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Stochastic state-space temperature regulation
of biochar production. Part I: Theoretical
development†

Keri B Cantrell∗ and Jerry H Martin II

Abstract

BACKGROUND: The concept of a designer biochar that targets the improvement of a specific soil property imposes the need for
production processes to generate biochars with both high consistency and quality. These important production parameters can
be affected by variations in process temperature that must be taken into account when controlling the pyrolysis of agricultural
residues such as manures and other feedstocks.

RESULTS: A novel stochastic state-space temperature regulator was developed to accurately match biochar batch production
to a defined temperature input schedule. This was accomplished by describing the system’s state-space with five temperature
variables – four directly measured and one change in temperature. Relationships were derived between the observed state and
the desired, controlled state. When testing the unit at two different temperatures, the actual pyrolytic temperature was within
3 ◦C of the control with no overshoot.

CONCLUSION: This state-space regulator simultaneously controlled the indirect heat source and sample temperature by
employing difficult-to-measure variables such as temperature stability in the description of the pyrolysis system’s state-space.
These attributes make a state-space controller an optimum control scheme for the production of a predictable, repeatable
designer biochar.
Published 2011 by John Wiley & Sons, Ltd.
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INTRODUCTION
Slow pyrolysis of biomass is of special interest for the anoxic pro-
duction of a solid product – char. Char is a relatively inert material
useful as a soil amendment – a biochar – to improve crop yields
and soil quality.1 – 6 Just as the amount of biochar generated is
dependent on both the type of feedstock and the maximum pro-
cessing temperature, so the varying of process temperatures has
been found to affect the way that biochars will react with soil/plant
systems differently (see references cited in Ref. 4). Since different
regions around the world have specific and individual soil quality
issues, it follows that biochars could be designed or engineered to
fit a specific need.1 To ensure a biochar meets this need, a control
system of substantially high quality is required to guarantee consis-
tency in the biochar production processes. In doing so, the biochar
product would have predictable and repeatable responses.

In the biochar literature it is commonplace to describe py-
rolytic processes by specifying a temperature or temperature
input schedule for a furnace (or other heat source); however, the
actual temperature response of the feedstock during pyrolysis de-
termines the biochar’s characteristics. For larger-scale systems (e.g.
bench, pilot and commercial scale), noticeable discrepancies can
occur between the input temperature and actual temperature out-
put; or in the case of biochar production the control temperature
may not be the feedstock’s exposure temperature. These variations
in the feedstock’s exposure temperature may be caused by process
heat losses, process fatigue or deterioration, ambient temperature

changes, feedstock loading methods and/or differences in the
type of feedstock. Accounting for these instabilities is critical to
the development of performance biochars. A process controller is
needed that can exert precise control of the exposure temperature.

The large number of process instabilities renders classical
control schemes impractical. An open-loop scheme takes far
too long to reach the correct temperature, and there is no
guarantee of accuracy. Traditional closed-loop schemes work
for stable closed-loop systems, ideally allowing for elimination
of offset, minimal disturbance effects, avoidance of excessive
control action, rapid and smooth responses to setpoint changes,
and robustness, making them insensitive to process conditions.7

There are, however, inherent trade-offs, and not all ideals can
be achieved with the control scheme. A conventional PID
(proportional-integral-derivative) controller, as shown in Fig. 1,
has an unavoidable trade-off between stability (tuning 1) and
accuracy (tuning 2). Either choice will generate a biochar; however,
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Figure 1. Simulated time versus temperature response to setpoints of 350
and 700 ◦C at PID tuning 1 (P = 1000, I = 1000, D = 100) and PID tuning 2
(P = 5, I = −6.9, D = 3.1).

the biochar properties may be either inconsistent or unique to the
process equipment and conditions.

To generate a consistent, predictable biochar, the exposure
temperature has to be both stable and accurate. A state-space
regulator must be suitable for controlling systems that can be
constantly affected by disturbances as well as multi-input/multi-
output systems.8 Previous state-space regulators were sometimes
designed using a system model derived from physics; however,
because of the high number of variables and the difficulty with
quantifying how these variables are related, the state-space
controller can use an empirical model with stochastic variables;
thus, it would be a stochastic state-space regulator. Most state-
space systems are represented using the following general form:

ẋ(t) = Ax(t) + Bu(t) (1)

y(t) = Cx(t) + Du(t) (2)

In Eqn (1), A and B are system-descriptive, constant matrices,
x(t) describes the system’s state and u(t) is an input into an active
element used to control the system (e.g. power input to a furnace).
The concepts generalised by Eqn (2) are not needed to describe
the controller, because there is no feedforward (i.e. D = 0) and the
system is digitally clocked. The digital clock cycle begins with the
input state x(t) equalling the output of the last digital clock cycle,
y(t); therefore C is unity. Thus Eqn (2) reduces to y(t) = x(t). This
implementation only uses Eqn (1).

