established to quantify
these relationships and possibly determine more specific
causes.

Materials and methods

Study area

The state of South Carolina was used in this research al-
though the methodology is applicable to other geographical
regions. Initial analysis was statewide and included all forty
six counties. Additional analysis focused on the 10 highest
and 10 lowest counties in regard to stroke rate diagnoses
(Table 1).

Table 1. High and low stroke rate counties used in the 20-county
analysis.

Stroke rate Counties

High Bamberg, Clarendon, Darlington, Dorchester,
Florence, Lee, Marion, Orangeberg, Sumter,
Williamsburg

Low Aiken, Anderson, Beaufort, Calhoun,
Chesterfield, Edgefield, Greenville,
McCormick, Oconee, York

Data sources

South Carolina (SC) inpatient and emergency room dis-
charge surveillance data according to county for the years
1996–2006, with a primary diagnosis of stroke (ICD-9
codes 430-438), were obtained from the Centers for Disease
Control and Prevention (CDC; http://wonder.cdc.gov).

Discharges were unduplicated by patient and year, with
each patient only counting once. Geographic soil proper-
ties and taxonomic data are available for the United States
through the Soil Survey Geographic (SSURGO) database
maintained by the United States Department of Agri-
culture (USDA) Natural Resources Conservation Service
(NRCS). The SSURGO data for SC was obtained from the
NRCS Geospatial Data Gateway. Soil survey spatial data,
in tabular and Microsoft Access 2000 (Microsoft Corpora-
tion, Redmond, WA) templates, was downloaded from Soil
Data Mart for each county in SC.

Data preparation and analysis

Using an SC template, all county data were combined into
a statewide soil survey database. Survey data was incorpo-
rated into ESRI ArcView 9.3 geographic information sys-
tems (GIS) program. Uploading soil survey data was done
by adding the county level SSURGO spatial maps into Ar-
cView and combining them into one statewide map using
the merge function in ArcToolbox. Then using Soil Data
Viewer (SDV; http://soils.usda.gov/sdv/download.html),
cation exchange capacity (CEC), hydric rating, hydrologic
soil group, sand, silt, clay, organic matter, saturated hy-
draulic conductivity (ksat), and depth to water maps were
made based on the surface layer of each soil map unit.
Maps of septic suitability, soil surface pH, drainage class,
and flooding frequency had to be created by SDV using two
separate eastern and western maps of SC due to memory
issues in ArcView.

These maps were then merged into one state map. Using
the dissolve tool in ArcToolbox, each map was “dissolved”
by map unit symbol (MUSYM), area symbol, and the soil
class property. In the SSURGO data bases there are often
unknown values for some soil properties listed as “null”,
which is the same as areas mapped as water bodies (W).
After the initial dissolve, all of the areas listed as “W” under
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1106 Ducey et al.

Table 2. Ranges of sand, silt, clay, organic matter, Ksat, depth to water, and pH setup in ArcView for SSURGO data.

Sand Silt Clay

Map Type % Class % Class % Class

0 to 20 Silty 0 to 20 Sandy 0 to 18 Low
20 to 45 Loamy 20 to 40 Loamy 18 to 35 Loamy
45 to 85 Sandy 40 to 80 Silty 35 to 60 Fine
85–100 Sand 80–100 Silt 60 to 100 Very Fine

Organic matter Ksat (water conductivity) Depth to water

% Class cm s−1 Class cm Class

0 to 0.5 Very Low 0 to 0.01 Very Low 0 to 25 0 to 25
0.5 to 1.5 Low 0.01 to 0.1 Low 25 to 50 25 to 50
1.5 to 5 Mod Low 0.1 to 1 Mod Low 50 to 100 50 to 100
5 to 10 Mod High 1 to 10 Mod High 100 to 150 100 to 150
10 to 20 High 10-100 High 150 to 200 150 to 200
>20 Very High >100 Very High >200 >200

pH

pH Class

<3.5 Ultra Acid
3.5 to 4.5 Extremely Acid
4.5 to 5.0 Very Strongly Acid
5.0 to 5.5 Strongly Acid
5.5 to 6.0 Moderately Acid
6.0 to 6.5 Slightly Acid
6.5 to 7.3 Neutral
7.3 to 7.8 Slightly Alkaline
7.8 to 8.5 Moderately Alkaline
8.5 to 9.0 Strongly Alkaline
>9.0 Very Strongly Alkaline

MUSYM were deleted so they would not be included in the
“unknown” soil category.

