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I. INTRODUCTION

Epistasis is the interaction of alleles at different loci. The value of an allele
or genotype at one locus depends on the genotype at other epistatically
interacting loci, complicating the picture of gene action. A seemingly
“favorable” allele at one locus may be an “unfavorable” allele in a dif-
ferent genetic background. There are well-defined cases of interactions
occurring at the molecular level between gene products, but the rela-
tionship between molecular interactions and complex phenotypes is
often not clear. Classical quantitative genetics methods relate observable
phenotypic measures to the aggregate statistical effects of alleles and
allelic combinations in specific populations. Genetic components of vari-
ance are population-dependent, often poorly estimated, and do not nec-
essarily reflect the relative importance of different modes of gene action.
DNA markers have simplified the direct estimation of gene action effects,
and recent QTL and population genetics studies have revealed that epista-
tic gene action is more important for plant vield and fitness than was pre-
viously evident. Implications of strong epistasis for plant breeding
include: (1) epistatic variance can shift to additive variance under drift
or inbreeding; {2) epistatic variance contributes to “temporary” response
to selection in outcrossing populations that can be captured as a form of
heterosis using appropriate breeding procedures but may be otherwise
squandered; and (3) fitness or vield is not a simple function of allele fre-
quencies, resulting in rugged adaptive landscapes filled with local fitness
optima on which breeding populations can become stranded. If epista-
sis is important, then genomics tools can be used to identify the nature
and components of interacting genic systems and marker-assisted selec-
tion schemes can be designed to exploit epistasis.

The literature on theory of and empirical evidence for epistasis in
crops is reviewed here. Explicit formulations for additive, dominance,
and epistatic genetic effects and variances; inbreeding depression; het-
erosis; and response to selection are presented to unify the discussion
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of the various aspects and implications of epistasis. These formula are
given in terms of a two-locus, two-allele model for diploids and are not
found as such elsewhere in the literature to my knowledge. Verbal expla-
nations for the implications of these formulas are given, and the reader
not interested in mathematical detail can skip the equations with little
loss of understanding,

II. GENE ACTION AND STATISTICAL EFFECTS

Epistasis is the dependence of allelic effects at one locus on the geno-
type at a second locus. Epistasis, then, is an interaction of alleles at dif-
ferent loci, and so is a form of non-additive gene action. The terms
additive and nen-additive can be confusing because their meaning
depends on whether the scope of inference is a single locus or muitiple
loci (Falconer and Mackay 1996, p. 119). Additive gene action in refer-
ence to a single locus implies the lack of dominant gene action. Addi-
tive gene action in reference to two or more loci refers to the lack of
epistasis (Table 2.1). Furthermore, confusion arises because epistasis to
classical geneticists may refer strictly to the masking effect of dominant
alleles at one locus on recessive homozygotes at another locus, while
epistasis generally is taken by statistical geneticists to mean any form of
nan-allelic interaction (Phillips 1998}

In the absence of epistasis, the total genetic value for an individual is
simply the sum of the individual locus genotype values because the loci
are independent, For example, there can be additive gene action within
a locus A, additive and dominance effects within a locus B, and addi-
tive gene action between the two loci (Table 2.1). The additivity between
loci in the example in Table 2.1 is demonstrated by the consistency of
differences among genotypes within one locus across genotypic classes

Table 2.1. An example of two-locus genatypic values that do not exhibit epistasis. The
total genotypic value is the sum of the individual locus genotypic values.

Genotype at locus B

Genotype at Unweighted
locus A BB, BB, BB, marginal mean
AA, 20 20 10 16,7
AA, 15 15 5 11.7
AA, 10 10 i 6.7
Unweighted marginal mean 15 15 5
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at the other locus. For example, A,A, differs from A +A; by a value of 5,
whether the genotype at locus B is B,B,, B,B,, or B.B, (Table 2.1).

Quantitative genetic models can be developed that incorporate the
gene action effects of each locus plus the effects of interactions between
loci affecting the trait. Such models are useful because they provide a
means to define parameters that can be estimated from phenotypic data
and that can be related to impartant concepts such as heritability and
response to selection. Explicitly defining the components of the model
allows us to understand the relationship between gene action effects and
statistical genetic parameters such as additive genetic variance.

