P. G. Hunt

5 Microbial Responses in the
Rhizosphere of Agricultural Plants

The interactive relationship between plant roots and
microorganisms was recognized and expressed in 1904 by
Lorenz Hiltner, soil bacteriologist and professor of agron-
omy at the Technical College of Munich. In early studies,
plant pathogenic and symbiotic processes that produced mor-
phological changes visible to the unaided eye were the most
intensively investigated relationships. Today, study of
microbial ecology in plant rhizospheres is extremely broad
and complex. Plant and microbial relationships are, of
course, affected by the total biophysical system of both
the plant and the soil. The system might be viewed as pro-
gressive development of interactions among soil structure,
growing roots, rhizosphere microorganisms, soil and canopy
environments, and the physiology of the entire plant. Con-
sequently, the holistic understanding of rhizosphere micro-
bial ecology has become vitally important to soil manage -
ment and plant growth.

Other chapters in this volume focus on specific as-
pects such as soil structure, mycorrhizae, plant pathogen-
icities, nitrogen cycling, soil fauna, and shoot/root
development. The emphasis of this chapter will be micro-
bial involvement in soil structure and nitrogen fixation in
the rhizospheres of plants grown in agricultural systems.
Only a few of many studies will be used to illustrate par-
ticular points; thus, some excellent investigations may not
be cited.
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RHIZOSPHERE ESTABLISHMENT AND SOIL STRUCTURE

Root growth is fast in young seedlings. The pattern,
rate, and extent of root development is, of course, depend-
ent upon the genetic makeup of the plant and environmental
conditions. For instance, the rooting forces necessary to
penetrate soil layers are directly related to the soil
strength characteristics, which are dramatically affected
by soil structure and water content. Rooting in many soils
may occur only when the soil is wet enough to promote low
strength characteristics but dry enough to have adequate
02 contents (Campbell, Reicosky, and Doty 1974; Campbell
and Phene 1977). Thus, microbial promotion of soil struc-
ture prior to, as well as in conjunction with, root growth
is very important.

The production of extracellular polysaccharides is pre-
dominantly a bacterial process, and it promotes what can be
referred to as the "cementing" of particles. Chaney and
Swift (1986) reported that soil aggregates were reformed by
polysaccharides produced from glucose amendment but not by
wetting/drying and freezing/thawing cycles. These aggre-
gates declined over a twelve-week period as polysaccharides
were decomposed. The stability of these aggregates was re-
lated to the original organic matter levels in the soils.
Chapman and Lynch (1984) found that the polysaccharides of
straw were composed mainly of galactose, glucose, and man-
nose. The ability of straw to increase aggregation was
also shown to be inversely related to straw nitrogen con-
tents between 0.25 and 1.09 percent by Elliott and Lynch
(1984).

The use of bacteria and fungi in a coculture was de-
scribed by Chapman and Lynch (1985). They found increased
aggregate stability of a Humble silt loam with the coinocu-
lation of Jrichoderma harzianum and Enterobacter cloacae.
They found that the cellulolytic fungi could support the
growth of bacteria and supply sufficient carbon for polysac-
charide synthesis. Anaerobic and facultative anaerobic
nitrogen-fixing bacteria were thought to be sustained by
cellulolytic enzymes of aerobic fungi (Harper and Lynch
1984) . Fungi play a major role in the stability of soil
aggregates as their mycelia grow around soil particles and
ridge to others. This bridging is of increased importance
once the root grows near the soil particles. Fungi also
play a role in the transport of chemicals among microsites
(Newman 1985).



118

Once the root occupies an area of the soil, it affects
and is affected by the microorganisms of that region. Thus,
the root has an immediate effect on the microbial ecology

of the soil (Figure 5.1). Roots excrete large amounts of
photosynthate (Lynch et al. 1981), and these organic com-
pounds serve as substrates for microbial populations. The

