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Regression-Based Multi-Trait QTL Mapping
Using a Structural Equation Model∗
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Campbell, Kulvinder S. Gill, Ismail Dweikat, and James Bovaird

Abstract

Quantitative trait loci (QTL) mapping often results in data on a number of traits that have
well-established causal relationships. Many multi-trait QTL mapping methods that account for
the correlation among multiple traits have been developed to improve the statistical power and the
precision of QTL parameter estimation. However, none of these methods are capable of incorpo-
rating the causal structure among the traits. Consequently, genetic functions of the QTL may not
be fully understood. Structural equation modeling (SEM) allows researchers to explicitly charac-
terize the causal structure among the variables and to decompose effects into direct, indirect, and
total effects. In this paper, we developed a multi-trait SEM method of QTL mapping that takes into
account the causal relationships among traits related to grain yield. Performance of the proposed
method is evaluated by simulation study and applied to data from a wheat experiment. Compared
with single trait analysis and the multi-trait least-squares analysis, our multi-trait SEM improves
statistical power of QTL detection and provides important insight into how QTLs regulate traits by
investigating the direct, indirect, and total QTL effects. The approach also helps build biological
models that more realistically reflect the complex relationships among QTL and traits and is more
precise and efficient in QTL mapping than single trait analysis.
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Introduction 
 
In QTL studies, it is common to collect data on a number of traits where the 
causal relationships among these traits are well-established. In wheat genetics for 
example, yield components develop sequentially with later-developing 
components under the control of earlier-developing ones. Gain yield (GYLD) and 
its components such as, 1000-kernel weight (TKWT), spikes per square meter 
(SPSM), and kernels per spike (KPS) have well-established causal relationships 
(Dofing and Knight, 1992) (Figure 1). A QTL may affect SPSM, KPS, and 
TKWT, which biologically may act as intermediate variables and ultimately affect 
GYLD. The common procedure has been to capture the total QTL effects without 
investigating the distinction between direct and indirect effects. However, these 
effects can help answer important questions that are not addressed by examining 
the total effect alone. For instance, a pleiotropic QTL can have a positive direct 
effect on grain yield, but a negative effect on a yield component. Without 
knowing the full pathway of the causal relationship, a breeder might select against 
the QTL thinking it only affects the yield component detrimentally, not knowing 
it is actually beneficial on the important trait of grain yield.  Thus the total effect 
can provide a misleading impression. To understand the genetic effects of a QTL 
thoroughly, it is necessary to understand not only the total QTL effect, but also 
the direct and indirect effects of a QTL through other traits by taking advantage of 
causal relationships among traits. Such a strategy of QTL mapping can provide 
additional insight into how QTLs regulate traits directly and indirectly through 
other traits. It should also improve the power to detect the QTL and the precision 
of the location estimate.  
 
 
 
 
 
 
 
 
 
 
 
Figure 1: The path diagram of the causal relationship among grain yield and yield 
components 
 

Although it is common to collect data observations on multiple causally 
related or genetically correlated traits frequently, QTLs are mapped for each trait 
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separately using single trait analyses (Lander and Botstein, 1989; Haley and 
Knott, 1992; Jansen and Stam, 1994; Zeng, 1994). Alternatively, several multiple 
trait QTL analysis (joint analysis) methods have been developed that take into 
account the correlation among multiple traits. These methods have been shown to 
improve statistical power for QTL detection and precision of parameter estimates 
compared to single trait analysis. Among the most effective approaches are multi-
trait maximum-likelihood (ML) (Jiang and Zeng, 1995 and Korol et al., 1995, 
1998), multi-trait least squares (LS) (Korol et al., 1995, 1998; Knott and Haley, 
2000; Hackett et al., 2001), principal component analysis (PCA) (Weller et al., 
1996; Mangin et al., 1998; Calinski et al., 2000), and discriminant analysis (DA) 
(Gilbert and Le Rol, 2003). Multi-trait ML, implemented with the 
expectation/conditional maximization (ECM) algorithm, extracts maximum 
information from the data, but might be very difficult to be implemented in 
complex data structures because of computational difficulties. Multi-trait LS, 
which regresses the quantitative trait value on the conditional expected genotypic 
value, produces results very similar to ML and simplifies computation (Haley and 
Knott, 1992). The PCA method transforms multiple traits into canonical variables 
so that single trait analyses can be carried out for each canonical variable. 
Similarly the DA method is based on the linear combination of the traits, specific 
to each tested position and analyzed by a univariate method. However, the 
approaches of PCA and DA may cause spurious linkages and difficulties in the 
biological interpretation of study results (Mähler et al., 2002; Gilbert and Le Rol, 
2003). In addition, none of the above methods take advantage of causal structure 
among the traits. Multi-trait QTL mapping should provide additional insight into 
the genetic functions of QTL when causal structure is considered. 