The simplest quantitative genetic model that includes epistasis is a
two-locus model in which each locus has two alleles (Table 2.2). The
additive and dominant gene action effects at each locus can be defined
in a manner analogous to the classical definitions given by Falconer and
Mackay (1896, Chap. 7), ignoring epistasis. For a non-epistatic model,
the additive gene action effect at locus A (a?) is half the difference
between the values of the A;A, and AA; genotypes. In the two-locus
epistatic model, ¢* is defined as half the average difference between
these genotypic classes measured in either a B,B, or B,B, genotypic
background (Tables 2.2 and 2.3). The dominance gene action effect of
locus A (d4) is the difference between the heterozygote A,A; and the
average of the two homozygous genotypes at the A locus, if epistasis is
ignored. To include epistasis in the model, d* is defined as the average

Table 2.2. Genotypic values and unweighted marginal means of twa-locus, two-allele
model of gene action.

B-locus genotype

A-locus
genotype B,B, BB, B.B, Marginal mean
AA, Gigq = Gy = anz = Gi.=

m+a®+a’+aa m+a*+d¥+ad m+a’—a—aa m+a®+{1/3)d*+(1/3)ad
A A, Gian = G121z_: Gizzy = G =

m+d*+aP+da m+d*+d%+dd m+d*—at—da m+d*+{1/3)d%+(1/3)dd
A4, Gaayy = Gy = Gzzz:z = Gy =

m—-a’+af—aa m—a*+d"—ad m-a*—af+aa m-a®+(1/3)d®—(1/3)ad
marginal G = Gz = G ;= G =
mean m+1/3)dMa®  m+{1/3)d*+d® mal1/2)d%—a® m+(1/3)d*+(1/3)d®

+(1/3)da +(1/3)dd -(1/3)da +(1/9)dd




2. EPISTASIS AND PLANT BREEDING 31

difference between A, A, and the mean of the two homozygous genotypes
at the A locus measured in either a B,B, or B,B; genotypic background
(Tables 2.2 and 2.3). One can also define four epistatic gene actions in
this system (Table 2.3). Additive-by-additive gene action (aa) refers to
the difference between additive gene action at locus A in B,B; homozy-
gotes and B,B, homozygotes. Equivalently, it refers to the difference
between additive gene action at locus B in A +A; homozygotes and A,A,
homozygotes. Additive-by-dominant gene action (ad) refers to the dif-
ference between the additive effect at locus A in B, B, heterozygoles and
in B;B; and B,B, homozygotes on average. Dominant-by-additive gene
action {da) refers to the difference hetween the additive effect at locus
Bin A, A, heterozygotes and in A,4, and A,A, homozygotes on average.
Dominant-by-dominant gene action (dd) refers to the difference between
the dominant effect at the A locus in B,B; heterozygotes and in B, B, and
B,B, homozygotes on average. This general model can be used to guan-
tify any digenic, two-allele interaction (see, for example, Mather and
Jinks 1977, Chap. 5).

Multiplicative gene interaction is a special case of epistasis in which
the net genotypic value is the product of, rather than the sum of, effects
at different loci. Opinion varies as to whether multiplicative interaction
should be considered epistasis because multiplicative effects can be
made additive simply by the use ofa logarithmic transformation of phe-
notypic values. For example, experiments designed to test for epistasis

Table 2.3. Gene action parameters of the two-locus, two-allele model.

Midparent value = m = [Gyyy, + Girzz + Gaagg + Gppogl/d

Additive effect at Iocus A = 8 =[G4, — Gagyy + Gyypg — Gagosl/4

Dominant effect at locus A = d* =[Gy, — (4)(Giuy + Gny) + Gizzs = (4)(Gryag + Gapn)l/2
Additive effect at locus B = &® = [G,,3; — Gyyas + Gyayy < Gyoasl/d

Dominant effect at locus B = d¥ = |G,,, - (7 Grrig + Grazsd + Gogys — (7 (Gagry + Gangg)172
Additive-by-additive gene action effect = aa = (Giinr — Gazrs = Gyyzg + Gopypl/a

Additive-by-dominant gene action effect = ad =Gz — Goara — (120G, = Gayyy +
Girzz — Gagaa]1/2

Dominant-by-additive gene action effect = da =HGizn — Grgaz — (1/21G 111y = Gaggs +
Gzzﬂ - Gzazz”/z

