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A linkage map of hexaploid oat based on grass
anchor DNA clones and its relationship to other
oat maps

V.A. Portyanko, D.L. Hoffman, M. Lee, and J.B. Holland

Abstract: A cultivated oat linkage map was developed using a recombinant inbred population of;33@ds from

the cross ‘Ogle’ x ‘TAM O-301'. A total of 441 marker loci, including 355 restriction fragment length polymorphism
(RFLP) markers, 40 amplified fragment length polymorphisms (AFLPs), 22 random amplified polymorphic DNAs
(RAPDs), 7 sequence-tagged sites (STSs), 1 simple sequence repeat (SSR), 12 isozyme loci, and 4 discrete-morpholog
ical traits, was mapped. Fifteen loci remained unlinked, and 426 loci produced 34 linkage groups (with 2—43 loci each)
spanning 2049 cM of the oat genome (from 4.2 to 174.0 cM per group). Comparisons withAwdremaps revealed

35 genome regions syntenic between hexaploid maps and 16—34 regions conserved between diploid and hexaploid
maps. Those portions of hexaploid oat maps that could be compared were completely conserved. Considerable conser
vation of diploid genome regions on the hexaploid map also was observed (89-95%); however, at the whole-
chromosome level, colinearity was much lower. Comparisons among linkage groups, both within and/ueonag

mapping populations, revealed several putative homoeologous linkage group sets as well as some linkage groups com
posed of segments from different homoeologous groups. The relationships betweewveaajinkage groups remain
uncertain, however, due to incomplete coverage by comparative markers and to complications introduced by genomic
duplications and rearrangements.

Key words Avena linkage map, comparative mapping, homoeology.

Résumé: Une carte génétique de 'avoine cultivée a été produite a I'aide d’'une population de 136 lignées recombinan-
tes fixées (k.;) issues du croisement ‘Ogle’ x ‘TAM O-301". Un ensemble de 441 marqueurs, dont 355 polymorphis-

mes de la longueur du fragment de restriction (RFLP), 40 polymorphismes de la longueur du fragment amplifié

(AFLPs), 22 AND polymorphes amplifiés au hazard (RAPDs), 7 marqueurs spécifiques de site (STSs), 1 microsatellite,
12 locus isoenzymatiques et 4 marqueurs morphologiques, ont été placés sur la carte. Quinze locus n'ont pu étre pla-
cés, tandis que les 426 autres locus ont été groupés en 34 linkats (ayara d3 bcus) couvrant 2049 cM du gé-

nome de l'avoine (a raison de 4,2 a 174,0 cM par linkat). Des comparaisons réalisées avec d'autres cartes génétiques
du genreAvenaont révélé 35 régions montrant une synténie chez les cartes d’avoines hexaploides et 16 a 34 régions
conservées entre I'avoine diploide et hexaploide. Ces portions du génome pouvant étre comparées se sont montrées
complétement conservées. Un degré de conservation considér@lé &895 %) deségions génomiques diploides a
également été observé sur la carte des hexaploides, tandis qu'au niveau de I'ensemble des chromosomes, la co-linéarité
était beaucoup plus faible. Des comparaisons entre linkats, tant parmi qu’entre les populations de cartographie du genre
Avena ont permis de révéler plusieurs groupes de liaison potentiellement homéologues de méme que certains linkats
composés de segments provenant de différents groupes homéologues. Les relations entre plusieurs linkats du genre
Avenademeurent incertaines cependant en raison de la couverture incompléte des marqueurs permettant les comparai
sons et en raison des complications découlant des duplications et réarrangements génomiques.

Mots clés: Avena carte de liaison génétique, cartographie comparée, homéologie.
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Introduction velop oat linkage maps, but these cannot be compared across
species (Jin et al. 2000). Therefore, development of a
Cultivated oat, Avena satival., is a self-pollinating, hexaploid oat map based on DNA probes that have been
disomic, hexaploid (@ = 6x = 42) species. The genome of mapped in otheAvenaspecies and in other grass species
hexaploidAvenaspecies consists of three basic subgenomesshould help to clarify the genome relationships within the
referred to as the A, C, and D genomes, each of which conAvenagenus and betweefivenaand other grasses.
tains seven pairs of chromosomes (Rajhathy and Thomas The objective of this study was to develop a linkage map
1974). At the cytogenetic level, this type of genome organi of cultivated hexaploid oat and to compare the linkage-rela
zation superficially resembles that of the model allopoly tionships among DNA marker loci in As-genome diploid
ploid crop, bread wheafTriticum aestivumL. (McFadden and ACD-genome hexaploidvenapopulations. Alignment
and Sears 1946). Diploid, tetraploid, and hexaplbidicum  of maps was facilitated by the use of probes selected from
species exist, and there are close relationships between thige Cornell University “Grass Anchor Set” of comparative
A, B, and D genome chromosomes of bread wheat and thodeNA clones (Van Deynze et al. 1998); wheat DNA probes
of the Triticum A, B, and D diploid species relatives, respec from the John Innes Center (Norwich, U.K.), which also
tively (Singh 1993). Furthermore, the three subgenomes dfiave been widely used for genetic mapping in the
T. aestivumclearly represent homoeologous chromosomeGramineae (Devos and Gale 1997); and probes previously
sets that can compensate for each other (Sears 1966). Gaapped on the ‘Kanota’ x ‘Ogle’ cultivated hexaploid oat
netic mapping studies have indicated that the relative ordemolecular map (O’Donoughue et al. 1995).
of DNA fragments is highly conserved among members of
each of the seven homoeologous chromosome groups of t .
Triticeae (Chao et al. 1989; Marino et al. 1996; Nelson et alr_Wlaterlals and methods
199%, 1999, 199%; Van Deynze et al. 1999. Like wheat,  \apping population
cultivated oat has a large genome (1C = 11315 Mb; A population of 136 E-derived F recombinant inbred lines
Arumuganathan and Earle 1991); diploid, tetraploid, andRiLs) was developed by single-seed descent without selection
hexaploid oat species exist; and there seem to be gros$sm 136 K plants randomly chosen from the cross between oat
cytogenetic similarities between the A and C subgenomes dfultivars Ogle A. sativga ssp. sativa L.) and TAM 0-301
the hexaploid oat, and the genomes of the A and C diploidA. sativa,ssp.byzantinaC. Koch.). ‘Ogle’ was also one of the
Avenaspecies, respectively (Leggett and Thomas 1995). Unparents of the hexaploid oat molecular map developed by
ke heat, however, oat lacks a complete set of eteQBOICUafe = 8, (599, B oach generain, pericls wer
Inulllfom_lc orfnullltetrasolinlcll|n_es, Whlch_f_hashhlndered theWere grown in the greenhouse or growth ghambesr, and jrang
ocalization of DNA marker 0cl o Speciiic chromosomes. |: generations were grown in the field at Aberdeen, Ida.
Furthermore, the three hexaploid oat subgenomes are only
segmentally homoeologous (Kianian et al. 1997). Compari—RFLP analysis