For maps of sand, clay, silt, organic matter, Ksat, depth
to water, and pH (Table 2) values were split into property
classes for better aggregation to regress against in their
ArcView property table (e.g., sand content was grouped
into silty (0–20%), loamy (20–45%), sandy (45–85%), and
sand (85–100%), based on the soil textural triangle). This
had to be done so that there were classes to regress stroke
rates against. Some maps, such as drainage class or hydric
grouping, already were split into classes by SSURGO, while
others (depth to water) had to be reassigned their SSURGO
values in ArcView. All maps were dissolved again by their
property classes so that each map table only contained one
value for each county, and then Hawth’s Tools (http://
www.spatialecology.com/htools/tooldesc.php) was used
to calculate the total area for each class property by county.

For example, there were several map units within Flo-
rence County, SC that were labeled as “0 to 25 cm” on
the depth to water map, and the dissolve tool combined all
of those polygons into one unit in the table. This allowed
Hawth’s Tools to calculate a total area of the “0 to 25 cm”
depth to water class for each county. This area was then
exported into a Microsoft Excel table to regress against age

adjusted stroke rate by county. Correlations, and linear and
stepwise regressions were performed using Proc Corr and
Proc Reg respectively in SAS version 9.2 (SAS Institute
Inc., Cary, NC).

Results

Statewide analysis

Visual inspection of both the age-adjusted stroke rate and
major land resource area (MLRA) maps highlight the SC
portion of the “stroke buckle” (Fig. 1a), which extends
eastward from the Southeastern Coastal Plain region and
is composed of the Southern Coastal Plain, Atlantic Coast
Flatwoods, and Tidewater MLRA’s (Fig. 1b). The highest
rates of stroke are contained primarily within the South-
ern Coastal Plain (NRCS MLRA 133A), which comprises
17.7% of SC’s total land mass.

The Southern Coastal Plain extends down from Virginia,
through the Carolinas, Georgia, and the Florida panhan-
dle. It then heads west and northwards into Alabama, Mis-
sissippi, Louisiana, and Kentucky. All of these regions are
recognized as part of the “Stroke Belt” and, like SC, have
unusually high incidences of stroke. Since SC is located in
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Analysis of link between strokes and soils in South Carolina coastal plains 1107

Fig. 1. Maps of (a) age adjusted stroke rate, and (b) major land resource areas in South Carolina (color figure available online).

the “Stroke Belt” a majority of the counties in the state do
have high rates of stroke (>60 cases per 100,000), which
is evident by looking at the age adjusted stroke rate map
(Fig. 1a).

Statewide examination identified relationships when
stroke rate was correlated against soil survey data. Specifi-
cally, properties relating to water table depth and drainage
class corresponded to stroke rates. For depth to water,
50–100 cm (R = 0.62; P < 0.01), and 100–150 cm (R = 0.62;
P < 0.01) were statistically significant. For soil drainage
class, well drained soils (R = −0.54; P = 0.05) and poorly
drained soils (R = 0.59; P = 0.01) were statistically signifi-
cant. Soils with water tables less than 50 cm deep are usu-
ally near streams, rivers, or wetlands, and it will be rare to
find residences here, as they may also frequently flood. The
positive relationship of water table depths of 50–150 cm is
most likely related to the shallow water tables that are more
prevalent in the Coastal Plain compared to the Piedmont.

Twenty-county analysis

The low number of statewide relationships is most likely
due to the fact that the data were averaged over counties
reducing the size of the data pool and the inherent nature
of the SSURGO database, which is not meant for regional
scientific analysis. This resulted in a limited size data base
that was possibly diluted by transitional counties as soil
properties change across the different MLRA. Geographic
differences are not always constrained to individual coun-
ties, and people readily move among these differences as
well. To counterbalance these possibilities, the data was re-
fined to focus on the ten highest and ten lowest counties
(Table 1), in terms of stroke rates, to see what soil prop-
erties may be different across these regions. The 10 low
stroke counties all fell into the Blue Ridge/Piedmont re-
gions, while the high stroke counties were all located within
the Coastal Plain. When only using these twenty counties,
several relationships were observed.