The effects of instabilities in the system are mitigated by
using knowledge of the system to derive observed values
(Fig. 2). Observed values marked with a hat (∧) are the output
to a derived system of equations called the ‘observer’. This
has more in common with the knowledge of an experienced
operator than directly measured values. Operators compare the
difference – based on their knowledge and experience – between
the desired and actual behaviour of the system before choosing
the corrective course of action. The observer term achieves the
same effect by using the coefficient L (Eqn (3)) to determine the
correction to observed values based on the difference between
the observed and measured values. In this way, knowledge of
the system continuously mitigates the effect of unpredictable
disturbances and instabilities.

˙̂x(t) = Ax̂(t) + Bu(t) + L[x̂(t) − xmeasured(t)] (3)

With the observer in place, the observed state x̂(t) is
continuously calculated by inputting knowledge of the state,
along with its calculated derivative from the previous clock cycle
(with a period �t), into an integrator (Eqn (4)):

x̂(t) = x̂(t − �t) +
t∫

t−�t

˙̂x(t − �t)dt (4)

The observed value is used to get the system to a desired
state xdesired(t). To reach the desired state, the actual control
mechanism uses the control matrix K to ascertain how much of an
input applied to an open-loop reference input r(t) will cause the
process to converge at xdesired(t) (Eqn (5)):

u(t) = r(t) + K[xdesired(t) − x̂(t)] (5)

The desired state may be affected by multiple variables. These
influences can easily be handled by a stochastic state-space
controller (a true multi-input/multi-output controller). This is
accomplished through the use of matrix variables. In the case of
temperature-dependent processes such as pyrolytic production
of biochar, including environmental variables such as surface and
ambient temperatures (along with any other system variables
such as pressure or mass flow rate9,10) in the state-space allows
for this controller to achieve operation outside of a climate-
controlled setting. With the addition of other system-descriptive
temperatures such as the feedstock exposure temperature and the
change in the heat source temperature in both x̂(t) and xdesired(t),
along with the selection of K so that both variables are controlled
simultaneously, this regulator maintains simultaneous control of
both the exposure temperature and stability of a heat source. The
ability to heat feedstocks to a stable and accurate temperature with
disturbance effects minimised (e.g. solar heating or convective
cooling) means that the best control option for creating repeatable
designer biochar is to employ a stochastic state-space regulator.

State-space theory in control design has been discussed in
previous papers related to sterilisation of food products.10 – 12 The
application goal was comparable to that for designer biochar
production in that better control of the sterilisation process
both avoided undesirable degradation of nutrients and improved
the quality of the final food product.12 For biochar production,
this would mean the avoidance of undesirable degradation
of the feedstock in composition and structure to generate a
consistent high-quality biochar. No design procedure has been
documented for applying a stochastic state-space regulator to
thermal processing of biomass to create high-quality designer
biochars. Therefore this work sets out to develop a state-space
regulator to accurately match the batch production of biochar to
a defined temperature input schedule.

EXPERIMENTAL
Equipment selection
The original pyrolysis unit comprised a Lindburg electric box
furnace equipped with a gas-tight retort (Model 51662, Lind-
burg/MPH, Riverside, MI, USA). The pyrolysis system was equipped
with the following: gas cylinders containing zero-grade air (for
cleaning) and industrial-grade N2 (for pyrolysis) (items [7] and [8]
respectively in Fig. 3); two Alcon 110VAC two-way solenoid valves
(ITT, White Plains, NY, USA) (items [5] in Fig. 3); a 0–50 L min−1

gas flow controller (Model GFC37, Aalborg, Orangeburg, NY, USA)

wileyonlinelibrary.com/jsfa Published 2011 by John Wiley & Sons, Ltd. J Sci Food Agric 2012; 92: 481–489
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Figure 2. Block diagram of stochastic state-space regulator.
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Figure 3. Pyrolysis system design with temperature inputs indicated.