plant roots and shoots are, in turn, affected by the mi-
crobes. For example, Barber and Lynch (1977) found that
the biomass of bacteria produced in the rhizosphere of bar-
ley seedlings was greater than could have been produced
from the carbohydrates released in sterilized soil. These
data supported the view that microbes do not simply grow
on plant roots; they stimulate plants to release more pho-
tosynthate. Barber and Martin (1976) ‘estimated that the
exudate losses of wheat (Triticum aestivum) and barley
(Hordeum vulgare) seedlings were equivalent to 7 to 13
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percent and 18 to 25 percent of their dry matter under
sterile and nonsterile conditions, respectively. Micro-
bially produced growth regulators may also stimulate in-
- creased total growth of the plant. Beck and Gilmour (1983)
found that wheat released 3.7 and 3.0 percent of the !4C-
labeled photosynthate as soluble exudates when inoculated
and noninoculated with nitrogenase-positive bacteria, re-
spectively. Whipps and Lynch (1983) concluded that competi-
tion for available root exudate on the root of barley would
be high and that it would preclude luxuriant bacterial
growth in the rhizosphere.

The degree of the interrelation between the root and
microbe varies. Those microorganisms that live within or
in close association with the root are most directly
affected by the plant. This region can be called the

h .  Many microbes also occupy the thizoplane,
which is the actual root surface that contacts the soil,
water, and air. The third zone is the exorhizosphere,
which is separated from the root by a film of water. A
good view of these environments was expressed by Whipps
and Lynch (1983). They suggested that regions can best be
viewed as a continuum that is by nature dynamic with plant
growth.

In addition to microbial effects, physical and chemi-
cal factors such as soil texture, structure, color, organic
content, water status, pH, and salinity play major roles in
the expression of rooting potential. These factors along
with variations in plant canopy condition make the rhizo-
sphere quite variable from plant to plant as well as from
field to field.

ASSOCIATIVE NITROGEN FIXATION

Associative nitrogen-fixing microorganisms have been a
source of interest for many years. Earlier work with Azoto-
bacter inoculation has been controversial (Brown 1972).
Several rhizoplane genera such as Bacillus, Enterobacter,
Pseudomonas, and Beijerinckia are capable of nitrogen fixa-
tion in the rhizosphere of grain crops such as corn (Zea
mays), wheat, sorghum (Sorghum bicolor), and rice (Qryza
sativa) as well as in the rhizosphere of tropical forages
(Neyra and Dobereiner 1977; Hubbell and Gaskins 1984).
Dobereiner (1961) was one of the first to galvanize recent
thought about the use of associative nitrogen fixation when
she showed that Beijerinckia was stimulated by the sugar-



120

cane (Saccharum officinarum) rhizosphere. Subsequently,
Dobereiner and Day (1976) reported nitrogen fixation in the

rhizosphere of Digitaria decumbes by the bacterium now
known as Azospirillum.

A complete discussion of associative nitrogen fixation
is far beyond the scope of this chapter. The genus Azospi-
rillum has received a great deal of world-wide attention in
recent years. Its two well-studied species, A, brasilense
and A. lipoferum, are good generic examples of bacteria
that grow in the rhizosphere, fix nitrogen, and produce
plant growth regulators.

Occurrence of Azospirillum

In field and greenhouse work, Baldani and Dobereiner
(1980) found that A. lipoferum was much more commonly iso-
lated from externally sterilized roots of maize (Zea mays)
than from wheat, but the reverse was true for A, brasi-
lense. In Hawaii, Kosslak and Bohlool (1983) found A. bra-
silense and A, lipoferum to be present in a number of
plants in about equal percentages. In their review of asso-
ciative nitrogen fixation by Azospirillum, Hubbell and
Gaskins (1984) suggested that Azospirillum was generally
found in associations with plants where investigators look-
ed for them and that the frequent discovery of Azospirillum
on the roots of tropical grasses might be more of a quanti-
tative than a qualitative nature.

Plant Responses to Associative Bacteria

O'Hara, Davey, and Lucas (1981) .reported that seven
strains of A, brasilense increased the dry matter and ni-
trogen content of maize shoots when they were grown under
temperate conditions in sand-filled vermiculite pots. The
positive response of plant growth to A, brasilense inocula-
tion in India has been reported by Rai (1985a,b,c). The
positive response in seed yields were particularly evident
when soil and fertilizer nitrogen were' low. Strains of A,
brasilense that were adapted to the prevailing soil environ-
ments were most effective in increasing corn, cheena (Pani-
cum millaceum), and millet (Eleusine coracana) growth and
yield. Also in India, Meshram and Shende (1982) reported
increased grain yield as well as increased nitrogen content
in maize grain and stover after the inoculation of maize
with A, chroococcum. Rai and Gaur (1982) reported that
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maize yields were 2.97 t/ha with nitrogen treatment of 80
kg/ha and 4.15 t/ha when inoculant was used
along with the same fertilizer nitrogen. The particular
strain of A. lipoferum had a high nitrogen-fixing capacity
and no denitrifying tendency.