sons between restriction fragment length polymorphism g, genomic DNA was isolated from lyophilized leaf and stem
(RFLP) linkage maps of diploid oat and hexaploid oat alsojssye pooled from seven to eight random plants of each RIL or pa
revealed only limited synteny (Kremer et al. 2001; rental variety. DNA isolation and RFLP detection were performed
O’Donoughue et al. 1995). Surprisingly, however, consider according to Veldboom et al. (1994) as modified by Kremer et al.
able synteny of genome regions or segments has been rg2001). DNA samples (2Qg/sample) were digested with each of
ported between a diploid oat linkage map and maps osix restriction enzymesBantl, Dral, EcoRl, EcoRV, Hindlll, and
related grass genera. Alignment of this diploid oat mapSst) and DNA fragments were separated by electrophoresis on 1%
based on & comparaive tanchor” DNA probe set (o genom #3208 S, Toloust  waritr o Buterd M (teram
maps of Triticeae, ricedryza satival.), and maize Zea L P . o

mays L.) revealed significant conservation (71-84%)- be tion, membranes were washd x 20 min at65°C with 0.5x SSC

L 0.15 M NaCl and 0.015 M sodium citrate), 0.1% SDS and ex
tween the genomes of diploid oat and these other cereal spgogeq to X-ray films at -80°C for 1-22 days. To identify polymor

cies (Van Deynze et al. 1985 This result is consistent with - phic DNA probes, parental varieties were screened first. Putatively
data demonstrating a high level of synteny across grass spgodominant markers were preferentially selected over dominant
cies as a whole (Bennetzen and Freeling 1993; Devos andarkers.

Gale 1997; Van Deynze et al. 1995 Based on the putative

synteny of most grass genomes, it is surprising that observegolecular markers

map conservation withidvenais not greater. Understanding  Most of the molecular markers used were DNA clones that pro
this phenomenon will require comparisons of detailed geduced 355 restriction fragment length polymorphism (RFLP) loci

nome maps of hexaploid and diploid oat and other cerealTable 1). An additional 86 marker loci were mapped, and these in
species. cluded amplified fragment length polymorphisms (AFLPS),-ran

domly amplified polymorphic DNAs (RAPDs), sequence-tagged

Previqusly publish_ed_ DNA. . marker Iinkage maps of sites (STSs), a simple sequence repeat (SSR), isozymes, and dis
hexaploid oat are of limited utility for addressing this issue. ate morphological traits.

The first published linkage map of hexaploid oat was based

primarily on oat cDNA clones that did not allow compari Comparative DNA probes

sons with the published maps of other grass species, becausep, order to compare the linkage groups of the cultivated oat map
these clones had not been mapped in other speciggith those of other species, we used primarily DNA clones mapped
(O’Donoughue et al. 1995). More recently, amplified #ag in other grasses (Table 1). The CDO probes represent oat leaf
ment length polymorphisms (AFLPs) have been used to decDNA (Heun et al. 1991). ISU probes originating from oat root tis
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Table 1. Markers used for ‘Ogle’ x ‘TAM 0O-301’' linkage map.

251

No. of No. of Average no. of polymorphic

Marker designation Marker or clone type markers polymorphic loci loci per marker
RFLP markers
BCD Barley cDNA 29 48 1.6
CDO Oat cDNA 65 106 1.6
RZ Rice cDNA 25 45 1.8
oG Oat genomic 2 5 25
WG Wheat genomic 1 3 3.0
PSR Wheat cDNA or wheat genomic 28 35 1.2
KSU T. tauschiigenomic 4 6 15
ISU Maize cDNA 21 45 2.1
(O]151V] Oat cDNA 16 27 1.7
UMN Oat cDNA 8 18 2.2
Adh2 Maize cDNA 1 3 3.0
Disease resistance gene analogs
Srgh Sorghum genomic 4 6 1.5
PIC Maize genomic 2 4 2.0
pLrk, pLw Wheat genomic 2 4 2.0
PCR-based primer sets
E AFLP 2 40 20.0
AA-AD RAPD 11 22 2.0
KV1.9 STS 1 3 3.0
Rastl_4 SSR 1 1 1.0
Amy, Glav Intron 3 4 1.3
Other markers

Isozyme 9 12 1.3

Trait 4 4 1.0

sue cDNA (Rayapati et al. 1994) are referred to here as OISLAFLPs and RAPDs

clones to distinguish them from the maize ISU clones also used on The protocol for AFLP analysis followed that of Hoffman et al.
the same map. UMN clones from the University of Minnesota rep (2000) with two exceptions. First, oat DNA was isolated from
resent oat cDNAs (Kianian et al. 1997). Of the heterologouspjants at the three-leaf stage using the chloroform extraction proce
probes used, BCD probes represent barldgreum vulgarel.)  dure of Doyle and Doyle (1987). Secondly, instead of labeling
leaf cDNAs (Heun et al. 1991); RZ probes represent rice leafecor| primers with P3P]dATP, an infrared dye was attached to
CDNAs (Causse et al. 1994); PSR probes are both cDNA angtcorI primers that were custom-made by the Li-Cor Corp.
genomic clones from wheat (Gale et al. 1995; M.D. Gale, persona{Lincoln, Nebr.). The final amplification products were run in a
communication; Sharp et al. 1989); KSU probes dmticum 7% w/v Long Ranger® polyacrylamide gel inside a LiCor 4200L
tauschii genomic DNA (Gill et al. 1991); and ISU probes are automated DNA sequencer. Primer pairs were selected based on
maize cDNA clones (Pereira et al. 1994). Genomic clones of oatthe number of polymorphisms and strength of amplification ob
OG (Goffreda et al. 1992), and wheat, WG (Heun et al. 1991);served in a previous screening experiment. Polymorphisms were
were developed at Cornell University. A probe for maize genescored visually off of a digitally produced image generated by the
Adh2 (pZmL 184.1) was provided by Dr. E.H. Coe of the Univer Base ImagIR® program. AFLP loci were named according to the
sity of Missouri-Columbia. Several putative disease resistanc@onvention developed by Vuylsteke et al. (1999), where “t” refers
gene probes or disease resistance gene analog clones from othera fragment from ‘TAM 0-301’, and “0” refers to a fragment
cereal crops were also used. PIC20 is a clone oRp&-Dgene of  from ‘Ogle’.