(item [4] in Fig. 3); and a flame arrestor (item [3] in Fig. 3). The sys-
tem was also equipped with a two-stage coalescing filter (Reading
Technologies Inc., Reading, PA, USA) to remove impurities from
the exhaust (item [9] in Fig. 3).

Original temperature control design
A PID controller (Eurotherm Model 2416, Ivensys, Ashburn, VA,
USA) originally controlled the pyrolysis temperature using a single
input signal from a thermocouple located near the furnace heating
element. With the PID controller, either autotuned or tuned using
Ziegler–Nichols rules,13 it was found that control choices were
limited to one of the following: (1) use a slow temperature ramp
to avoid heat transfer limitations to the feedstock; (2) miss the

desired response temperature over part of the temperature range;
(3) allow the operator to correct a missed temperature; (4) allow
an unstable response temperature to oscillate around the correct
temperature; or (5) control the charring temperature from the
wrong side of the retort boundary. Because any of those five
choices could undesirably result in a slow reaction, the possibility
of operator error, or arbitrary reaction temperatures when creating
a designer char, the PID controller’s usefulness was found to be
quite limited.

In searching for a controller design without these limitations,
it was decided to explore the furnace/retort’s heating properties.
The furnace/retort’s existing controller was switched to open-loop
(manual mode), allowing control of the power to the heating

J Sci Food Agric 2012; 92: 481–489 Published 2011 by John Wiley & Sons, Ltd. wileyonlinelibrary.com/jsfa
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Figure 4. Pyrolysis system temperature response to a power input step of
24% (subscripts f = furnace, r = retort and s = retort surface).

element by varying the width of the electrical pulses – essentially
a measure of the heating power – as a percentage. When a
fixed power percentage was applied to a cool furnace, a lagging
phenomenon was noted for the furnace/retort system: The furnace
heated the fastest and achieved greater temperatures, followed by
the retort heating more slowly to cooler temperatures, followed
by the retort’s surface heating very slowly to a much cooler
temperature (Fig. 4). This occurred because heat propagated from
the heating element in the furnace, through the walls of the
retort and out from the surface of the retort. The temperature
inside the retort, as opposed to the temperature of the furnace or
surface, determined biochar characteristics directly (i.e. biochar’s
exposure temperature). Because of this, it was decided that the
controller had to accurately control the retort’s temperature.
Controlling with only the retort temperature was difficult, because
the properties of the heat propagation path were subject to
variation, particularly from the rising surface temperature and
variations in ambient temperature (e.g. morning versus midday
temperatures). For these reasons, a regulator that could minimise
the effect of the variation in thermal properties of the heat
propagation path in the furnace/retort was chosen to control the
charring reaction, which turned out to be a stochastic state-space
regulator.

Modified set-up
The modified set-up retained the furnace and retort (items [1]
and [2] respectively in Fig. 3), but features were added to allow a
state-space regulator to control the retort’s temperature response.

Control components
The state-space regulator was programmed into software writ-
ten using Labview 2009 on a CompactRIO Model 9073 field
programmable real-time controller available from National In-
struments (Austin, TX, USA) and interfaced via a communications
board (Eurotherm SUB24/EIA232) to the furnace’s existing open-
loop controller. The state of the furnace’s heat propagation path
was derived from multiple thermocouple measurements. These
included: one located close to the heating element on the inte-
rior of the furnace (T f ); a similar thermocouple inside a thermal
well in the top-centre of the retort (Tr); a type T thermocouple
clamped to the retort’s surface (Ts); and another type T thermo-
couple measuring the ambient temperature (Ta) (Fig. 3). These

four temperatures, along with a user-selected pyrolysis method
that included the input temperature schedule, were the main
inputs used by the software driving the state-space temperature
regulation of pyrolysis.