Smith et al. (1976) reported that several tropical
grasses and cereals of North America experienced enhanced
growth when inoculated with Spirjillum lipoferum. The
growth and total nitrogen content of wheat, sorghum, sor-
ghum X Sudan grass (Sorghum bicolor Sudapense), and Proso
millet Panicum millaceum) were increased by inoculation
with A. brasilense in Israel (Kapulnik et al. 198la).

Yield of summer cereal crops and Setaria italica were also
increased by inoculation with Azospirillum (Kapulnik et al.
1981b).

Yields of winter and spring wheat were increased by
aerial application of A, brasilense in field studies during
1979 and 1980 (Reynders and Vlassak 1982). They believed
that the bacteria caused increased tillering and nutrient
uptake. Sarig et al. (1984) reported increases in both
grain and forage yield for sorghum cultivars grown under
dryland conditions in Israel. Smith et al. (1976) reported
increases in the herbage produced by Pearl millet (Pennise-
tum americanum) and Guinea grass (Panicum maximum) when
they were inoculated with A, brasilense, but a majority of
forty tropical grasses tested did not show increases in
growth.

Nitrogen Fixation

The amount of nitrogen obtained from associative fixa-
tion by Azospirillum spp. has been estimated at different
levels, and some of the very high estimates are no doubt
due to an overestimation bias of the acetylene reduction
method (Gaskins and Carter 1975; van Berkum and Bohlool
1980; von Bulow and Dobereiner 1975). Apparent overestima-
tions have occurred in other associations. Brown (1976),
for example, also reported that the main advantage of Azoto-

bacter paspali in the rhizosphere of Paspalum notatum was
the production of growth regulators rather than nitrogen

fixation. This is in contrast to estimates of as much as
90 kg/ha nitrogen fixation by A. paspali on P. notatum by

Dobereiner, Day, and Dart (1972).
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Production of Growth Regulator Substances

The low nitrogen fixation rates of associative nitro-
gen-fixing bacteria support the view that much, if not all,
of the plant growth stimulation derived from associative
nitrogen-fixing bacteria comes from plant growth hormones
rather than nitrogen fixation (Tien, Gaskins, and Hubbell
1979; Tien et al. 1981; Lin, Okon, and Hardy 1983). In
either case, it appears that associative nitrogen-fixing
bacteria can often increase the yield of important forages
and grains, especially when soil fertility is low and the
strains are adapted to restrictive environmental conditions
such as pH, salinity, or temperature.

SYMBIOTIC NITROGEN FIXATION

Biological nitrogen fixation is certainly among the
most important rhizosphere processes. Symbiotic nitrogen
fixation was a cornerstone of soil fertility until the
development of chemical conversion of atmospheric nitrogen
to ammonia; chemical conversion gave the world a new source
of nitrogen fertilizer which greatly increased agricultural
productivity. Nitrogen fertilizers are not, however, pana-
ceas. Conversion of atmospheric N2 to ammonium is an
energy-intensive process, and fertilizers so produced must
be transported to locations of agricultural use. This
transportation is expensive and energy consumptive at best,
and not available in many areas of the world. Additional-
ly, overuse of nitrogen in areas such as the midwestern sec-
tion of the United States has led to groundwater contamina-
tion. Thus, there is continued interest in legume-rhizo-
bial symbiosis. -

For an effective legume-rhizobial symbiosis, the rhizo-
bia must be present, infection/nodule formation must occur,
and the rhizobia must be an efficient nitrogen fixer within
the plant. Rhizosphere conditions impact all of these crit:-
ical aspects of dinitrogen fixation. %