SEM is a generalization of simultaneous equation procedures originating 
from path analysis (Wright, 1921) and initially popularized in Econometrics and 
genetics. It is a useful method for estimating and evaluating simultaneous causal 
relationships among variables which allows variables to be both dependents and 
predictors. It is best explained by considering a path diagram. In particular, SEM 
allows researchers to decompose the effects of one variable on another into direct, 
indirect, and total effects. The direct effect is the path coefficient between an 
independent variable and the dependent variable that are not causally explained 
by any other intermediary variable. The indirect effects of a variable are mediated 
by at least one other intervening variable. The indirect effects are calculated by 
multiplying the path coefficients for each path of the associated variable to the 
dependent variable. The total effect is the sum of direct and all indirect effects. By 
explicitly accounting for the complex multi-component causal structure among 
traits, SEM can provide better understanding of multiple trait QTL analysis.  

Recently SEM has been applied to functionally related traits in genetic 
research with the goal of characterizing genetic architecture precisely and 
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intuitively (Nadeau et al., 2003; Gianola and Sorensen, 2004; Li et al., 2006; Neto 
et al., 2008; Zhu and Zhang, 2009). However, their approaches were limited to 
testing and quantifying the relationships among identified QTLs and phenotypes 
without QTL detection.  In addition, Wu and others recently developed a series of 
joint statistical models based on nonlinear power functions for detecting QTLs 
that are responsible for allometric scaling laws and testing the hypotheses about 
the genetic control of allometry (Wu et al., 2002; Ma et al., 2003; Li et al., 2007). 
However, their methods may not separate the direct and indirect QTL effects, and 
were different from our approach.  

 In this paper, we developed a multi-trait SEM method of QTL mapping 
using a population of recombinant inbred lines (RILs), which are usually derived 
from a cross between two inbred parents followed by self-pollination and single 
seed descent to reach homozygosity. The proposed model is compared with multi-
trait LS composite interval mapping and single-trait LS composite interval 
mapping in terms of the statistical power of QTL detection and the precision of 
parameter estimation. The comparison and performance of the proposed method 
is evaluated by simulation and applied to agronomic trait data collected on a 
population of wheat chromosome 3A recombinant inbred chromosome 
substitution lines (RICLs). 
 
Materials and Methods 
 
Statistical Method 
 
Let y1, y2 …, and yp be the phenotypic values of p causally related traits from an 
RIL individual. The SEM in matrix form is:  
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     (1) 

 
where yk is the phenotypic value for trait k; βkl is the regression coefficient of trait 
l on trait k;  αk is the additive effect of the putative QTL on trait k; xQTL is a 
indicator variable taking values of 1 for one homozygous parent type QQ and -1 
for other homozygous parent type qq; γkj is the regression coefficient of cofactor 
marker j on trait k, assuming q markers are selected as cofactor markers to control 
the variation from these QTLs; xj is the genotype of the jth cofactor marker, which 
takes values of 1 and -1  for marker genotype MM and mm respectively; and ek, 
the residual effect on trait k,  is assumed to be multivariate normal distributed 
with means zero and covariance matrix  
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In practice we observe the marker genotypes and trait values but not the putative 
QTL genotypes xQTL. However, it can be replaced by its conditional expectation 
given flanking marker genotypes (Haley and Knott, 1992, Xu, 1998). Suppose the 
flanking markers are M and N. Then, there are four types of marker genotypes, 
MMNN, MM Nn, MmNN, and MmNn. We denote p1 and p2 as conditional 
probabilities for QTL genotypes QQ and qq given the four marker genotypes. The 
mixture model (1) can be approximated by  
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where 1 2 1 2( | ) ( 1) ( 1)QTLE x MN p p p p      . Model (2) is more compactly written as 

 
y = Βy +Γx + ζ   where ~ ( , ) and ~ ( , )MVN MVNζ 0 Ψ x 0 Φ  

 
And the reduced model     
                      

   1( ) ( )y I - B Γx + ζ      (3) 
 