The heat propagation path’s observed state
The state of the heat propagation path included multiple variables
lumped together into an observed state vector x̂(t) as shown in
Eqn (6):

x̂(t)T = [ ˙̂T f (t)T̂f (t)T̂r(t)T̂s(t)T̂a(t)] (6)

The state-space regulator regulated the open-loop furnace
power FP(t) so that the key metric in determining properties of
the biochar – the retort temperature Tr(t) – matched a schedule
of input temperature setpoints SP(t). The state-space regulator
accomplished this by initialising the observer with measured
temperature values and continuously solving Eqns (7)–(11) at
each time t:

x̂(t) =
t∫

t−�t

˙̂x(t − �t)dt = x̂(t − �t) + ˙̂x(t − �t) · �t (7)

˙̂x(t) = Ax̂(t) + Bu(t) + L[x̂(t) − xmeasured(t)] (8)

u(t) = r(t) + K[xdesired(t) − x̂(t)] (9)

r1(t) = f[SP(t)] = m1 · SP(t) + b1 (10)

FP(t) = f [u(t)] = m2 · u1(t) + b2 (11)

The derivation of the matrix constants was carried out with
version R2008b of MATLAB (The MathWorks, Inc., Natick, MA, USA)
using the long form of Eqns (7)–(9) as shown in Eqns (12)–(14):




˙̂T f (t)
T̂f (t)
T̂r(t)
T̂s(t)
T̂a(t)


 =




˙̂T f (t − �t) + ¨̂T f (t − �t) · �t

T̂f (t − �t) + ˙̂T f (t − �t) · �t

T̂r(t − �t) + ˙̂T r(t − �t) · �t
T̂s(t − �t) + ˙̂Ts(t − �t) · �t

T̂a(t − �t) + ˙̂Ta(t − �t) · �t


 (12)




¨̂T f (t)
˙̂T f (t)
˙̂T r(t)
˙̂Ts(t)
˙̂Ta(t)


 =




a11 a12 0 0 0
1 0 0 0 0
0 a32 a33 a34 0
0 0 a43 a44 a45

0 0 0 0 0







˙̂T f (t)
T̂f (t)
T̂r(t)
T̂s(t)
T̂a(t)


 =




1
0
0
0
0


 [ u1(t) 0 0 0 0 ]+




lṪf
0 0 0 0

0 lTf
0 0 0

0 0 lTr 0 0
0 0 0 lTs 0
0 0 0 0 1







Ṫf (t) − ˙̂T f (t)
Tf (t) − T̂f (t)
Tr(t) − T̂r(t)
Ts(t) − T̂s(t)
Ta(t) − T̂a(t)


 (13)

u1(t) = r1(t) + kTr · SP(t) − [ kṪf
0 kTr 0 0 ]

[ ˙̂T f (t) T̂f (t) T̂r(t) T̂s(t) T̂a(t) ]T (14)

RESULTS AND DISCUSSION
Development of the stochastic state-space regulator
Deriving the variables for the regulator using six basic system
conditions
The variables for the stochastic state-space regulator were derived
by amalgamating assumptions to create differing conditions in

wileyonlinelibrary.com/jsfa Published 2011 by John Wiley & Sons, Ltd. J Sci Food Agric 2012; 92: 481–489
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Table 1. Six conditions within a state-space of a furnace/retort pyrolysis system

Condition Assumption Effect Regulator

Steady-state t � t0 Quasi-thermal equilibrium x̂(t) ≈ x̂∞
˙̂x(t) ≈ 0 ˙̂x(t) ≈ 0

De-energised u(t) = 0 No control terms ˙̂x(t) = Ax̂(t) + L[x̂(t) − xmeasured(t)]

Open-loop K = 0 No feedback (closed-loop) terms ˙̂x(t) = Ax̂(t) + Br(t) + L[x̂(t) − xmeasured(t)]

u(t) = r(t)

Amaurotic x̂(t) = xmeasured(t) Observed values are measured values ˙̂x(t) = Axmeasured(t) + Bu(t)

u(t) = r(t) + K[xdesired(t) − xmeasured(t)]

Purblind L = 0 Measured values have no effect ˙̂x(t) = Ax̂(t) + Bu(t)

u(t) = r(t) + K[xdesired(t) − x(t)]

Desired x̂(t) = x̂desired(t) Steady-state system behaviour goal ˙̂x(t) = Ax̂(t) + Bu(t) + L[x̂(t) − xmeasured(t)]

x̂(t) = x̂measured(t) u(t) = r(t) + K[xdesired(t) − x̂(t)]

the furnace/retort’s heat propagation path (Table 1) useful for
mathematically isolating and deriving variables in the state-space
regulator. The six conditions were the following: (1) the steady-
state condition (thermal quasi-equilibrium approached over an
extended period of time); (2) the de-energised condition (no power
input, thus no control term u(t)); (3) the open-loop condition (no
feedback, thus K = 0); (4) the amaurotic condition (the observer is
blinded so that only measured values affect the regulator); (5) the
purblind condition (the observer is blinded so that measured
values have no effect on the regulator, i.e. L = 0); and finally
(6) the desired condition (when the measured state equals the
desired state). Knowledge of how these conditions affect the
behaviour of the heat propagation path was key to deriving a
regulator capable of driving the retort’s temperature through the
stochastic state-space describing the heat propagation path to
the desired temperature that would result in the production of
biochar with consistent and controlled properties.