Rhizobial Presence and Survival

Rhizobia that are capable of infecting and forming nod-
ules in a particular legume must be Present or introduced
into a soil if effective symbiosis is to be established.
Cropping and farm management practices will, of course,
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have dramatic impact on the number of rhizobia present.
For example, Weaver, Frederick, and Dumenil (1972) deter-
mined that the number of Bradyrhizobjum japonicum cells in
fifty two Iowa fields was positively correlated to the pres-
ence of soybean (Glycine max) in the crop rotation during
the previous thirteen years. Hiltbold, Patterson, and Reed
(1985) found that the rhizobial numbers of B, japonicum

were high (10% cell g ') during the winter following soybean
production. If lime, phosphorus, and potassium were ade-
quate, rhizobial numbers stabilized around 104 or 10% cells
g’! of soil. Soil acidity reduced rhizobial populations.
When pH 1levels were less than 4.6, rhizobial numbers were
generally less than 102 g™! of soil. Rupela et al. (1987)
found that research station soils in India contained from
103 to 10% rhizobia cells g~ ! of soil, while those of farm-

ers contained from 10 to 10% rhizobia g™! of soil. Popula-
tions of rhizobia were highest during and shortly after the
growth of a legume crop. Populations then decreased to a
lower level, but levels were generally quite sufficient for
inoculation of subsequent crops wunless extreme environ-
mental conditions were present.

Rhizobial populations can be greatly affected by fac-
tors such as water content (Pena-Cabriales and Alexander
1979), temperature (Munevar and Wollum 1981; Osa-Afiana and
Alexander 1982; Kvien and Ham 1985), pH (Keyser and Munns
1979b), salinity (Rai et al. 1985; Rai 1987), and nutrient
status of the soil (Keyser and Munns 1979a,b). As a re-
sult, some areas planted to legumes may not be high in num-
bers of rhizobia or percentage of effective nodulators. For
example, cowpea (Vigna unguiculata) rhizobial populations
of Guyana soils were low enough in both numbers and effec-
tiveness for potential benefit from inoculation with effec-
tive strains (Trotman and Weaver 1986). Rao et al. (1985)
reported that rhizobia used to inoculate the American soy-
bean cultivar "Bossier" in Nigerian soils were found in
soybean grown after two years of fallow, but the yield of
the soybean was increased by annual inoculation. Survival
of the rhizobia may even be inhibited by the seed as in the
case of R, trifolii and arrowleaf clover (Trifolium vesicu-
losum) (Materon and Weaver 1984). Fuhrmann, Davey, and
Wollum (1986) found differences in the effects of desicca-
tion on R, leguminosarum bv. trifolii on a Altavista loamy
sand and a Cecil sandy clay loam. Population levels were
generally lowered by incubation at the -70 MPa level, but
one isolate had excellent survival under all soil moisture
treatments, including the -500 MPa moisture level. Wollum
and Cassel (1984) used geostatistical techniques to assess
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the spatial wvariability of rhizobial populations. Large
population variations occur not only from field to field
and soil to soil but over small distances in the same field
and soil.

Infection and Nodule Formation

Rhizobia have been classified by their ability to inoc-
ulate certain plants, but this has not been entirely satis-
factory. Certain rhizobia are capable of infecting and nod-
ulating plants of several species, and certain plants are
nonselective in their nodulation. In addition, rhizobia
have been classified by their rate of growth on synthetic
media, i.e., fast- or slow-growing (Jordan 1982; Sadowsky,
Keyser, and Bohlool 1983). It is also important to under-
stand that infection involves both the plant and the micro-
organism. Even after recognition and infection by the
rhizobia, plants can regulate subsequent nodulation by the
same or other rhizobia (Kosslak and Bohlool 1983), and this
regulation can be affected by environmental conditions as
subtle as the spectral composition of canopy light (Kasper-
bauer, Hunt, and Sojka 1984; Hunt, Kasperbauer, and Matheny
1987).