Depth to water table continued to show a strong re-
lationship with stroke rates, with 50–100 cm (R = 0.54;

P = 0.01) and 100–150 cm (R = 0.53; P = 0.03) posi-
tively correlated to stroke rate, and >200 cm depths neg-
atively correlated (R = −0.58; P < 0.01). Likewise, soil
drainage class also continued to demonstrate a correlation
with stroke rates. Soils with impeded water removal rates all
showed a positive correlation with stroke rates, with mod-
erately well drained (R = 0.54, P = 0.05), somewhat poorly
drained (R = 0.45, P = 0.04), and poorly drained soils (R =
0.60; P < 0.01) being statistically significant. Inversely, well
drained soils demonstrated a negatively correlation (R =
−0.50, P = 0.02) to stroke rates. Additionally, hydric soils
(R = 0.56; P = 0.01) and non-hydric soils (R = −0.56,
P = 0.01), demonstrated positive and negative correlations
respectively, while very strongly acidic soils (pH 4.5 to 5.0)
positively correlated with stroke rate (R = 0.66, P < 0.001).

Discussion

The results of this study demonstrate that relationships
exist in South Carolina between soil characteristics and
stroke rates. Depth to water table, drainage class, hydric
rating, and pH all correlated with stroke rates; the first three
(depth to water table, drainage class, and hydric rating) all
show positive correlations between the environment and
stroke rate when water was found for prolonged periods
of time in the soil profile. Inversely, when SC soils were
well drained, rated as non-hydric, and had water tables
>200 cm, there was a negative correlation with stroke rate.

Direct measurements of soil moisture are seasonally var-
ied; these three characteristics however represent the av-
erage state of soil moisture over extended periods of time.
Incidentally, soil moisture and pH–the fourth characteristic
identified in this study–have both been previously demon-
strated to play significant roles in bacterial community
composition.[17,18]

A study by Griffiths et al., where they performed an ex-
tensive spatial microbial fingerprinting assessment of Great
Britain (GB), revealed that pH and moisture were two
of the four strongest relationships between environmental
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1108 Ducey et al.

Fig. 2. Statewide SSURGO derived maps of (a) depth to water, (b) drainage class, (c) hydric rating, and (d) pH for South Carolina
(color figure available online).

factors and bacterial community composition.[19] Their re-
sults demonstrated that bacterial diversity and community
composition follow along a general north-south gradient,
with pH serving as the predominant driving environmental
factor (Fig. 2a).

Like GB’s north-south bacterial community composi-
tion gradient, GB soil pH also decreases as one heads in
a northerly trajectory;[20] this is of import because the SB
of the United States is not unique; a similar belt exists in
GB.[21] The gradient of cerebrovascular disease rates in GB
increase in a northerly direction (Fig. 2b), changes which
run concurrent with both the soil bacterial fingerprinting
profiles reported by Griffiths et al., and soil pH. These
findings make GB a potentially intriguing case study. Not
only have they extensively characterized their soils on a
national level, similar to the United States, but they now
have a thorough landscape-scale map of bacterial distri-

butions across the nation. Combined, these repositories of
data would make any examination of the relationship be-
tween environmental factors and stroke rate more robust.
Such a scenario does not currently exist, to our knowledge,
for any U.S. state, let alone the entire country.

This of course raises the question as to what further ap-
proaches should be taken to better define the risk factors
for stroke in SC and the SB in general. Both a review by
Howard,[1] and a study by Shrira et al.,[5] consider infec-
tious agents as one of the most appealing, but currently
unproven, risk markers associated with increased stroke
rates in the SB.