maize (Collins et al. 1998, 1999), which confers resistance to-com The procedure used for RAPD analysis followed that detailed in
mon rust Puccinia sorghiSchwein.). PIC21 is a disease resistance Hoffman and Bregitzer (1996). Primers were selected based on the

gene analog clone that maps near the m&p8&gene, which also  nymber of readable polymorphisms from a previous screening
confers resistance to common rust (Collins et al. 1998). The Lrk1Qnalysis.

clone is a resistance gene analog from wheat that co-segregates

with the Lr10 gene, which confers resistance to leaf riatgcinia

recondita Roberg et Desmaz) (Feuillet et al. 1997). Lw25 is a STSs

clone representing the polymerase chain reaction (PCR) product of The KV1.9 locus was a sequence-tagged site identified by-poly
conserved regions of the nucleotide binding site (NBS) of a genenerase chain reaction (PCR) amplification using primers designed
with an NBS and leucine-rich motif sequence from wheat (C.by Tragoonrung et al. (1992) based on barley Beta-1-Hordein se
Feuillet, personal communication). Disease resistance gene analegiences (GenBank accession X03103; Forde et al. 1985). The
probes sRGH1, sRGH8, sRGH25, and sRGH32 from sorghunprimer sequences for this locus were KV1-GCACCATGA-
(Sorghum bicolor (L.) Moench.) were supplied by Dr. Jeff AGACCTTCCTC-3, and KV9: B5TCGCAGGATCCTGTA
Benetzen of Purdue University. CAACG-3. The Glav3 loci were detected by designing a PCR
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Fig. 1. A linkage map of hexaploid oat constructed using 136 Fecombinant inbred lines from the cross ‘Ogle’ x ‘TAM O-301".
Numbers to the left of linkage group intervals refer to map distances of the intervals (in cM). Numbers at the bottom of the linkage
groups refer to cumulative lengths of each linkage group. Marker loci with tick marks were assigned as framework loci at LOD > 2.0.
Marker loci shown in italics without tick marks were assigned to intervals only (at LOD < 2.0). Probes that produced banding patterns
identical to clones included in the framework map are shown in parentheses with the = sign. Probes sharing all except one-DNA frag
ment with framework markers are shown in parentheses with the ~ sign. Loci demonstrating segregation distortion due to excess of
one homozygous parental classRat 0.05 orP = 0.01, are marked with * and **, respectively. Loci with an excess of heterozygotes

at P = 0.05 orP = 0.01 are marked with T or T, respectively. Numbers in square brackets indicate linkage groups where a probe is
mapped in the ‘Kanota’ x ‘Ogle’ molecular map (numbers) and in Ahatlanticax A. hirtula map (letters).
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Loci with names in boxes correspond to homologous (allelic) loci mapped in the ‘Kanota’ x ‘Ogle’ map, and numbers in bold print in
brackets following such loci refer to the linkage group containing the homologous locus on the ‘Kanota’ x ‘Ogle’ map. The corre
sponding homologous linkage group in the ‘Kanota’ x ‘Ogle’ map is listed in parentheses following the name of the ‘Ogle’ x ‘TAM
0-301’ linkage group. Boxes to the left of linkage groups show regions conserved relative to the corresponding ‘Kanota’ x ‘Ogle’
linkage groups indicated within boxes. Double solid lines to the left of linkage groups demonstrate segments conserved with the indi
catedA. atlanticax A. hirtula linkage groups. Single solid lines show areas putatively rearranged between the ‘Ogle’ x ‘TAM O-301’
andA. atlanticax A. hirtula maps. Figure 1 continued on following pages.
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Fig. 1 (continued.
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primer pair to amplify the first intron of thé. sativallS globulin  CTTGAATC-3 for locus Amy2A and 5TGATGGGGA
seed storage protein, Glav3 (GenBank accession X74741; Tanch&kCAAGAAGAGC-3 and 5ATATCGTCGACCTTCCCCAT-3

et al. 1995). Primer sequences for Glav3 aird GATGGGGA for locus Amy2D PCR amplification, fragment separation, and
TCAAGAAGAGC-3 and B5ATATCGTCGACCTTCCCCAT-3 scoring methods followed Senior et al. (1996).

Primer pairs were also developed to amplify introns of alpha-amy

lase genes alphamy2A (GenBank accession AJ010728) and

alpha-Amy2D (GenBank accession AJ010729; Willmott et al. SSR

1998) originally sequenced frow. fatual. Primer sequences are A simple-sequence repeat (SSR) was discovered within the mRNA
5-GCTACGCCTACATCCTCACC-3 and 5CGCGATCTCTTGC coding region of a thaumatin-like pathogenesis-related protein of
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A. sativasequenced by Lin et al. (1996; GenBank accession L39777)sterase (EST),

A pair of primers was designed to target the SSR region ingbaise,
and the resulting polymorphic locus was designaRestl-4 The
primer sequences aré-6TTCTGCCCATGAAACCCTA-3 and
5-GAGGGTGCATGTGCTGAGT-3 PCR amplification, fragment
separation, and scoring methods followed Senior et al. (1996)

Isozymes

peroxidase (PER),

and phosphoglucomutase

(PGM) assays were from a 10.9% w/v starch (Sigma Chemical
Corp., St. Louis, Mo.) gel run on a discontinuous tris-citrate- lith

ium borate system described in Hoffman and Goates (1990).
Isocitrate dehydrogenase (IDH), 6-phosphogluconate dehydro
genase (PGD), and shikimate dehydrogenase (SKDH) were as

sayed on slices from histidine-HCI pH 6.5 gels (Cardy et al. 1980).