One of the most difficult problems associated with im-
provements in the legume/rhizobia symbiosis in agricultural
systems is the low competitiveness of introduced strains of
rhizobia relative to indigenous strains. This is true even
if the introduced strain will readily infect and form nod-
ules on a plant when the strain is present in a single cul-
ture. Differences in infection potential can be seen from
the fact that serogroup 123 dominated soybean nodules with
60 to 100 percent occupancy, even though it did not domi-
nate the rhizobial population of the rhizosphere; the num-
bers of B, japonicum serogroups 110, 123, and 138 all in-
creased in the rhizosphere of soybean to about 108 cells g!
soil (Moawad, Ellis, and Schmidt 1984). Populations of sero-
groups 110, 123, and 138 in fallow soil were each about 105
cells g'! soil. Moawad and Bohlool (1984) found that strain
B214 was least competitive among six strains for nodulation
of Leucaena leucocephala in an oxisol (less than 30 per-
cent) but most competitive in a mollisol (70 percent). The
correlation between occupation of nodules and rhizosphere
populations was low. Competitive advantages of various
rhizobia not only change with soils, but with tillage and
cultivar on the same soil (Hunt, Matheny, and Wollum 1985).
They concluded that tillage, cultivar, and inoculation in-
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teracted to influence B. japonicum strain occupancy (Table
5.1).

Weaver and Frederick (1974) found that introduced
strains must be present in numbers 103 or 10* greater than
the indigenous strains to significantly impact nodule occu-
pancy of soybean. Even these high numbers often produced
less than 10 percent nodule occupancy in field inoculation
studies in the southeastern United States (Hunt et al.
1983). Dunigan et al. (1984) initially found that infec-
tion of soybean by B. japonicum strain USDA 110 was low (O
to 17 percent) even when massive inoculations (10® cells
em™!) of B, japonicum were used for three consecutive years.
During the subsequent four years, however, the percentage
of nodules infected by the introduced strain increased to
as high as 60 percent; the researchers interpreted this to
indicate that a prolonged application of massive inocula-
tion would result in the establishment of the introduced
strain as a significant portion of the rhizobial popula-
tion. It is possible that prolonged use of quality inocu-
lun may become an important practice, but substantial pro-
gress must be made in the uniformity and quality of inocu-
lum (Giddens, Dunigan, and Weaver 1982).

Viteri and Schmidt (1987) reported that indigenous
soil rhizobia could respond to the addition of several
sugars, particularly arabinose; B, japonicum populations
increased from about 104 to about 10%. They interpreted this
as evidence that indigenous populations of rhizobia could
respond to various substrates in the absence as well as in
the presence of a host plant.

Trinick, Rhodes, and Galbraith (1983) found that the
fast- and slow-growing rhizobia competed differently under
temperatures of 25 and 30° C. They also reported a differ-
ence in competitiveness with variation in the day/night tem-
peratures. This is of considerable importance because it
represents the normal fluctuation of the daily temperature
cycle and the differences that exist with different soil
and water management systems, i.e. crop residue management,
water management, and tillage. Rai and Gaur (1982) and Rai
(1987) reported selection of lentil rhizobia that had im-
proved temperature, pH, and salinity tolerance. Mahler and
Wollum (1981l) reported differences in the drought toler-
ance of B, japonicum strain in the symbiotic as well as in
the free-living state.

Differences also are found among strains for phage tol-
erance, A rhizobiophage of B, japonicum USDA 117 was found
to reduce the nodule number, nodule weight, and acetylene-
reduction capacity of plants inoculated with USDA 110



6S 8b 9s 144 T€ 6€ SE L PAD
I b Z 01 L 6 91 0 - ,
T 11 Z | 7T £ . 3 | 0 + UOT}BAJISUO)
0 b b b1 8 9 61 0 -
4 14 € 6 T 8 01 T + [BUOIJU3AUO)
13¥0)
0 q0 € 0 14 g6 8¢ 0 -
0 qs L 0 9 14 12 € + UG} BAIISUOD)
0 14 6 V] L eZ 91 1] -
0 9 21 0 L b (44 1 + JRUOIJUIAUOY
wosuey
ey 9 0 qeQ L S €1 T -
eg £ S q071 8 1 9 T + UOI}BAJISUOD)
0 8 b eg 8 I 11 Z -
4 8 L € € v L € + [BUOIJUIAUO)
337

0861
e e e e m e E .. - --- - lllllllllNlll llllll - -
SZ17 (44 AR b6 9L 9% 1€ 124 uciie| a3ej (1}

suter}s uwndiuodel wniqoziyiipeiqg -n3ou]j

126

cundjuodel -g

JO OIT Ulel}s Ujism uUolje(ndoul pue ‘3Fe{[1} ‘JBAI}[ND ueaqflos Aq pajdajje
Se suteyys undiuodel wniqoziyrdpelg jysdia £q £duedndso JeyapoN -1-S I149VL