Dominant-by-dominant gene action effect = dd = Giziz = ()G + Gyuga) —
(1/2)[Gyps - (1/2HGyy; + Giure) + Graoy — (1/2)(Gyy2s + Guupad]
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among viability genes consider additivity on a logarithmic scale (equal
to multiplicative interactions on the original scale) to be a lack of epis-
tasis (de Visser et al. 1997; Elena and Lenski 1997: Fu and Ritland 1996;
Remington and O'Maliey 2000). If homozygosity at one gene affects via-
bility by causing lethality in a proportion of the population equal to x,
and homozygosity at a second viability gene causes lethality in a pro-
portion of the population equal to x,, then, assuming independence, the
combination of homozygosity at both genes is expected to cause lethal-
ity in a proportion of the population equal to the product of the two
gene effects, v = x,x,. For viability, therefore, multiplicative interac-
tions are considered independent gene action and deviations from mul-
tiplicative interactions are considered epistasis. Multiplicative gene
effects on crop heterosis observed without transformations, however, are
generally considered evidence of epistasis because they are deviations
from a linear additive model (Schneil and Cockerham 1992), The dif-
ference hetween these points of view seems to be what form of gene
interaction is expected, i.e., is it “normal” for effects at different log to
be accumulated in an additive or multiplicative manner? There is no
clear-cut answer to this question, and it may differ among traits. In this
review, epistasis will be considered to be deviations from additive gene
action among loci, unless stated otherwise.

Statistical genetic parameters such as genetic components of variance
can now be defined in terms of the gene action model given in Tables
2.2 and 2.3. Often, additive, dominance, and epistatic genetic compo-
nents of variance are defined as functions of the statistical effects of alle-
les and allelic interactions, which are not the same as the gene action of
those alleles and interactions. The relationships among genetic compo-
nents of variance, statistical genetic effects, and gene action effects must
be clarified in order to understand the impact of epistatic gene action on
genetic variance components.

The difference between statistical genetic effects and gene action
effects can be demonstrated most simply using a single-locus model. For
example, assume that a trait is controlled by a single locus with two alle-
les at which the gene action values of a and d both equal 5 (complete
dominance, Table 2.4). The additive statistical effect of anallelet, «, is
the weighted average effect of allele i in a specified random-mating pop-
ulation. The weighted average effect of an allele is the expected devia-
tion of genotypes from the population mean conditional on their having
at least one copy of the allele. In the example in Table 2.4, when allele
frequencies are equal (p; = 0.5), half of the time an A, allele is united
with another A, allele to produce an 4,4, genotype with value 10, and
half the time allele A, is united with allele A 2 lo produce a heterozygote,
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also with value 10. Thus, the mean of all genotypes conditional on them
having one A, allele is 10, and the deviation of this conditional mean
from the population mean is +2.5. Therefore, the average statistical
effect of allele A, in this population is o, = +2.5 (Table 2.2).

If the frequency of allele A, is different (e.g.. p, = 0.1, Table 2.4), then
the population mean changes (u = 1.9) and the average effect of the
allele changes. The genotype mean conditional on having at least one A,
allele is still 10, but now the deviation of this conditional mean from the
population mean is larger than before, o, = 8.1 (Table 2.4).

The additive genetic variance (6°,) is the variance of allelic average
statistical effects (multiplied by two because there are two alleles per
locus per genotype), and therefore 6%, also changes when the allele
frequencies change (Table 2.4). The dominance deviations of the statis-
tical model also change, and consequently the dominance genstic
variance changes (Table 2.4). So, even with the same underlying gene
action, different populations may have different statistical genetic para-
meters, such as heritability and additive and dominance genetic vari-
ances, because their allele frequencies differ.

Table 2.4.  Statistical genetic model parameters are functions of gene action effects and
allele frenuencies. Genotype frequencies, population mean, average allelic effects (o),
dominance deviations {8], additive genetic variance {6%,}, and dominance genetic
variance {6°)) for a trait affected by a single locus with complete dominance when
frequency of the favorable allele, p,, is 0.5 or 0.1. and the population is in Hardy- -
Weinberg equilibrium.

pl=0.5 pl=01
Genotype Value Genotype frequency Genotype frequency
A4, 10 0.25 0.01
AA, 10 0.50 0.18
ALA, 0 0.25 0.81

Parameters of the statistical genetic model:

Population Mean 7.5 1.9
a, 10-75=2.5 10-1.9=8.1
o, §5-7.5=-25 1-19=-0.9
8,4 1I0-75-25-25=-2.5 10-19-81-8.1=-8.1
81a 10-75-25+25=25 10-1.9-8.1+08=0.9
8., 0-75+25+25=-25 (0-19+09+0.9=-01
ooy 12.5 7.29

o’ 6.25 0.81
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Furthermore, there is no direct relationship between statistical genetic
parameters and gene action parameters except in special cases. Even in
the special case of no epistasis, additive genetic variance is a function
of not only additive (a) gene action effects but also of allele frequency
and dominant (d) gene action effects. This may not be ocbvious from the
example in Table 2.4; but consider the changes in the average allelic
effects caused by changing d from 5 to zero. The population mean
changes, as does the mean of genotypes conditional on their having an
A, allele. The average effect of A,, the difference between these two
means, would change in the case of p, = 0.1, and therefore the additive
and dominance genetic variances would change as well. Thus, the addi-
tive genetic variance is influenced by dominant as well as additive gene
action effects.