Deriving the system matrix (A) by amaurotic observation of the
de-energised cooling of the heat propagation path
The A matrix constant was used to describe the temperature
properties of the heat propagation path. By using amaurotic
observation (which is conceptually similar to using direct
measurement) of the cooling, de-energised heat propagation
path, the A matrix could be determined. The term amaurotic
(normally used to describe a type of blindness when the eyes
function but do not see) was used to describe a regulator that
uses sensor inputs but does not observe. By using amaurotic
observation, the measured value was set equal to the observed
value, and by using de-energised cooling, the control term u(t)
drops out of Eqn (8), simplifying it to Eqn (15):

ẋmeasured(t) = Axmeasured(t) (15)

The A matrix was derived from temperature values obtained by
cooling the furnace/retort from a heated thermal equilibrium
(an initial, open-loop condition of Tr = 800 ◦C with FP =
90%) to a cooled thermal equilibrium (a steady-state, de-
energised condition). The A matrix was a selection of stochastic
variables – a stochastic state-space – only loosely resembling
differential equations used to describe a deterministic model of
heat propagating from the heating element through the sample
to the ambient environment (Eqns (16)–(20)); the relations were
chosen and then regressed as shown in Fig. 5 to derive the values

for the A constant.

T̈ f/T f = a11(Ṫ f/T f ) + a12 (16)

0 = a32 + a33 + a34 (17)

Ṫr/(Ts − T f ) = a33[(Tr − T f )/(Ts − T f )] + a34 (18)

0 = a43 + a44 + a45 (19)

Ṫs/(Ta − Tr) = a44[(Ts − Tr)/(Ta − Tr)] + a45 (20)

Deriving the B matrix
The B matrix described the effect of energising the heating
element. Since there was only one heating element located in
the furnace, energising the element only affected how much the
temperature of the furnace changed; BT was [ 1 0 0 0 0 ].

The relationship between the control vector u(t) and the reference
vector r(t)
The control vector u(t), or in this case [ u1 0 0 0 0 ],
determined how much the energising of the heating element
affected the propagation path. In an open-loop condition, there
was no control, so the feedback term K was set to 0 and the control
value was fixed at the reference value; hence, when operating in
open-loop, u(t) = r(t). In this case, r(t) equalled [ r1 0 0 0 0 ].

Deriving the relationship between the reference vector r(t) and the
setpoint SP(t) by purblind observation of open-loop warming of the
heat propagation path
The setpoint temperature SP(t) was the desired temperature of
the retort. By using purblind observation (which was conceptually
similar to using a mathematical model) of the open-loop warming
of the heat propagation path, the different reference values r(t)
could be correlated with different potential setpoints. The term
purblind (normally used to describe a type of blindness when
the eyes do not function and cannot see) was used to describe a
regulator that does not observe. By using a purblind regulator, the
L term was set to 0, whence Eqn (8) became Eqn (21):

ẋ(t) = Ax(t) + Br(t) (21)

Equation (21), along with the previously derived A matrix, was
used to determine the quasi-equilibrium temperatures of the
propagation path given different reference values r(t). Since quasi-
equilibrium retort temperature values could be used as potential
setpoints, this information was used to derive the relationship
between the reference vectors r(t) and different potential SP(t)
and eventually used to derive m1 and b1 in Eqn (10).

J Sci Food Agric 2012; 92: 481–489 Published 2011 by John Wiley & Sons, Ltd. wileyonlinelibrary.com/jsfa
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Figure 5. Derivation of A matrix: top-left, data used for derivation; top-right, derivation of a11 and a12; bottom-left, derivation of a33 and a34; bottom-right,
derivation of a44 and a45.

Figure 6. Derivation of m1 and b1 parameters.

wileyonlinelibrary.com/jsfa Published 2011 by John Wiley & Sons, Ltd. J Sci Food Agric 2012; 92: 481–489
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Figure 7. Open-loop power output as a function of desired temperatures.