127

*¢86T WnTToM pue ‘Auaylel ‘Iuny :92INOS
‘sanTea Ap o3 Buyaedwod azozaq
(6'0 + ueau) 3o 3001 axenbs B Lq pswroysueil aq pINOYS UWNTOD B UTYITA
suesw ‘31033I9Y3 'EBIEP PAWIOISUBI] WOIJ POIBTNOTED 9I8M SSNTBA AD P
‘uorlewIoysuexl (G°Q + uesw) Jo joox aienbs e I933e pezdTeue
usys 12437 OT°0 @Yl 23e 3ISd3 (ST 2yl £q UOTIBTNOOUT I0F JUIIIIIIP
21e .0, 10 ,q, £q pSMOITOF sueow 2asoyl pue a3e[IF3I I0F IJUIILIFTP
a1® ,®, £q pemoIT1o3F IeAT3Ind pue ‘dnoiBoiss ‘iesal swes ay3 IOJ SUBSK o‘q‘e

62 87 09 1¢ VA 19 (1] 9¢ PAD

0 8 qz 97 q¢ 21 qeqT q01 -

0 0T qe9 92 q8 oL €9 ST + UOI3IeAIISUOH

0 9 0 8T 4 q1 €9 ST -

1 11 By (44 € q9 Bl BgY + TBUOTIUSAUOY
I8j0)

0 6 q¢ 1 L 9 8 (A1 -

0 ‘eg q0 11 9 9 LA 6 + UOT3IBAIISUOYH

0 Q1T 0 92 qs L qs < -

0 qeg 4 L2 ! qey 9 Q%1 L + TeuoTIusauo)
Hosuvy

0 L q0 0T o9 q4y 4 0t -

0 9 qYy 0t 20 qeQ Y 11 + UOJ3IBAIISUO)H

0 8 0 q0¢ %y S 9 €T -

0 €1 4 qs q1 ®9 8 6 + TBeuUOTIUlAUOY

297

1861



128

(Hashem and Angle 1988).

Iron deficiency was found to inhibit the nodule devel-
opment of ground nut (Anachis hypogaea) in calcareous soil
of Thailand (O'Hara et al. 1988). However, iron deficiency
did not limit growth or populations of ground nut Brady-
rhizobia in the soil or rhizosphere. Whelan and Alexander
(1986) found that R. trifolii did not nodulate subterranean
clover (Trifolium subterraneum) in the presence of high
levels of iron or aluminum (500 and 50 micromoles, respec-
tively) nor below pH 4.8. Riley and Dilworth (1985) report-
ed that the adverse effect of cobalt deficiency on nitrogen
fixation in Lupinus angustifolius was due to the inability
of the plant to supply cobalt to the rhizobia rather than
an effect on their growth in soil.

Many postulates have been made about why introduced
strains are less competitive than indigenous strains.
Greater environmental tolerance, more homogenous distribu-
tion in the soil, and improved recognition abilities are
possible reasons. Selection of plants that will exclude
predominant rhizobial strains has been done (Cregan and
Keyser 1986), but there are many questions that must be
answered before such a process can be used agronomically.
At least partial resolution of the problem could rest with
improved planting environments and inoculants, i.e., favor-
able soil water status, neutral pH, low salinity, adequate
nutrition, and moderate temperature, along with large num-
bers of viable cells in the inoculum.

Efficient Nitrogen Fixation

Young, Hughes, and Mytton (1986) found dramatic in-
creases in dry matter production during the first year
after inoculation of white clover (Trifolium repens) with
R. trifolii; and such results are not uncommon. Yet,
strains of rhizobia that carry out efficient nitrogen fix-
ation in one plant may fail to do so in another. 1In some
plants, infection and nodulation occur, but nitrogen fixa-
tion is nonexistent or ineffective (Mathis, Kuykendall, and
Elkan 1986). Under these conditions, the rhizobia acts as
a parasite. It is using photosynthate to grow, but it is
providing no nitrogen for plant growth. Keyser et al.
(1982) reported a very interesting ineffective infection of
fast-growing rhizobia (generation times of two to four
hours) with soybean. They isolated these rhizobia from
wild progenitor soybean (Glycine soja) in China. Soybean
(Glycine max) is normally only infected by slow-growing
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rhizobia (generation times of more than six hours). The
nodules formed by the fast-growing rhizobia were only effec-
tive in the cultivar "Peking," a black-seeded, genetically
unimproved line from China.