where y is a p x 1 vector of yk, B is the p x p coefficient matrix (contains βs) that 
describes the causal relationships among the p traits, where 1( )I B  exists; Γ  is 
the p x (q+1) coefficient matrix (contains αks and γkjs) that describes causal 
relationship between endogenous variables (traits) and exogenous variables (QTL 
and cofactor markers); x is a (q+1) x 1 vector of exogenous variables, which 
include ( | )QTLE x MN  and q cofactor markers used for background control, and is 

assumed to be multivariate normally distributed with a mean vector of zeros and a 
covariance matrix Φ; and ζ , a p x 1 vector of errors, is assumed to be multivariate 
normally distributed with a mean vector of zeros and a diagonal covariance matrix 
Ψ . Elements in B,Γ,Φ,Ψ are parameters to be estimated.  
 
Maximum Likelihood (ML): In SEM, the statistical tests are based on the 
assumption of a multivariate normal distribution for the observed variables. A 
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commonly used fitting function is the likelihood function. Let θ be all the 
unknown parameters. Given model (3), the model implied covariance matrix of 
observed variables y and x were derived as  
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E E

E E
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If we combine y and x into a single (p + q + 1) x 1 vector z, then its probability 
density is  
 

( 1)/ 2 1/ 2 11
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where p is the number of traits, and q +1 is the number of cofactor markers 
including one for the QTL. Since the N observations are assumed to be sampled 
independently, the marginal likelihood is the product of the contributions from all 
observations, 
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The log of the likelihood function is 
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where S* is the maximum likelihood estimator of the sample covariance matrix 

 
  
 

YY YX
`
YX XX

Σ Σ
S

Σ Σ
. These two matrices are essentially equal in large samples. The 

‘constant’ term in equation (5) has no impact on estimating θ. For a given sample, 
S and (p+q+1) are constant. The unknown parameters are estimated by 
maximizing (5), which is equivalent to minimizing the function (6) 
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 1log | ( ) | [ ( )] log | | ( 1)MLF tr p q       θ S θ S                  (6) 
 
Parameter estimation: The fitting function that is minimized is equation (6). The 
unknown parameters are estimated so that the model implied covariance matrix 

( )Σ θ is close to the sample covariance matrix S. FML is zero when ˆ( ) θ S . 
Numerical solutions are typically used to estimate the parameters since the first-
order partial derivatives are nonlinear in the parameter and explicit solutions for 
the parameters usually are not accessible. Three steps are involved.  
 
Step 1. Select the initial or starting values θ(0).  

Step 2. Move from one step to the next step, in general ( 1)ˆ iθ is determinated by  
 

12
( 1) ( )ˆ ˆ

ˆ ˆ ˆ`
i i ML MLF F



             
θ θ

θ θ θ
 

 
Step 3. Stop the iteration when the differences in the fitting function from one 
iteration to the next differ by less than very small value. The final estimates will 
be used for the calculation of the maximum likelihood value for hypothesis 
testing. 
 

Note that the indirect and total QTL effects are functions of the path 
coefficients θ. They are calculated based on the final values of θ. The indirect 
QTL effect for a particular indirect path from the QTL to the trait is calculated by 
multiplying all the coefficients in the path. The total indirect QTL effect on the 
trait is the sum of all the indirect effects from all indirect paths. The total QTL 
effect on the trait is the sum of direct and indirect QTL effects. 

Although ML is based on the assumption of multivariate normality, its 
estimation procedures are robust to moderate violation of this assumption 
(Joreskog and Sorbom, 1989; Bollen, 1989). 

 
Hypothesis tests: For QTL mapping, we are most interested in the existence of a 
QTL. The hypothesis test can be formulated as: 
 
H0: α1 = α2,…, = αp = 0 (restricted model, i.e., the putative QTL does not exist) 
HA: at least one of them is not zero (unrestricted model, i.e., the putative QTL 
exists) 
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The Likelihood Ratio (LR) statistic is 
 

2[log ( ) log ( )]r uLR L L  θ θ
 

 
 

where rθ


is the ML estimator under the restricted model, and uθ


 is the ML 
estimator under the unrestricted model. The LR is approximately chi-square 
distributed with p (number of traits) degrees of freedom when the restricted model 
is true. In the SEM framework, the LR statistic is calculated as the difference in 
the usual chi-square estimators for the restricted and unrestricted model (Bollen, 
1989), with the difference in model degrees of freedom as the degrees of freedom 
for the LR statistic. The LR test compares the fit of restricted model to the fit of 
the unrestricted model. A significant test indicates that the model with QTL 
effects fits significantly better than the model without QTL effects. Because the 
test is performed for a number of intervals, the distribution of the maximum LR 
statistic is very complicated. Therefore, it is difficult to determine an exact 
significance critical value. Zeng (1994) suggested that the error rate of the test per 
interval, α, can be approximated by using the Bonferroni correction where χ2

α/M, 

m+1 is used to approximate the critical value of the test; M is the number of 
intervals involved in the test; m is the number of traits and 1 is the position of the 
putative QTL. Alternatively, the permutation test can be applied to our proposed 
model to empirically estimate the genome-wise critical value for a given data set 
(Churchill and Doerge, 1994).  