Therefore, considering this hypothesis–that these risk
factors are somehow microbiological in nature–there are
a number of tools which can be used to analyze the issue.
Such an analysis would need to rely on extensive sampling,
which would likely rule out, at least in exploratory studies,
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Analysis of link between strokes and soils in South Carolina coastal plains 1109

the culturing of microbial populations. Instead, such anal-
ysis would most likely rely on molecular biological tools
which have been honed to be performed rapidly, inexpen-
sively, and in a high-throughput manner. Such methods can
all be readily adapted to analyze not only bacteria (which
we will consider further), but also fungi, parasites, proto-
zoa, and viruses.

The first approach, as taken by Griffiths et al., would be
to capture a “fingerprint” of the bacterial community using
a technique such as terminal restriction fragment length
polymorphism (T-RFLP), or a related approach such as
ribosomal intergenic spacer analysis (RISA). These meth-
ods are known for the ability to examine large numbers
of samples–in the case of the Griffiths et al. study, over
1000–accurately, rapidly, and inexpensively.[22] To replicate
the study of Griffiths et al. in the state of SC based on land
area, would require somewhere between 300 and 400 soil
samplings and, consequently, T-RFLP profiles. The down-
side to such an approach however is that such profiles gen-
erally are capable of identifying only the major inhabitants
of the tested microbial community,[23] which means if the
agent in question is found in low-abundance within the
bacterial community, it may go undetected.

A second approach would be to utilize deep 16S DNA
sequencing, microarrays carrying phylotype signature-
sequences, or metagenomic analysis. Such approaches have
been used in both environmental and medical studies to an-
alyze, in-depth, the complex interactions of microbial com-
munities. Such studies may have already indirectly provided
insight into one of the observed phenomenon about the SB:
that being the link between nativity and stroke rates. Lack-
land et al. reported that children born in the SB carried an
increased risk to strokes in their lifetime, as compared to
individuals living outside this region.[2] This risk was also
determined as following the individual even after they left
the SB later in life.[2]

This once again, points to an exposure event in the first
three years of an individual’s life that increases their chances
of having a stroke later in life. A study by Palmer et al., in
which they used microarrays designed to carry phylotype
signature-sequences–in this case species-specific segments
of the bacterial 16S gene–determined that it takes approxi-
mately a year for an infant’s gastrointestinal tract to resem-
ble that of an adults.[24] This maturation is linked, at least
in part, to ingestion of microbes derived from the environ-
ment. Soil no doubt serves at least as another part of that
environmental reservoir.

Reports have carefully linked the transit of soil or-
ganisms via aerosolization and dust particles.[25,26] These
aerosols could then be deposited onto items that will
eventually find their way into an individual’s mouth,
thereby being ingested. Ingestion of microorganisms that
could pose problematic to an individual’s health also
warrants examination of the oral flora.[27] Trauma to, and
inflammation of, the oral mucosa has been extensively
linked to cardiovascular disease,[28] and infants and young

children are not immune to such trauma (i.e., teething).
Like T-RFLP analysis, deep 16S sequencing, microarray
analysis, and metagenomic analysis can be done rapidly
after sample collection and will provide an in-depth analy-
sis of the microbial community composition and structure,
well beyond what T-RFLP can provide, especially in terms
of identifying low-frequency inhabitants of the community.
The drawback to these methods however is that even with
improvements to sequencing technology, per sample, they
continue to cost considerably more than an individual
T-RFLP. Therefore, one must weigh the need to identify
low-frequency organisms versus assay cost.

A third approach is the use of quantitative Real-Time
PCR (qPCR) to detect the presence and abundance of par-
ticular infectious agents in the environment of question.
The use of qPCR to determine the abundance of groups of
bacterial organisms has been used in environmental stud-
ies ranging from air, to soil and water.[29–32] Several bacteria
have been discussed as underlying risk factors for stroke;[14,

33–35] this could lead to studies to specifically identify their
presence–and if confirmed, determine their abundance–in
soils which provide the environmental conditions identified
in this paper that correlate to stroke rate.

This approach could also be used in conjunction with
the other above mentioned methods, whereupon identify-
ing suitable microbial targets, determining their presence
and abundance in the environment, or in humans. As with
T-RFLP, the benefit to this approach is low cost, as well as
rapid and high-throughput turnaround. The specific nature
of this approach however dictates that hypotheses would
need to be formed directly targeting microorganisms be-
lieved to be related to increased stroke rates, which may
require, as mentioned earlier, some of the aforementioned
molecular tools to identify probable targets.