Figure 8. Derivation of kTr (left) and derivation of k1 at kTr = 0.001 (right) simulated as response to a step input of SP = 800 ◦C.

Deriving the relationship between the control vector u(t) and the
furnace power FP(t) by purblind and amaurotic observation of open-
loop warming of the heat propagation path

The relationship between u(t) (which was equivalent to r(t) in
open-loop) and FP(t) was derived using the previously determined
quasi-equilibrium temperatures of the propagation path given
different reference values r(t), and by amaurotic observation of
quasi-equilibrium temperatures using actual open-loop values of
the furnace power FP(t) (Fig. 6). From this information, a regression
determining the relationship between FP(t) and u(t) in Eqn (22)

was used to derive m2 and b2 in Eqn (11) (Fig. 7):

FP(t) = m2 · m1 · limdT/dt→1◦C/10 minTr(t) + (m2 · b1 + b2) (22)

Deriving the K value to drive the purblind regulator to the desired
setpoint SP(t)
A purblind regulator consisting of Eqns (8) and (9) was used to
select an ideal K value by testing the ability of different K matrices
to bring the retort temperature to a desired state. The desired state
(Eqn (23)) was to not only accurately follow SP(t) with T̂r(t) but to

J Sci Food Agric 2012; 92: 481–489 Published 2011 by John Wiley & Sons, Ltd. wileyonlinelibrary.com/jsfa
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Figure 9. Sum of squares of error between actual temperature and measured temperature for each l value for each temperature.

also stabilise the furnace temperature (i.e. ˙̂T f (t) = 0), which had
to be maintained at an unpredictably higher temperature than
SP(t). The K matrices were tested (Eqn (5)) and the kTr value was
selected to give the controller a strong tendency to pull T̂r(t) to
the desired temperature. Additionally, the kṪf

term was selected
to give the controller a weak tendency to stabilise the change in
furnace temperature. Among the two controller terms, the kTr term
was selected first with a value of 0.001; this term was intentionally
chosen to be unstable – notice the large temperature overshoot
in Fig. 8 – to give the retort a fast response time. The next term
selected was the kṪf

term; this term was selected at a value of 0.04
to minimise the overshoot while maintaining the fast response
time.

xdesired(t)T = [ 0 0 SP(t) 0 0 ] (23)

K = [ kṪf
0 kTr 0 0 ] (24)

Deriving the L matrix by observation of the de-energised cooling of
the heat propagation path
The L matrix determined which point between amaurotic and
purblind observation values was appropriate for each value used

in operating the regulator. This was advantageous because ˙̂T f (t)
was difficult to measure, thus purblind observation was better,
while Ta was impossible to predict, so amaurotic observation was
more appropriate. A series of L matrix values (except for la, which
was always unity) was tested to see which value minimised the sum
of the square of the error between the observed and actual values
while observing the cooling of a de-energised heat propagation

path. Figure 9 demonstrates the effect of different l terms when
either the purblind observer (l → −∞) or the amaurotic observer
(l → ∞) was allowed influence over the control. By using an
observer that could strike a balance between amaurotic and
purblind observation (using both measured and predicted values)
of the heat propagation path as a basis for feedback control, any
effects caused by variations in the heat propagation path could be
minimised.

Regulating to the desired temperature of biochar
For the current pyrolysis system, the stochastic state-space
regulator was designed to (1) use multiple temperature variables
to regulate the state of the heat propagation path, (2) control the
retort temperature while stabilising the furnace temperature at an
unpredictably higher level and (3) minimise the effects of variation
in the heat propagation path by using an observed state. With
these properties the stochastic state-space regulator pyrolysed
biomass to a stable version of the desired temperature response
(Fig. 10).

For two different maximum exposure temperature profiles
tested, one at 350 ◦C and the other at 700 ◦C, the state-space
controller was able to accurately control the desired pyrolysis
temperature (i.e. Tr). Within 15 min the temperature within the
retort achieved the initial 200 ◦C condition. Within 30 min the
temperature within the retort was stable around 200 ◦C. For the
2.5 ◦C min−1 ramp to 350 ◦C, the regulator was able to control the
retort temperature to within 5 ◦C of Tdesired. For the 8.33 ◦C min−1

ramp to 700 ◦C, some lag in temperature occurred after 600 ◦C as
heat propagated through the system, as noted by an increase in
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Figure 10. Temperature responses during stochastic state-space temper-
ature regulation of pyrolysis system at (A) 350 and (B) 700 ◦C.