Note that, the multi-trait SEM and the multi-trait LS models have similar 
structures, but are used to test different hypotheses of QTL effects, and estimate 
different parameters. With the multi-trait SEM, the existence of direct QTL 
effects is tested, and the total, indirect and direct QTL effects are estimated. While 
with the multi-trait LS approach, the existence of the total QTL effects are tested, 
and only the estimates of the total QTL effects are provided.  

 
Simulation  
 
We investigated the multi-trait SEM method using data simulated for 100 
replicates of 150 lines of a RILs population. On a single chromosome segment of 
length 100 cM, 11 evenly spaced markers were simulated. Three additive QTLs 
were placed at 22, 42, and 78cM to affect three traits, which are causally related 
as in equation (7). 

The phenotypic values for each individual are determined by equation (7), 
the sum of QTL effects (where QTLx s take values of 1 and -1 for genotype QQ and 

qq respectively) plus the random residual effects sampled from a multivariate 
normal distribution with mean zero and covariance matrix (8). 
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 
 
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Prior to the analysis, a test of multivariate normality was performed for all 

observed variables. The results showed that the Mardia and Henze-Zirkler 
multivariate tests rejected the multivariate normality but the multivariate plot 
indicated approximate normality, suggesting a minor violation of multivariate 
normality. The parameter estimates from multi-trait SEM are obtained by 
minimizing the ML fitting function in this study. The proposed method was 
implemented using PROC TCALIS in SAS Version 9.2 software, to account for 
the causal relationships among multiple traits. 

A single QTL was tested sequentially at each 1-cM point along the 
chromosome. Since markers are evenly distributed and widely separated, all 
except flanking markers are fitted in the model to control the genetic background 
(Jiang and Zeng, 1995). Multi-trait SEM, multi-trait LS, and single-trait LS were 
applied to test for the presence of a QTL at 1cM segments of a chromosome. 
Means and standard deviations of all parameter estimates were calculated from 
100 replications. The statistical power was determined by the proportion of the 
number of runs with the test statistic values greater than a critical value, over 100 
replicates. We used χ2

0.005/4=14.86 (approximated by the Bonferroni correction 
(Jiang and Zeng, 1995)) as the critical value for the multi-trait SEM and the multi-
trait LS, and χ2

0.005/2=10.60 for the single-trait LS. The overall power was 
calculated as the proportion of times the QTL was detected for at least one of the 
three traits. 

 
RICL Wheat eriment 
 
The proposed method was applied to data from a wheat experiment with a 
population of 98 3A RICLs derived from a cross between 'Cheyenne' (CNN) and 
Cheyenne with a 'Wichita' 3A chromosome substitution (CNN(WI3A)) and thus, 
the lines differed only for chromosome 3A. This population was evaluated in 
multi-environment field trials from 1999-2001 to identify QTL and QTL-
environment interactions for grain yield and other agronomic traits in seven 
environments. Details of the experiment and results of the data analysis performed 

Exp
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by univariate QTL detection techniques have been described by Campbell et al. 
(2003). In the current study, we focus on GYLD and the yield component traits 
TKWT, SPSM, and KPS. We constructed a genetic map of chromosome 3A using 
14 molecular markers covering 120.8 cM of the chromosome with an average 
marker interval of 8.5 cM. The causal relationships among grain yield and these 
yield component traits are described in Figure 1 (Dofing and Knight, 1992; 
Dhungana et al., 2007). 