The citric acid gel system of Clayton and Tretiak (1972) was used
Plant culture, enzyme extractions, and electrophoresis were corio produce slices for assays of acid phosphatase (ACP), malate

ducted as described in Hoffman and Goates (1990). Gel slices fatehydrogenase (MDH), and beteacetyl glucosaminidase (NAG).
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Staining schedules for all enzymes except NAG followed that ofages in this population as well, and these were dealt with as in the
Soltis et al. (1983) with minor modifications. The staining assayhexaploid population. Linkage groups referred to/AsBF and

used for NAG is described in Weeden and Marx (1987). AswWAC were initially linked together by a strongly distorted-re
gion, and this resulted in conflicting two-point and multipoint Hnk
Morphological traits age estimates. Therefore, they were separated at LOD 4.0 into

Plumule color (Plc), growth habit (gh), and leaf sheath pubes 9rOUPS with consistent two-point and multipoint map distances.
cence (Lsp) were scored on five to eighigfplants per recombi
nant inbred line grown in 15-cm pots in the greenhouse. Plc wadMap comparisons
scored immediately after emergence, whereas gh and Lsp were The ‘Ogle’ x ‘TAM 0-301’ (OT) map was compared with the
scored at the four- to five-leaf stage. Seed pigmentation (Spg) wa¥anota’ x ‘Ogle’ (KO) map developed by O’Donoughue et al.
scored on bulk samples of seed harvested from these plants.  (1995), and with the maps of diploid ta¥a atlanticax A. hirtula
(Aah, O’'Donoughue et al. 1992; Van Deynze et al. 18p%Bnd
Map construction A. strigosax A. wiestii (Asw Kremer et al. 2001; and updated
Each locus was examined for goodness-of-fit to the expected 1:01€r€). For each comparison, the percent of genome examined was
segregation ratio, ignoring heterozygotes, using yhaest. Loci ~ calculated as the proportion of the total map length in the base spe
that deviated significantly < 0.01) from the expected segregation Ci€s flanked by probes mapped in the other species. The percent of
ratio were checked for influence on map order. Distorted loci thatgénome conserved was calculated as the proportion of the genome
caused ambiguous map order were removed from the frame s&€xamined that could be considered homeologous following Van
quences and assigned only to intervals. Codominant RFLP werk€ynze et al. (1995). If a locus flanking a comparative segment
also examined for goodness-of-fit to the expected ratio of 31:1as mapped to an interval at LOD < 2.0, then the map length of
homozygotes to heterozygotes using jeest. the comparative segment was considered to equal half of that inter
A linkage map was constructed using MAPMAKER 3.0 (Lander val plus the remaining map distance to the locus defining the other
et al. 1987). Linkage groups were established using a minimun®nd of the comparative segment. _
LOD score of 3.0 and maximum map distance of 34.7 cM, using_©9l€’ was a common parent to both OT and KO populations,
the Kosambi (1944) mapping function (equal to 30% recombina therefore some homologous RFLP loci could be identified between
tion frequency), with the “join haplotypes” option. Marker loci the two maps. Homologous loci were identified by comparingfrag
were ordered within linkage groups using the “order’ commandMent sizes of bands from ‘Ogle’, ‘Kanota’, and "TAM O-301’ pro-
with a LOD score of 2.0. Loci placed at LOD < 2.0 were assignedduced by the same restriction enzyme — probe combination and
to intervals only. mapped in both KO and OT. The sizes of bands mapped in KO
Of the 30 linkage groups initially produced at LOD 3.0, two Wereé obtained from the GrainGenes website <http://
(OT1 and OT8) were much larger than the other groups and inWheat.pw.usda.gov/ggpages/kxo_autorads.html>.  Where  such
cluded 114 and 72 loci, respectively. These linkage groups inl’0mologies were identified, loci in the OT map were given the
cluded about 50% of the distorted loci, therefore we suspected tha&t@Me name as their homologous loci in the KO map.
some of the linkages within these groups were spurious. Further-
more, following multipoint analyses, fewer than half of the mark- Results
ers in each of the two groups were placed uniquely. We increased
the LOD score for linkage among markers within these groups un-,

. > .. ) . Ogle’ x “TAM 0-301’ linkage map
til the majority of loci in the resulting smaller linkage groups could
be placed uniquely as framework loci. This required a LOD score Of 471 DNA clones screened, 70% (329) detected DNA

of 5.7 for OT1, and of 3.5 for OT8. Next, six to eight loci defining fragment size polymorphism between ‘Ogle’ and 'TAM O-
the ends of each of the subgroups were tested for linkage using th#g01’ digested with at least one of six restriction enzymes.
“near” command. When linkage between flanking loci of a pair of Two-hundred eight DNA clones used for mapping had an av
subgroups was significant at LOD > 2.0 and recombination-frac erage of 1.7 polymorphic loci per clone (range 1-7), preduc
tions between loci in different subgroups were consistent with theng a total of 355 segregating RFLP loci. In addition, 40
hypothesis that they formed a single linkage group, subgroup@\FLP, 22 RAPD, 7 STS, 1 SSR, 12 isozyme, and 4 discrete
were combined into larger linkage groups. Finally, most likely or morphological trait loci were mapped, providing a total of
ders of loci determined by multipoint analyses were verified manu 441 loci. Three-hundred twenty-one (73%) loci were

ally by comparison with two-point linkage estimates. Following . e : o
this procedure, OT1 produced three additional linkage groupsCOdommant' Fifty-nine marker loci (13%) demonstrated seg

3 tion distortion B < 0.05) with 24 of them (5%) being
(OT31, OT32, and OT33); and two segments separated from oTe9a .
were joined to OT1 and OT34, respectively, using the uassignud|storted atP < 0.01. Out of 441 marker loci, 426 formed 34

command. linkage groups (containing from 2 to 43 loci each) spanning
Linkage group OT32 remained problematic: it was the only one2049.2 cM of the oat genome (from 4.2 to 174.0 cM per
in which more than half of the loci were assigned only to intervals.group; Fig. 1). Two-hundred eighty-three loci (64%) were
This linkage group, therefore, was ordered by first choosing a startplaced uniquely at LOD > 2.0; 25 loci (6%) co-segregated
ing framework of five loci that were well distributed along the with other mapped loci; and 14 loci remained unlinked: Av

length of the linkage group and had consistent two-point andarage map density was 7.2 ¢cM between loci.
multi-point recombination fraction estimates. The remaining loci

were added using the “build” command. A. strigosax A. wiestii linkage map

The addition of 23 marker loci to the diploid oat map pre

Extension of A. strigosax A. wiestii diploid oat map ; :
A diploid oat mapping population was developed from a crosswous'y developed by Kremer et al. (2001) resulted in the