There also exists distinct differences in the nitrogen
fixing capacities of legume species. Differences between a
forage legume such as alfalfa (Medicago sativa) and the com-
mon bean (Phaseolus vulgaris) are generally perceived.
There also exist more subtle differences among grain leg-
umes; Piha and Munns (1987a,b) found that common beans ob-
tain relatively less nitrogen from fixation than soybean or
cowpea. The same was true for several Phaseolus spp., and
Piha and Munns concluded that common bean species may be
genetically predisposed to lower nitrogen fixation.

The contribution of legumes to the annual nitrogen bal-
ance of a soil depends upon several factors, such as the
crop, soil type, rhizobial effectiveness, rainfall pattern,
residue management, seed.yield, and seed nitrogen content.
If a crop such as alfalfa is plowed under rather than har-
vested, the addition of nitrogen to the soil can be several
hundred kg/ha (Heichel 1987). If it is harvested several
times, however, it may in fact be a net consumer of soil ni-
trogen. Soybean grown in the midwestern United States is
generally a net annual consumer of nitrogen, while that
grown in the southeastern United States is generally a net
nitrogen producer (Welch et al. 1973; Hunt, Matheny, and
Wollum 1985; Thurlow and Hiltbold 1985). This is predomi-
nantly the result of soil-nitrogen differences; naturally
low levels of soil nitrogen in the southeastern United
States allow the fixation and accumulation of large amounts
of nitrogen in legumes.

Plant Growth and Seed Yield

If nitrogen 1is the limiting plant growth and seed
yield factor, establishment of a more effective nitrogen-
fixing symbiosis will definitely improve seed yield. This
has been shown by the marked increase in dry matter and
seed yield of nodulating relative to nonnodulating soybean
grown in the nitrogen-limiting soils of the southeastern
United States (Matheny and Hunt 1983; Thurlow and Hiltbold
1985; Hunt, Matheny, and Wollum 1985). The amount of nitro-
gen obtained from fixation, however, can be increased with-
out an increase in seed yield (Morris and Weaver 1983;
Williams and Phillips 1983), and yield can be increased
from rhizobial inoculation without increased nitrogen fixa-
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tion (Karlen and Hunt 1985; Hunt, Matheny, and Wollum 1985;
Hunt et al. 1985)., This is possible because the rhizobia
are in an interactive state with the plants, other micro-
organisms, and the environment as depicted in phase IV of
Figure 5.1. Under these conditions, the rhizobia are af-
fecting the reaction of plants to the environment by means
other than nitrogen fixation, most likely via growth-regu-
lating hormones. This may be more evident in rhizobia with
the capacity to produce higher levels of hormones such as
indole-3-acetic acid (IAA), but initial field studies with
such rhizobia indicate that they do not greatly alter the
growth of soybean under field copnditions (Kaneshiro and
Kwolek 1985; Hunt, Kaneshiro, and Matheny 1987). However,
the addition of a low concentration of precursor to the
rhizosphere of plants inoculated with growth regulator-pro-
ducing microorganisms, may cause substantial growth altera-
tions (Frankenberger and Poth 1987). It is even possible
that rhizobia may stimulate the germination of nonlegume-
nous plants such as wheat or corn (Kavimandan 1986).

Interactions of B. japonicum strain with irrigation
have been reported (Hunt, Wollum, and Matheny 1981, Hunt et
al. 1983, and Hunt, Matheny, and Wollum 1988 (Table 5.2).
The soybean seed yield response to irrigation varied with
cultivar and strain. They also found differences in seed
yield of soybean grown under drought conditions when the
soybean was inoculated with cultures of the B, japonicum
strain USDA 110 that had been maintained in different lab-
oratories. The effects of canopy configuration (row width
and compass orientation) of soybean were accentuated or dim-
inished by the strain of B. japonicum (Hunt et al. 1985,
1990) (Figure 5.2).