Grain yield and yield component trait data were analyzed using the multi-
trait SEM method and single-trait LS analysis. Prior to the analysis, analysis of 
variance (ANOVA) linear model was fit for each trait to remove the main effects 
of environments and blocks. Residuals of the four traits were used as observed 
trait values after removing effects of environment and block within environment. 
For each trait, single marker analysis was performed to select cofactors. A 
stepwise selection procedure with significance of P < 0.1 was used. The 
maximum number of cofactors was five. Multi-trait SEM and single-trait LS were 
applied to test for the presence of a QTL at 1cM segments of the chromosome 
with a window size of 10 cM. Five-hundred permutations of the data were 
analyzed for multi-trait SEM and single-trait LS to establish significance 
threshold values for declaring significant QTL effects in a genome at α=0.05 
(Churchill and Doerge, 1994). 
 
Results 
 
Simulation 
 
Table 1 shows the observed statistical power of QTL detection over 100 replicates 
by three different mapping methods. The power of multi-trait SEM is calculated 
as the percentage of detecting a direct QTL effect on at least one of three traits, 
while the power of multi-trait LS is obtained as the percentage of detecting a total 
QTL effect on at least on one of three traits over 100 replicates. The power of 
multi-trait SEM is higher than that of the multi-trait LS for all three QTLs. This is 
because the pleiotropic QTL1 has a larger positive direct effect on Y2 but a 
negative indirect effect, which in turn reduces the total QTL1 effect on Y2. 
Similarly the total effect of QTL2 on Y1 and Y2 and QTL3 on Y2 decreased due to 
their opposite indirect effects. QTLs with relatively smaller total effects may not 
be detected by multi-trait LS method. Generally, the QTL detection power for the 
two multi-trait analysis methods was much higher than that of the single-trait 
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effect on Y1. Therefore multi-trait QTL analysis would be most effective when 
the direct and indirect effects of a QTL are in opposite directions. If the direct and 
indirect QTL effects are in the same direction, the power of the multi-trait 
analysis may be less than the overall power of the single-trait analysis. In such a 
situation, the total QTL effect should be larger than either of the direct or indirect 
effects tested with the multi-trait SEM approach. 

     Table 2 shows the estimates (and standard deviations) of QTL effects and 
positions resulting from the three different mapping methods. All estimates are 
relatively unbiased with high precision except the QTL position estimates from 
the single-trait LS method, which display markedly higher standard deviation. In 
general, the precision and accuracy of estimating QTL positions and effects by 
multi-trait SEM and multi-trait LS are much greater than single-trait LS. 
However, as mentioned previously, the multi-trait SEM is favored over the multi-
trait LS and single-trait LS analyses because direct and indirect QTL effects can 
be detected.  
 
Table 1: Observed statistical powers (%) of QTL detection of multi-trait SEM, 
multi-trait LS, and single-trait LS methods obtained from 100 replicates in the 
simulation study 
 

Y1 Y2 Y3 Overall
1 64 57 6 29 10 40
2 77 69 3 43 1 45
3 96 94 97 33 17 97

QTL
Multi-Trait 

SEM
Multi-Trait  

LS
Single-Trait analysis

 
 

analysis which tests existence of a total QTL effect. However, the power of 
detection of QTL3 on trait Y1 and overall power on QTL3 in single-trait analysis 
are higher than both multi-trait analyses. This is because both indirect and direct 
QTL3 effects on Y1 are in the same direction, resulting an increased total QTL3 
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Table 2: Parameters and estimates of QTL positions and effects in the simulation 
 

Methods QTL Trait Total Direct Indirect
Y1 0.125 -0.125 0.25
Y2 0.375 0.5 -0.125
Y3 0.25 0.25 0

Parameters Y1 0 0.250 -0.250
Y2 -0.435 -0.50 0.065
Y3 -0.125 -0.125 0

Y1 0.75 0.50 0.250
Y2 0.375 0.50 -0.125
Y3 0.25 0.25 0

Y1 0.117 (0.200) -0.128 (0.174) 0.245 (0.101)
Y2 0.356 (0.204) 0.464 (0.174) -0.107 (0.107)
Y3 0.210 (0.205) 0.210 (0.205) 0

Multi-trait SEM Y1 -0.034 (0.223) 0.231 (0.174) -0.265 (0.114)
Y2 -0.450 (0.218) -0.511 (0.192) 0.061 (0.096)
Y3 -0.119 (0.187) -0.119 (0.187) 0
Y1 0.750 (0.174) 0.479 (0.176) 0.271 (0.097)
Y2 0.393 (0.175) 0.527 (0.166) -0.133 (0.111)
Y3 0.257 (0.205) 0.257 (0.205) 0

Y1 0.110 (0.217)
Y2 0.353 (0.203)
Y3 0.239 (0.204)