betweenA. strigosaSchreb. (Cl 3815) and\. wiestii Steud. (CI c_omblnl_ng of their Ilnkage_ groupAswB and Asw- _|nto a
1994) (Rayapati et al. 1994). A map based on 1ggrecombinant  Single linkage group, designated here &swBF (Fig. 2).
inbred lines derived from this cross and previously developed bySimilarly, linkage groupsAswA and AswC were combined
Kremer et al. (2001) was extended by including 23 additionalinto AswAC (Fig. 3). A total of 204 marker loci produced
RFLP loci. Segregation distortion appeared to cause spurious linkeight linkage groups spanning 861.9 cM (range 2.9-201.1
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Fig. 2. Linkage groups of ‘Ogle’ x ‘TAM O-301’ (OT) homoeologous to linkage grodgwBF of A. strigosax A. wiestiimap. Re
gions conserved with respect fa atlanticax A. hirtula (Aah) linkage groups are superimposed as boxes Wi linkage group des
ignations (D, E, and F) indicated within. Comparative anchor loci on conserved segments showing colinearitjdb ithep are
underlined. Markers exhibiting segregation distortiorPat 0.05 are marked with *, those exhibiting segregation distortioR &t 0.01
are marked with **,
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cM) with an average density of 6.5 cM per locus (Figs. 2-5)./Ogle’ genotype (Fig. 1). The longest and most severely dis
This is similar to the original map published by Kremer ettorted segment covered 52 cM on OT31 (flanked by ISU35B
al. (2001), which had a total map length of 880 cM and avand WG110B) and had an excess of the ‘TAM 0O-301’
erage density of 5 cM. The major changes were the groupingenotype. A second region with excess of the ‘TAM O-
of four linkage groups into two for a total of seven major 301’ genotype was on OT12 (ISU73-I1SU81). Three re
linkage groups equal to the haploid chromosome number ojions of OT32 (ISU136ERgd2 PSR312-PSR154B;
diploid oat f = 7), plus the addition of a very small linkage Acp2-PSR129A) also had an excess of the ‘TAM 0O-301’
group @Aswd) consisting of only two tightly linked loci, each genotype.

of which was highly distorted (Fig. 5). The observed mean frequency of heterozygotes among
321 codominant loci was 3.5%, in good agreement with the
Segregation distortion expectation of 3.1% heterozygosity. The observed exceeded

Out of 59 distorted markers in the hexaploid map, only 12the expected frequency of heterozygotes at the 5% probabil
(20%) were not linked to at least one other distorted locusity level at 15 loci and at the 1% level at 6 loci. The greatest
The majority of distorted loci formed extended regions (offrequency of heterozygotes observed at a single locus was
2-19 loci; Fig. 1) within which all distorted loci exhibited an 10% at UMNB815. Two loci with excess heterozygosity were
excess of the same parental genotype. Segments showif§served on each of linkage groups OT4, OT8, OT15, and
segregation distortion on linkage groups OT8 (ISU72A-OT24 (Fig. 1).
sRGH25A), OT16 (flanked by AA12.105 and e40m48- In the Aswmap, only 6 of 38 loci with segregation distor
147.0), and OT34 (CDO524-I1SU77C) had an excess of théon (16%) were not linked to other distorted loci. The other
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Fig. 3. Linkage groups of ‘Ogle’ x “TAM O-301’ (OT) homoeologous to linkage grodswAC of A. strigosax A. wiestiimap. Re
gions conserved with respect fa atlanticax A. hirtula (Aah) linkage groups are superimposed as boxes Wi linkage group des
ignations (A, D, E, and F) indicated within. Comparative anchor loci on conserved segments showing colinearitpdb thap are
underlined. Markers exhibiting segregation distortiorPat 0.05 are marked with *, those exhibiting segregation distortioR &t 0.01

are marked with **,
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distorted loci mapped to four areas with two of the regionsand 50 were distributed among nonsyntenic segments (Table
skewed toward the\. strigosaparent and two toward the 3). Marker order within the syntenic segments was nearly
A. wiestiiparent. The most heavily distorted segment was ondentical with some minor exceptions, and the correlation

linkage groupAswBF (Fig. 2).

Distribution of duplicated loci on the ‘Ogle’ x ‘TAM

0-301" map

All but one linkage group of the ‘Ogle’ x ‘TAM O-301’

between map distances on the two maps was0.73 P <
0.0001; Table 3). In most (22 of 35) cases the lengths of OT
syntenic genome regions exceeded the corresponding ones
of the KO map. The discrepancies were generally not very
large, but in seven cases the distance of the segment in the

map contained markers that cross-hybridized to sequenc&€3T map, and in one instance the distance on the KO map
on another linkage group of the same map. Markers fronexceeded the distance of the homologous segment from the
any one linkage group collectively cross-hybridized to 1 toother map by more than two times.

15 other linkage groups (Table 2). Thirteen linkage groups Direct evidence for some syntenous relationships between
contained markers that cross-hybridized to more than 6 othehe OT and KO maps was provided by homologous RFLP
linkage groups (Table 2). Some duplications could be unamloci mapped in both populations. Homologous loci revealed
biguously classified as paralogous because they mapped the following linkage group homologies: OT1 = KO22, OT3 =
the same linkage group. Such paralogous pairs were detect&@®3, OT4 = KO5, OT7 = KO21, OT8 = KO6, OT10 =

on 11 linkage groups, and were revealed by 17 probes.

Alignment of hexaploid oat maps

The ‘Ogle’ x “TAM 0-301’ (OT) map and the ‘Kanota’ x

KO28, OT15 = KO23, OT16 = KO30, OT23 = KO14, OT29 =
KO4, OT32 = KO17, OT33 = KO10, and OT34 = KO11
(Fig. 1). Only one discrepancy was observed among such
homologies; BCD1261 mapped to OT3, near BCD1150A

‘Ogle’ (KO) map shared 88 polymorphic probes, which and CDO590B, both of which were also mapped on KO3.
identified 135 loci covering 38% of the KO map and 159 The fragment corresponding to BCD1261 on the OT map
loci covering 39% of the OT map (Table 3). Of these 159was named BCD1261A on the KO map and was localized to
markers, 109 were considered to map to syntenic regionKO1. This discrepancy could be due to complications itro
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Fig. 4. Linkage groups of ‘Ogle’ x ‘TAM 0-301’ (OT) homoeologous to linkage groigwD of A. strigosax A. wiestiimap. Regions
conserved with respect tA. atlanticax A. hirtula (Aah) linkage groups are superimposed as boxes Vil linkage group designa
tions (A, D, E, and F) indicated within. Comparative anchor loci on conserved segments showing colinearitpéd thap are un
derlined. Markers exhibiting segregation distortionPat 0.05 are marked with *, those exhibiting segregation distortioR &t 0.01
are marked with **,
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duced by the chromosome 7C-17 translocation, correspond Among the linkage groups of thaah diploid map, seg

ing with linkage groups KO3 and KO24, which differed ments of the A, D, and E linkage groups were the best con

between ‘Kanota’ and ‘Ogle’ parents (Zhou et al. 1999). It isserved on the OT map (Fig. 1). The three largest of eight

also possible that the KO loci or banding patterns were mislinkage groups of the update&swmap @AswWAC, AswD, and

labeled, because the BCD1261B locus mapped to KO3. AswBF) shared large syntenic regions with the OT aah
maps (Table 3; Figs. 2—4). As expected, the greatest amount