Ts. However, Tr was equivalent to Tdesired within 30 min with no
overshoot. The regulator was able to control Tr during a majority of
the cooling phase of the pyrolysis run until the system reached a de-
energised condition. In both instances, once maximum exposure
temperature was achieved, the controller maintained Tr to within
3 ◦C of Tdesired. Evaluation of individual physical and compositional
characteristics of the biochars is presented in Part II.14

CONCLUSION
Following the concept that biochars need to be designed to
target a specific soil need, process controls for the pyrolysis
process need to be developed that guarantee consistent and
high-quality biochar production. State-of-the-art control must
compensate for temperature variations (e.g. due to chemical
or physical anomalies) and ensure that the feedstock is being
pyrolysed according to the specified input temperature schedule.
A stochastic state-space regulator was successfully developed for

a batch, furnace/retort pyrolysis system that (1) used multiple
temperatures to regulate the state of the heat propagation path,
(2) controlled the retort temperature while stabilising the furnace
temperature at an unpredictably higher level and (3) minimised
the effects of variation in the heat propagation path by using the
observed state. These attributes made the state-space regulator
an optimal choice for biochar production.

ACKNOWLEDGEMENT
Mention of a trade name, proprietary product or vendor is for
information only and does not guarantee or warrant the product
by the USDA and does not imply its approval to the exclusion of
other products or vendors that may also be suitable.

REFERENCES
1 Novak JM, Lima I, Baoshan X, Gaskin JW, Steiner C, Das KC, et al,

Characterization of designer biochar produced at different
temperatures and their effects on a loamy sand. Ann Environ Sci
3:195–206 (2009).

2 Glaser B, Lehmann J and Zech W, Ameliorating physical and chemical
properties of highly weathered soils in the tropics with charcoal – a
review. Biol Fertil Soils 35:219–230 (2002).

3 Novak JM, Busscher WJ, Laird DL, Ahmedna M, Watts DW and
Niandou MAS, Impact of biochar amendment on fertility of a
southeastern coastal plain soil. Soil Sci 174:105–112 (2009).

4 Chan KY and Xu Z, Biochar: nutrient properties and their enhancement,
in Biochar for Environmental Management: Science and Technology,
ed. by Lehmann J and Joseph S. Earthscan, Sterling, VA, pp. 67–84
(2009).

5 Roberts KG, Gloy BA, Joseph S, Scott NR and Lehmann J, Life cycle
assessment of biochar systems: estimating the energetic, economic,
and climate change potential. Environ Sci Technol 44:827–833
(2010).

6 Sohi S, Lopez-Capel E, Krull E and Bol R, Biochar, climate change and
soil: a review to guide future research. CSIRO Land and Water Science
Report 05–09, CSIRO Land and Water, Australia (2009).

7 Seborg DE, Edgar TF and Mellichamp DA, Process Dynamics and
Control. Wiley, New York, NY (1989).

8 Lewis FL, Applied Optimal Control and Estimation: Digital Design
&Implementation. Prentice-Hall, Upper Saddle River, NJ (1992).

9 Luenberger DG, Observers for multivariable systems. IEEE Trans
Automat Control AC-11:190–197 (1966).

10 Mulvaney SJ, Rizvi SSH and Johnson JCR, Dynamic modeling and
computer control of a retort for thermal processing. J Food Eng
11:273–289 (1990).

11 Alonso AA, Banga JR and Perez-Martin R, A complete dynamic model
for the thermal processing of bioproducts in batch units and its
application to controller design. Chem Eng Sci 52:1307–1322 (1997).

12 Alonso AA, Banga JR and Perez-Martin R, Modeling and adaptive
control for batch sterilization. Comput Chem Eng 22:445–458 (1998).

13 Ogata K, Modern Control Engineering. Prentice Hall, Upper Saddle River,
NJ (2002).

14 Cantrell KB and Martin II JH, Stochastic state-space temperature
regulation of biochar production. Part II: Application to manure
processing pyrolysis. J Sci Food Agric 00:000–000 (2011).

J Sci Food Agric 2012; 92: 481–489 Published 2011 by John Wiley & Sons, Ltd. wileyonlinelibrary.com/jsfa