Multi-trait LS Y1 -0.019 (0.216)
Y2 -0.448 (0.231)
Y3 -0.112 (0.205)
Y1 0.746 (0.185)
Y2 0.384 (0.190)
Y3 0.256 (0.217)

Y1 19.99 (6.75) 0.105 (0.247)
Y2 41.80 (5.86) 0.335 (0.229)
Y3 78.38 (2.82) 0.223 (0.246)

Single-trait Y1 20.60 (4.56) -0.015 (0.210)
Y2 41.81 (4.09) -0.428 (0.227)
Y3 78.38 (4.71) -0.100 (0.202)

Y1 20.80 (6.04) 0.749 (0.175)
Y2 42.44 (6.43) 0.383 (0.180)
Y3 78.18 (6.48) 0.259 (0.209)

2

3

78.03 (2.16)

1

21.56 (3.12)1

2 41.95 (2.58)

3

2 41.92 (2.63)

3 78.46 (2.42)

1

Position       
(CM)

21.57 (2.83)

Putative QTL Effect

2 42

3 78

1 22

 *Estimates are means over 100 replicates with standard deviation in parentheses, 
by multi-trait SEM, multi-trait LS and single-trait LS. 
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Figure 2: Results of QTL mapping on three traits from a simulated RILs 
population using multi-trait SEM, multi-trait LS and single-trait LS.  

 
     The LR test statistic profiles were plotted against the chromosome 

position (Figure 2) to compare the three methods of QTL detection. The positions 
where the LR test statistics exceed critical value indicate the possible QTL 
locations. Three QTLs are identified: one between 16 and 28 cM, one between 38 
and 48 cM and one between 70 and 88 cM. The QTL profiles of the two multi-
trait methods (multi-trait SEM and multi-trait LS) were very close. The QTL 
profiles of the single-trait LS method are very low without clear peak except for 
QTL3 on Y1. This indicates the single-trait LS method has a lower chance of 
detecting the QTL effects when the total QTL effect is reduced due to 
compensating effects among traits.  
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Figure 3: LR test statistic QTL profiles for chromosome 3A using single-trait LS 
QTL analysis for grain yield, thousand kernel weight, kernels per spike, and 
spikes per square meter. 

 
RICL Wheat Experimental Data Analysis 
 
Likelihood ratio plots of the single-trait LS analysis (Figure 3) indicated that there 
were three regions containing QTLs. Region 1 (4-18cM) contained QTLs 
associated with GYLD, KPSM, KPS, and TKWT, region 2 (53-58 cM) contained 
QTLs associated with GYLD and SPSM, and region 3 (96-105 cM) contained a 
single QTL associated with KPS. Interestingly, the largest effect QTL was found 
in region 2 and had a large effect on GYLD (LR= 70.56). These QTL positions 
corresponded to those found by Campbell et al. (2003).   
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Figure 4: Map of direct QTL effects for chromosome 3A using multi-trait SEM 
method. Profiles of LR test statistic:  solid line corresponds to the joint LR 
statistic, dashed lines corresponds to the contribution of the traits GYLD, TKWT, 
KPS and SPSM. JOINT=at least one trait is directly affected by the QTL 

 
Table 3: Contribution to LR for individual QTLs and traits for Chromosome 3A 
 

GYLD TKWT KPS SPSM JOINT
5.677 cM 1.26 23.54 39.96 8.92 73.26
50.727 cM 0.17 3.71 22.96 1.96 28.70
56.498 cM 30.39 1.47 14.18 12.06 57.86
105.592 cM 1.16 8.75 2.25 7.27 19.39

Trait
QTL at

 
 

Results of the multi-trait SEM method provided joint LR statistics and the 
contribution of individual traits to the joint LR simultaneously. Figure 4 
summarizes results of composite interval mapping on chromosome 3A of the 
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direct QTL effects using the multi-trait SEM method. At least four major regions 
containing QTLs are indicated by the analyses. Region one is between 3 and 20 
cM with a clear peak located near Xbarc12 (LR statistic of 73.26). The largest 
contribution to this peak is attributed to KPS (LR statistic of 39.96) and TKWT 
(LR statistic of 23.54) (Table 3). The second region is between 25 and 52 cM with 
a clear peak at 50.72 cM close in proximity to XksuA6. The largest contribution to 
this peak is attributed to the direct QTL effect on KPS. This region was not 
identified with the single-trait LS method (Figure 3) or in the previous QTL 
analysis by Campbell et al. (2003).  The third region is located between 53 and 58 
cM, and the highest LR is observed adjacent to Xbarc67 (56.49 cM, LR statistic 
of 56.86). The largest contribution to this peak comes from the direct QTL effect 
on GYLD (LR statistic of 30.39) (Table 3). A weak QTL in the fourth region (101 
and 105 cM) was detected adjacent to Xbcd141 that was associated with SPSM 
and TKWT.  