Alignment of hexaploid and diploid Avenamaps of synteny was observed t_Jetween the two diploid As-
The ‘Ogle’ x ‘TAM 0-301' map andA. atlantica x genome mapsé'\ah and Asw (Figs. 2-5).AswBF haq nearly
A. hirtula (Aah) map shared 97 polymorphic probes, which _complete |dentlty toAahE, based on.13 markers with nearly
identified 162 loci covering 45% of the OT map and 108 loci identical orders in the two maps (Fig. ZswAC and AatD
covering 68% of theAah map (Table 3). The OT and Shared 4 markers, arranged in similar but not identical orders
A. strigosax A. wiestii (Asw) maps shared 70 polymorphic (Fig. 3). AswD and AahA shared 8 markers, arranged in
probes, which identified 120 loci covering 28% of the OT identical order on the two maps (Fig. 4).
map and 80 loci covering 55% of thesw map (Table 3). Several putatively syntenous regions differed strikingly
Thirty-four syntenic segments, ranging in size from 1 to 78for map lengths between the OT aWdw maps. The dis
cM, were identified between the OT map and thah map. tance between BCD808D and PIC20B on OT2 was 50 cM,
Sixteen syntenic segments, ranging in size from 1 to 83 cMyhereas loci identified by the same two probes were sepa
were identified between the ‘Ogle’ x ‘TAM O-301’ map and rated by 109 cM ormAswBF. A region delimited by ISU37
the Asw map. Correlations between the lengths of the-conand CDO795 was 43 cM on OT31 and 114 cM AswBF
served regions in diploid and OT maps were moderately higlfFig. 2). Similarly, the distance between OISU1774B and
for the Aah map ¢ = 0.56) and high for théAswmap ¢ = CDO708B was 19 cM on OT4 and 46 cM éswD (Fig. 4).
0.86) (Table 3). These differences were sometimes associated with putative
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Fig. 5. Linkage groupsAsvE, AswG, AswH, Asw, and AswJ of

the updated linkage map of diplo. strigosax A. wiestii popu
lation constructed using 100sf8erived recombinant inbred lines
from the cross CI3815 x CI1994. Numbers to the left of linkage
group intervals refer to map distances of the intervals (in cM).
Numbers at the bottom of the linkage groups refer to cumulative
lengths of each linkage group. Marker loci with tick marks were
assigned as framework loci at LOD > 2.0. Marker loci shown in
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to be homoeologous if they had syntenous regions defined
by at least three markers in common. Homoeology was de
fined transitively. For example, OT1 and OT10 shared no
markers (Table 2). Nevertheless, OT1 was clearly
homoeologous to OT31 amiiswBF, and both of these link

age groups were, in turn, substantially homoeologous to
OT10 (Fig. 2). Therefore, OT1, OT10, OT31, aAdwBF
were considered to be members of a common homoeologous

italics without tick marks were assigned to intervals only (at LOD set (Table 4). Furthermore, we allowed some linkage groups

< 2.0). Loci demonstrating segregation distortiorPat 0.05 orP

(e.g., OT8) to be considered members of more than one

= 0.01, are marked with * and **, respectively. Double solid lines homoeologous set (Table 4). This was necessary because
to the left of linkage groups demonstrate segments conserved witlthere is substantial evidence that homoeologywenacan
the indicatedA. atlanticax A. hirtula linkage groups.
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be defined for segments of chromosomes, but not necessar
ily for whole chromosomes (Kianian et al. 1997; Kremer et
al. 2001; O’Donoughue et al. 1995).

Discussion

Hexaploid oat map

Most (85%) of the 441 loci used in this study were
mapped previously in other cereal species as well as in
hexaploid and diploidAvena The resulting hexaploid oat
map was 2049 cM in length, significantly longer than the
1482-cM ‘Kanota’ x ‘Ogle’ map originally published by
O’Donoughue et al. (1995), but similar to the updated ver-
sion of the KO map, which expanded to 2351 cM following
the inclusion of 263 AFLP loci (Jin et al. 2000). The OT
map was based on a population that was approximately
twice as large as the KO mapping population and included a
greater proportion of codominant markers than the KO map.
Furthermore, probe selection for the OT map was aided by
previous studies, including the KO map (O’Donoughue et al.
1992). These advantages contributed to a greater proportion
of loci being mapped to unique positions at LOD 2.0 or
greater (64% in OT vs. 52% in KO). Furthermore, the OT
map had a lower proportion of loci that co-segregated with
the framework loci (6% vs. 13%) and a slightly lower pro
portion of unlinked loci (3% vs. 5%). Finally, the chromo
some 7C-17 translocation may have complicated linkage
analysis in the ‘Kanota’ x ‘Ogle’ population (O’'Donoughue
et al. 1995; Zhou et al. 1999), but would not have introduced
complications into this map, because both parental lines pos
sess the same form of the interchange (E.N. Jellen, personal
communication).

Segregation distortion

Segregation distortion may have been caused by chromo
somal microrearrangements related to introgression of alien
segments carrying desirable genes from wild germplasm. For
example, crown rust resistance genes were introgressed from

genome rearrangements. For example, a segment flanked By sterilisinto ‘TAM O-301' (McDaniel 1974). Another pas

loci identified by PLRK10 and CDO708 and a segment de sible cause of segregation distortion is natural selectien, al
fined by OISU2000 and CD0O202 was inverted on OT4+ela though we minimized this as much as possible. Of 140 F
tive to AswD (Fig. 4). A similar inversion may have seeds from the cross that were originally chosen to initiate
occurred betweeswBF and OT31 (Fig. 2).

Duplications, homoeology, and rearrangements

Alignment of the four Avena maps revealed several avoided. Finally, genes causing gametic or zygotic lethality
putative homoeologous linkage group sets as well as sonmay have caused segregation distortion. The heavily dis
linkage groups composed of segments from differentorted region on OT31 was homoeologous to a region on
homoeologous groups (Table 4). We declared linkage group&swBF that was also strongly distorted (Fig. 2). These re

the population, only four failed to germinate. A recombinant
inbred line was developed from each of the remaining 136
F, plants, suggesting that natural selection was largely
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Table 2. Duplications between linkage groups of the ‘Ogle’ x ‘TAM 0-301’ linkage map identified based on linkage groups sharing
cross-hybridizing markers.