In order to more accurately identify which organisms
should be targeted, to determine their role in causing
strokes, changes to the current tools, both medical- and
soils-related, used to direct these searches should be consid-
ered. From a medical perspective, while performing these
studies, it became apparent that the stroke data which is
readily accessible to the research community proves prob-
lematic for use over small geographical spaces. For example,
the use of zip codes to assign patients to geographical areas
is fraught with issues.

First, zip codes cross county lines, and they can change
periodically as the postal service improves its routes or re-
duces work force. In addition, given that they have been in
use only for the last five decades, placing older patients into
zip coded areas can be inaccurate because while zip codes
are assigned to a particular city, the patient’s residence and
treatment facility might be in different areas. Given the
rapid variability of soil series over short distances, this can
lead to inaccurate associations of residence or area of ex-
posure with soil series.

Additionally, while the NIH has established the Human
Microbiome Project, tasked with performing metagenomic
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1110 Ducey et al.

Fig. 3. (a) Spatial map of soil bacterial communities across Great Britain as published in Griffiths et al.[19] reprinted with permission
of John Wiley & Sons, Ltd. (b) Age adjusted stroke rate mortality in Great Britain for men (age group 45–74; year 2000), reproduced
from data found in Muller-Nordhorn et al.[22] (color figure available online).

analysis of healthy humans, and then comparing their mi-
crobial communities to individuals suffering from a variety
of diseases, stroke is not one of the diseases targeted for
analysis.[36,37] We should also point out that while we and
others have focused on the possibility that individual ex-
posures to certain microorganisms can lead to increased
stroke risk, there is also the possibility that certain mi-
croorganisms may not find the environmental conditions
of Coastal Plain soils suitable for survival. The absence of
this organism in the soil bacterial community could then
result in a failure to colonize individuals.

Without this organism to serve as an environmentally de-
rived probiotic,[38] individuals lacking this organism could
have increased susceptibility to strokes. Such a scenario is
highlighted in a series of reports that demonstrate that pa-
tients suffering from Crohn’s disease had lower abundances
and diversity of certain classes of commensal bacteria.[39–41]

The presence of these microorganisms was found to exhibit
anti-inflammatory effects that resulted in a decrease in dis-
ease in animal models.[42] Care should therefore be taken
to examine the presence, as well as the absence of, specific
microorganisms.

Likewise, on the soils-related portions of the analyses, a
couple of issues also presented themselves while using the
SSURGO database. This can most easily be demonstrated
by looking at Figure 3 and other examples in SSURGO
where soil characteristics stop right at county and state

lines. This demonstrates differences in interpretation by
soil surveyors and in some cases the differences are very
great. For example, the soils for the entirety of Clarendon
County are mapped as very strongly acid (Fig. 3d), while
soils in surrounding counties, even soils near the borders,
are a heterogeneous mix.

A future issue is also that while the NRCS currently
tracks all of these soil characteristics across the United
States the one important characteristic that is not moni-
tored are the soil microbial communities. Such data, when
it is accumulated, should most likely be stored in a central,
easily accessible repository alongside the appropriately rel-
evant data; it is our recommendation that the SSURGO
database is the most logical choice.

Conclusion

The objective of this investigation was to identify soil char-
acteristics which may serve as risk markers for stroke. Us-
ing data provided by the NIH and NRCS, we were able
to identify several soil characteristics that correlate with
stroke rate in the state of South Carolina. Soil properties
related to wet soil conditions, as indicated by depth to water
table, soil drainage class, and hydric soil rating all positively
correlated with an increased stroke rate. Additionally, soil
acidity as measured by pH positively correlated with an
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increased stroke rate. These soil properties have been pre-
viously reported to have an effect on microbial population
structure and composition. If the hypothesized exposure
events that predispose individuals residing in the Stroke
Belt to strokes are microbial in nature, the correlations
identified in this report will be useful for directing future
research and epidemiology efforts.
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