Figures 5 and 6 show the standardized path coefficients with multi-trait 
SEM located in regions one and three at Xbarc12 and Xbarc67, respectively. The 
path coefficients are used to calculate the indirect and total QTL effects. For 
example, the indirect QTL effects on TKWT at Xbarc12 are calculated by 
multiplying the path coefficients for each path of associated trait QTL to TKWT 
(QTL->SPSM->KPS->TKWT is 0.0585*(-0.6233)*(-0.1605)=0.00585; QTL-
>SPSM->TKWT is 0.0585*(-0.4689)=-0.02743; QTL->KPS->TKWT is 
0.0966*(-0.1605)=-0.0155). Hence, the total indirect effect of QTL on TKWT is 
the sum of all the indirect effects of associated trait QTL to TKWT (0.00585+(-
0.02743)+(-0.00155)=-0.0371). The total QTL effect is the sum of direct and 
indirect QTL effects on TKWT (-0.0868+(-0.0371)=-0.1239). Table 4 shows the 
standardized direct, indirect and total QTL effects on each trait at Xbarc12 and 
Xbarc67 with multi-trait SEM. At Xbarc12, the QTL has a large positive direct 
effect on KPS (p < 0.001) and a negative indirect effect (p<0.01) resulting in a 
smaller absolute total effect (p<0.01) and thus a higher peak than with the single-
trait LS analysis, which only captures total QTL effects. The direct and indirect 
QTL effects on TKWT are in the same direction resulting in an increased total 
effect (Table 4) and a lower LR peak than the single-trait approach (Figure 3 and 
4). Similarly, at marker Xbarc67, the direct and indirect QTL effects on GYLD 
are in the same direction leading to a large GYLD total effect QTL (p<0.001) and 
thus a lower LR peak for GYLD than the single-trait LS analysis (Figures 3 and 
4). These results show that our multi-trait SEM QTL analysis method provides 
additional information on how the QTLs on chromosome 3A affect agronomic 
performance directly and indirectly, which was not possible with any previously 
proposed methods.   
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Table 4: Estimates of the putative QTL effects using multi-trait SEM in two major 
QTL regions in the chromosome 3A 
 

Trait Total Direct Indirect

GYLD 0.0624 (0.0169)*** 0.011 (0.0098) 0.0514 (0.0169)**
TKWT -0.1239 (0.0194)*** -0.0868 (0.0178)*** -0.0371 (0.0078)***

KPS 0.0601 (0.0195)** 0.0966 (0.0153)*** -0.0364 (0.0122)**
SPSM 0.0585 (0.0195)** 0.0585 (0.0195)** 0.0000

GYLD 0.1733 (0.0230)*** 0.0532 (0.0008)*** 0.1201 (0.0230)***
TKWT -0.0302 (0.0213) 0.0217 (0.0179) -0.0519 (0.0115)***

KPS 0.02267 (0.0293) 0.0861 (0.0229)*** -0.0634 (0.0183)***
SPSM 0.1011 (0.0290)*** 0.1011 (0.0290)*** 0.0000

Region 3      
56.4983 cM

QTL at       
Position (cM)

Putative QTL Effect

Region 1      
5.6771 cM

Values in parentheses are respective standard deviation values, ***P<0.001; 
**P<0.01; *P<0.05  

 

 
 Figure 5: Path estimates of multi-trait SEM for chromosome 3A at position 
5.6771 cM (Xbarc12). Single arrows indicate causal relationships. Numbers by 
the arrow lines represent the estimated standardized coefficients with significance 
level: ***P<0.001; **P<0.01; *P<0.05. 
 

GYLD KPS 

TKWT 

SPSM 

QTL 

0.6849*** 

0.471*** 

-0.4689*** 

1.1741*** 

-0.0868*** 

-0.6233*** 

0.0585** 

0.0966*** 

-0.1605*** 
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Figure 6: Path estimates of multi-trait SEM for chromosome 3A at position 
56.4983 cM (Xbarc67). Single arrows indicate causal relationships. Numbers by 
the arrow lines represent the estimated standardized coefficients with significance 
level: ***P<0.001; **P<0.01; *P<0.05. 
 