Reference No. of cross-hybridized
linkage group Linkage groups sharing cross-hybridized markers with reference linkage group linkage groups
oT1 OT2 (3; 40.3 cM; 56%), OT3, OT4 (2; 15.9 cM; 22%), OT11, OT16, OT20, OT30, OT319
(9; 30.1 cM; 42%), OT32
oT12 OT1 (3; 54.3 cM; 56%), OT5, OT6, OT10, OT11 (2), OT15, OT16 (2; 25.0 cM; 18%), 12
0T20, OT22 (2; 2.8 cM; 3%), OT32, OT33, OT34 (2; 38.9 cM; 40%)
oT3 OT1, OT4 (3; 61.0 cM; 69%), OT8, OT9, OT15, OT18, OT30, OT31, OT32, OT34 10
OT4 OT1(2; 36.2 cM; 36%), OT3 (3; 39.2 cM; 39%), OT5, OT7, OT8 (9; 14.6 cM; 14%), OT92
OT10, OT16, OT28, OT29 (3; 9.7 cM; 10%), OT31, OT34
OT5 0OT2, OT4, OT6, OT15, OT32 5
OoT6 0OT2, OT5, OT8, OT11, OT16 5
oT7 0OT4, OT11 2
oT8 OT3, OT4 (9; 15.1 cM; 9%), OT6, OT9, OT10, OT12, OT15, OT16, OT20 (2; 37.8 cM; 23%}
0T28, OT29 (4; 5.2 cM; 3%), OT30, OT32 (8; 53.1 cM; 33%), OT34 (2; 10.0 cM; 6%)
oT9 OT2, OT3, OT4, OT8, OT15 (3; 10.9 cM; 22%), OT16 6
OT10 OT2, OT3, OT4, OT8, OT31 (4; 34.6 cM; 69%), OT32 6
OoT11 OT1, OT2 (2), OT6, OT7, OT12, OT19, OT20 7
oT12 OoT8, OT11 2
OoT13 OT14, OT16 (2; 28.3 cM; 76%), OT24, OT26, OT34 (3; 29.4 cM; 79%) 5
OoT14 OT13, OT16 2
OoT15 OT2, OT3, OT5, OT8, OT9 (3; 11.2 cM; 10%), OT16 (2; 7.3 cM; 7%), OT20 (2), OT30,11
OT31, 0T32 (2; 41.6 cM; 38%), 34 (3; 72.5 cM; 67%)
OT16 OT1, OT2 (2; 26.6 cM; 19%), OT4, OT6, OT8, OT9, OT13 (2; 36.3 cM; 26%), OT15 (212
5.1 cM; 4%), OT26, OT31, OT32, OT34 (2; 48.5 cM; 35%)
oT18 OT31 (2; 0.8 cM; 5%) 1
OT19 OT11 1
OT20 OT1, OT2, OT8 (2; 16.4 cM; 25%), OT11, OT15 (2; 6.2 cM; 9%), OT30, OT32, OT34 8
0oT22 OT2 (2), OT26, OT30, OT33 (2), OT34 5
oT23 0T34 1
0T24 OT13, OT32, OT34 3
oT25 oT31 1
OT26 OT13, OT16, OT22 3
oT127 0T32 1
oT28 OT4, OT8 2
0T129 OT4 (2; 0.8 cM; 4%), OT8 (4; 5.2 cM; 25%) 2
OT30 OT1, OT3, OT8, OT15, OT20, OT22, OT32, OT33, OT34 (3; 12.1 cM; 25%) 9
OT31 OT1 (9; 89.3 cM; 51%), OT2, OT3, OT4, OT10 (4; 40.4 cM; 23%), OT15, OT16, OT18 9
(2; 24.7 cM; 14%), OT20, OT32
0oT32 OT1, OT2, OT3, OT5, OT8 (8; 50.3 cM; 49%), OT10, OT15 (2; 35.2 cM; 34%), OT16, 15
OT20, OT24, OT27, OT30, OT31, OT33 (8; 34.8 cM; 34%), OT34
0oT33 OT2 (2), OT22 (2), OT32 (8; 33.3 cM; 42%), OT34 4
OT34 OT2 (2; 71.2 cM; 43%), OT3, OT4, OT8 (2; 15.4 cM; 9%), OT13 (3; 47.2 cM; 29%), 14

OT15 (3; 11.4 cM; 7%), OT16 (2; 70.8 cM; 43%), OT20, OT22, OT23, OT24, OT30 (3;
11.3 cM; 7%), OT32, OT33

Note: If the cross-hybridizing markers identify syntenic regions, the number of shared markers, and the map lengths (in cM) and proportions (%) of
syntenic segments on the reference linkage group are given in parentheses.

gions are homoeologous fahE, which in turn is related to groups and on differeMAvenamaps. For example, markers
chromosomes 5 of Triticeae and 3 of rice (Van Deynze et allocated in regions homoeologous to one enddahA were
199%). Segregation distortion in the corresponding chremo linked to resistance gene analogs in both the OT Asd/
somal regions ofTriticum tauschiiand rice due to genes maps (OT21, OT29, OT8, andswD; Fig. 4) and in other
causing gametophytic lethality has been documented (Boykoereals (O’'Donoughue et al. 1996; Van Deynze et al. h995
et al. 1999; Causse et al. 1994; Faris et al. 1998; Xu et aMWise et al. 1996; Yu et al. 1996). Similarly, the sSRGH8
1997). probe detected a locus on syntenic segmentdsyBF and
OT1 (Fig. 2). Furthermore, the SRGH8 locus AswBF was
Comparative mapping of putative disease resistance genes linked to OG176, which Rooney et al. (1994) localized near
We observed numerous correspondences between regioas A. strigosa derived crown rust resistance gene in
containing resistance gene analogs on different linkagdexaploid oat. Finally, loci detected by the probe 1SU102
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Table 3. Comparisons between the ‘Ogle’ x “TAM 0-301' (OT) map and linkage maps of ‘Kanota’ x ‘Odleatlanticax A. hirtula,
andA. strigosax A. wiestii populations based on shared markers.