Row orientation and strain of rhizobium were also im-
portant to the nitrogen fixation and seed yield of chickpea
(Cicer arietinum) in India (R. Rai, PL-480 report and per-
sonal discussions 1988). The effects of row orientation
and soil color on soybean nodulation were postulated to be
related to the spectral composition of canopy light, which
affected shoot:root ratios, the extent of nodulation, and
the relative competitiveness of wvarious strains (Kasper-
bauer and Hunt 1987, 1988; Kasperbauer, Hunt, and Sojka
1984; Hunt, Kasperbauer, and Matheny 1987, 1989) (Table
5.3). The autoregulation of nodulation expressed by one
side of a split root system on the other could be increased
or decreased by Red (R) or Far-red (FR) end-of-day light
treatment. Since FR effect could be reversed by R, the
autoregulation was partially controlled by the plants phyto-
chrome system. Additionally, when soybean were inoculated
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with B. japonicum strains USDA 110 or Brazil 587 and treat-
ed with (R) or (FR) light nodulation was significantly
altered if the inoculant was USDA 110 but not if the inocu-
lant was Brazil 587 (Hunt et al. 1990). Thus, the light
quality environment of the shoot is able to effect the
relative competitiveness of rhizobia in the rhizosphere.
It is possible that some of the more important advances in
legume seed yield may come from a better understanding of
the whole plant response to the rhizobia rather than simple
improvements in nitrogen fixation efficiency.
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Figure 5.2. Coker 338 soybean yield response to row
orientation, inoculation, and irrigation in 1982.

SUMMARY

In summary, it has been the author’s intent in this
chapter to show the close, continual, and dynamic
relationships that exist among plants, rhizosphere
microorganisms, and the environment, with emphasis on
rhizosphere establishment and nitrogen fixation processes.
These interrelations are somewhat cyclic and may be thought
of as starting when soil microorganisms begin to degrade
crop residues, produce polysaccharides, and build soil
structure. Soil structure is important to the rate and
extent of root development in subsequent crops, and the
interaction of rhizosphere bacteria and fungi are critical
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TABLE 5.3. Effects of red (R) and (far-red) FR light treat-
ment of shoots and root inoculation time on nodule number
for soybean grown in a split-root system.

Inoculation Light treatment
schedule R FR FR.R
Side Side Side
A B A B A B
------------------- No./plant*-----wvouonooo--
AgBg 17442 17232 8+2% 11412  11+4% 12462
Ag_oBg_g 27462 2244 2145% 1944% 24452 18452
AoB) 4 32452 1443% 14232 5128 18442 11432
AoB, ¢ 38+5% 7422 16422 241 29:+8% 4432
AgB¢ g 38172 242 21442 040 32482 010
AgBg 39482 040 22452 040 26452  0+0
Noninoc 0+0 0+0 0+0 0+0 0+0 0+0

*Values are means + SE.

8 Numbers within the same column are significantly dif-
ferent from the noninoculated control at P compared by a
single degree of freedom contrast. Numbers were
transformed by Box-Cox transformation = 0.11 for
homogeneity of variance before analysis.

Letters indicate side of the split root and numbers
indicate inoculation times in days after time zero.

Source: Hunt, Kasperbauer, and Matheny 1987.

aspects of enhanced soil structure during the crop growth
periods. Once the root grows into the soil microsites,
rhizosphere bacteria stimulate production of root exudate,
which in turn is used by the microbes to produce more
growth-stimulating materials and polysaccharides that can
cement and stabilize soil particles. Fungi continue the
process by bridging soil aggregates and roots. Associative
and symbiotic bacteria become established and promote plant
growth by growth regulator production as well as nitrogen
fixation. At this point, interactions of the plant,
rhizosphere microorganism, and environment of both the
shoot and root are dynamic; changes in one part of the
system affect all parts of the system. For instance, plant
responses to changes in factors such as water status and
spectral composition of canopy light are interactive with
the presence and competitiveness of rhizosphere rhizobia.
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This dynamic state of continual interaction and adjustment
is representative of how microorganisms function and
respond in the rhizosphere of agricultural crops. Much
progress has been made in the nearly 90 years since
Professor Hiltner first discussed these interactive
relationships. Yet, we have only begun to understand and
apply rhizosphere concepts to modern agriculture. It is
indeed possible that discovery and application of new
information in the microbial aspects of the rhizosphere
will be vital building blocks for profitable and
environmentally sustainable agriculture enterprises of the
future.
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