Discussion  
 
We have presented a multi-trait SEM method for QTL mapping, extending the 
work of Knott and Haley (2000), which takes into account the causal relationships 
among multiple traits. The performance of the method was illustrated using 
simulated data. The primary advantage of the multi-trait SEM over the multi-trait 
LS and the single-trait LS is that it improves the power of QTL detection, which 
is consistent with previous findings (Zhu and Zhang, 2009). It also allows one to 
investigate the direct, indirect, and total QTL effects of yield and yield component 
traits. This ultimately allows for important insight into how QTLs interact and 
regulate correlated traits. Knowledge of the direct and indirect QTL effects can be 
very important for plant breeders interested in (1) breaking unfavorable indirect 
QTL effects; (2) obtaining more precise and efficient estimates and tests in QTL 
mapping, and (3) using statistical methods that can be simply performed using 
commonly available statistical software such as SAS. 

Using our method, we are able to detect QTLs for SPSM in both region 
one and three which have not been reported in Campbell et al. (2003) where 
univariate QTL detection techniques were used. Furthermore, they detected a 
minor QTL for GYLD in region one, while the corresponding QTL that we 
detected had a greater effect on GYLD. In addition, some claim there is really no 
QTL per se for GYLD and every GYLD QTL must work through yield 
components.  However, our research reported here clearly shows how the GYLD 

GYLD KPS 

TKWT 

SPSM 

QTL 

0.6868*** 

0.4718*** 

-0.4763*** 

0.0532*** 

1.1749*** 

-0.6274*** 

0.1011*** 

0.0861*** 

-0.1646*** 
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QTL may be due to component traits, which might be investigated using 
candidate genes from other species using a comparative genomics approach. 

A prerequisite of the proposed method is prior knowledge of the causal 
relationships among the multiple traits, since SEM is generally used as a 
confirmatory rather than exploratory procedure. Theoretical insight and judgment 
by the researcher is very important in building a model. One can obtain some 
basic background about the key structure of the model either from knowledge of 
the related field or from preliminary data analysis. Misspecification could 
potentially bias estimates of the parameters (Bollen, 1989) and possibly result in 
the multi-trait LS outperforming the multi-trait SEM approach. The researcher 
needs to be sure that the model is at least approximately correct, and the 
parameters are interpretable. In practice, one can try to correct misspecification by 
building a different model such as adding a new path, removing a path, or 
reversing the causal direction of a path to the initial model. The final model is 
obtained based on modification indices (Sorbom, 1989). However, caution is 
needed. The credibility of any causal hypothesis must be judged by biological 
interpretation and not solely on statistical evidence. 

The model considered in this paper was illustrated using a RICL 
population to provide a general idea of the nature of QTLs affecting the traits. 
However, the general approach can be easily applied to different population 
structures (such as F2 and backcross) and genetic models by setting up the 
corresponding conditional QTL genotype probability. In addition, it is possible to 
test pleiotropic effects against closely linked QTL and QTL-environment 
interactions at a given genomic position where the presence of a QTL is indicated 
by joint mapping. Here, we assumed that the residual errors of the traits were 
independent which we believe is a reasonable assumption since we removed the 
effects of environment by using, for the y values in equation (2), the residuals 
from a main effects linear model with environment and block within environment 
as the main effects. However, even after removing environment main effects, the 
traits may still be correlated and the trait error terms can be modeled as being 
correlated with each other. Such a specification indicates that the traits associated 
with those error terms share common variation that is not explained by predictor 
relations in the model such as the genotypes interacting with environmental 
factors. We have focused on the linear relationships between traits. However, 
there are situations where the nonlinearity may be more appropriate such as with 
allometric scaling relationships between size and rate in the biological processes. 
One may incorporate such behavior in the model to improve the performance. In 
addition, the proposed model here did not account for the genotype-environment 
or genotype-block interactions. Methods incorporating these innovations could 
result in increased statistical power of QTL detection, precision in estimation of 
QTL effects and position, and an improved understanding of how QTL interact 
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with environmental factors. Furthermore, researchers may collect data of different 
types for a sample set (e.g., both binary and continuous traits). Methods that are 
capable of dealing with a mixture of continuous and binary traits could be 
valuable in a variety of situations. Although the proposed multi-trait SEM 
approach may not always be appropriate for every QTL mapping application, it 
does provide an attractive complementary method to understand complicated 
biological pathways and systems using available molecular marker and 
phenotypic trait data. 
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