Map Map Map No. of Range of no. of Range of Correlation8 between

Mapping coverage  coverage conservation syntenic loci per syntenic syntenic segment map distances of
population by OT (%) in OT (%) (%) segments segment size (cM) syntenic segments
‘Kanota’ x 38 39 100 35 2-13 1.6-96.1 r=0.73%*

‘Ogle’
A. atlanticax 68 45 95 34 2-7 1.2-77.8 r=0.56***

A. hirtula
A. strigosax 55 28 89 16 2-10 1.1-82.9 r=0.86***

A. wiestii

2Spearman rank correlations.
***Sjgnificant at the 0.001 probability level.

Table 4. Suggested homoeologous set assignments of linkage groups and linkage group segments from ‘Ogle’ x ‘TAM O-301’,
‘Kanota’ x ‘Ogle’, A. atlanticax A. hirtula, and A. strigosax A. wiestiimaps.

A. atlanticax  A. strigosax

‘Ogle’ x ‘TAM O-301" ‘Kanota’ x ‘Ogle’ A. hirtula A. wiestii

OT3, OT4 (BCD1150B-CD0618), OT8 KO1, KO3, KO4, KO5 (ACOR254A-UMN51A), AahA AswD
(UMN214B-RZ390A), OT29 KO6 (EstA-CDO82)

OT8 (PSR160A-BCD1421A), OT9, OT15 KO6 (CDO1419-UMNB826), KO7, KOF) KO17  AahD AswAC
(RZ892B-1SU47B), OT32, OT33

OT1, OT2, OT10, OT13, OTE OT15 KO11, KO22, KO23, KO24, KO27, KO28, KO32 AahE AswBF

(CD0O412B-01SU582B), OT16 (CDO1090B-
0IsuU2287B), OT31, OT34

OT6, OT11 (RZ444B—-ISU150A) KO15 AahC Aswl

OT4 (CD0O1387-CD01081B), OT16 KOS5 (BCD1897A-AvnB), KO30 AahF AswE
(CD0O344B-CD0O398)

OT30 KO33 AahG —

#Assignment to homoeologous set based on only a single homologous locus mapped in both ‘Ogle’ x ‘TAM 0O-301" and ‘Kanota’ x ‘Ogle’ maps.

mapped close to SRGH8a on OT16 and PIC21 on OT2@ous toAahD (Fig. 3). Similarly, bothAswB and AswF were
(Fig. 1). However, no putative resistance genes werayntenous to portions gfahk (Fig. 2), and thereforAswBF
mapped in OT segments homoeologous to the end of consistent with the expected homology of diploid As-
AswWAC, to which a cluster of known crown rust resistancegenomeAvenataxa. Furthermore, these new groupings ex
genes map (Kremer et al. 2001; Wise et al. 1996). Kremer éhtibited good colinearity with some OT linkage groups
al. (2001) also mapped five such putative disease resistan¢Eigs. 2 and 3).

genes directly in theAsw population, and found that none  Most of the OT map that could be considered to be-con
were linked to this resistance gene cluster. If the position okerved relative to the diploidah map corresponded with
disease resistance genes remains consistent adwmsa  linkage groupsAahA, AahD, and AahE. Of the total con
species, however, we would predict that disease resistanserved OT map length, 38% was syntenic withhE, 28%
genes exist at the ends of OT32, OT33, and KO17, in rewith AahD, and 17% withAabA. Most other regions of the
gions that are homoeologous to thswAC segment that OT map with comparative loci exhibited interchanges and
contains the rust resistance genes (Fig. 3), and is in turn alsearrangements relative to theah map (Fig. 1). For exam

homeologous tAalD. ple, OT2, OT15, and OT34 were highly rearranged relative
to the Aah map (Fig. 1). In summary, conservation of the

Conservation and rearrangements among theivena diploid and hexaploid oat linkage maps was restricted pri

genomes marily to segments of chromosomes, and rearrangements

Adding 22 loci that exhibited segregation distortion to theprevailed at the level of whole chromosomes. We found
Aswmap allowed us to combine linkage groupswA and  greater conservation between the OT and KO hexaploid
AswC into AswAC and AswB and AswF into AswBF. This  maps than between diploid and hexaploid maps (Table 3).
updated map exhibited improved colinearity with the diploid Following the definition of genomic conservation given by
A. atlanticax A. hirtulamap (Van Deynze et al. 198prela  Van Deynze et al. (1993, we found that the hexaploid oat
tive to the originalAswmap (Kremer et al. 2001). For exam maps demonstrated 100% genome conservation. Yet sub
ple, combining AswA and AswC into a single group stantial uncertainty about the relationships of the linkage
increased the length of a segment that seems to be hemolgroups of the two maps remains. We proposed assignments
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of some linkage groups to homoeologous sets, but these aBeynze et al. 199%. Interpretations of comparisons -be
signments are not definite, and even so account for only 18veen the OT map and genetic maps of other grass species
of 34 OT linkage groups, 18 of 38 KO linkage groups, and 5should be made with the understanding that not all of the
Asw linkage groups (Table 4). Comparisons across mapshromosomal relationships withivenaare clear yet. Nev
helped to define the homeoelogous sets, but the relationshigstheless, in the same way that comparisons between
between linkage groups in different maps will remain uncer hexaploid and diploicAvenamaps were helpful in better un
tain until the relationships among linkage groups within thederstanding the relationships within hexaploid maps, cross-
same hexaploid map are determined. The number of differgenera comparisons may also help to improve our under
ent OT linkage groups to which the markers on a single OTstanding of genomic relationships withikvena Finally, the
linkage group cross-hybridized was often greater than 1@T map is based on reproducible recombinant inbred lines
(Table 2), demonstrating the difficulty of determining that can be evaluated phenotypically in multiple environ
homoeology of linkage groups within the OT map. ments. The parents of the population are divergent for
A major complication in assigning linkage groups to growth habit, region of adaptation, and crown rust
homoeologous sets in oat is the simultaneous existence ¢¢sistances. Therefore, the genes controlling these traits can
orthologous genomic duplications that resulted frombe mapped in the population. The larger size of the OT-map
polyploidy and those that resulted from other mechanismsping population relative to the KO population should pro
The latter represent nonhomoeologous paralogous duplicaide better ability to detect and localize genes affecting both
tions, but may not be distinguishable from homoeologougliscrete characters and quantitative traits of agronomic im
(orthologous) duplications on the basis of mapping datagortance.
alone. Until linkage groups can be assigned to chromo
somes, assignments to homoeologous sets must remain pu
tive. Additional complications arise because paralogou cknowledgements
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