Critical to the discussion in this paper, epistatic gene action effects
influence the average effects of alleles and dominance deviations, and,
consequently, the additive and dominance genetic variances, Cheverud
and Routman (1995) demonstrated that strong “physiological” epistasis
can exist in populations in which most of the epistatic effects contribute
to additive genetic variance and in which the epistatic variance com-
ponent itself is small. To illustrate this, consider the genetic effects for
atrait influenced by two unlinked loci, each with two alleles (Table 2.2},
To define the genetic components of variance for this genetic system, one
must work with the genotypic values in terms of the gene action model
given in Table 2.2, and also consider the genotypic frequencies (Table
2.5). Assuming a random-mating population in both Hardy-Weinberg
and gametic phase equilibria, the statistical genetic effects can be defined
following the approach of least-squares estimation of factorial effects
(Cockerham 1954: Kempthorne 1954). Under these assumptions, the
statistical genetic effects are defined explicitly in terms of gene action
effects and allele frequencies in Table 2.6. Even this simplest of two-
locus systems produces complicated definitions of statistical genetic
effects! For example, the additive statistical offects of alleles are func-
tions of allele frequencies and additive, dominance, and epistatic gene
action effects (Table 2.6). The dominance statistical effects are functions
of allele frequencies and dominant gene action and epistatic effects
(Table 2.6). The epistatic statistical effects, however, are functions of
allele frequencies and solely epistatic gene action effects. Since the
additive genetic variance is a function of squared additive statistical
effects, then the additive genetic variance is affected by epistatic gene
action effects, whereas the epistatic variance (a function of squared
epistatic gene action effects) is not affected by additive or dominant
effects.
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In conclusion, the parameters of the statistical genetic model are not
necessarily good guides to the underlying gene action. Furthermore, the
relationship hetween gene action effects and statistical genetic effects
becomes less direct as more interacting loci contribute to the character
in question. Given that even under greatly simplifying conditions clas-
sic quantitative genetic theory leads to estimable parameters that do not
necessarily indicate the nature of gene action, one might question the
usefuiness of this theory. In defense of classical quantitative genetics,
the statistical genetic models were developed to understand the inher-
itance of phenotypes that were controlled by many genes, the individ-
ual effects of which were unobservable. In order to get around the
problem of not being able to classify individuals according to genotype
{as you can with discrete, Mendelian characters), quantitative genetics
was developed to relate the combined effects rather than individual
effects of alleles and their interactions to observable phenotypic quan-
tities. Therefore, instead of relating genetic variances directly to gene
action effects, genetic variances were related to aggregate statistical
elfects of genes in specific populations. The parameters of the statisti-
cal genetic model, such as genetic variances and heritability, have two
advantages over the gene action model parameters: they are estimable
from phenotypic data alone, with no knowledge of underlying geno-
types; and they can often accurately predict the respanse to different
forms of selection. Therefore, quantitative genetics investigations into
epistasis would seem to hold some pramise for elucidating the ways in
which epistasis might influence selection Tesponse.

II. EPISTASIS AND MOLECULAR INTERACTIONS

Before reviewing the literature on biometrical investigations of epista-
sis, however, let us first consider the current understanding of the biol-
ogy of gene interactions. What sort of genic interactions should we
expect to underly phenotypes?

A. Molecular Interactions Lead to Epistasis

Epistasic gene action can be due to duplicate gene interaction (Fig. 2.1),
complementary gene interaction (Fig. 2.2), or more complex forms of
non-allelic interaction (F ig. 2.3). Epistasis can be mediated by interac-
tions among enzymes encoded by different genes (Fig. 2.1-2.3); or by the
interactions at any level between gene and phenotype, from gene tran-
scription (e.g., transcription factors and their targets) to morphology
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AA, 20 20 0

Fig. 2.1. Duplicate gene interaction form of epistasis. A functional gene product from
either of two duplicated loci A or B is required to produce the optimum genotype. Only
the doubly homozygous recessive genotype A,A,B,B, confers the inferior genaotypic value.

(e.g., features that are adaptive in one morphalogical background and
deleterious in another). Here, I present examples of how genes or gene
products interact biochemically or molecularly and describe the resuli-
ing phenotypic consequences of different forms of gene interactions on
simply-inherited traits.

B. Duplicate Gene Interactions and Genetic Redundancy

Duplicate gene interactions can occur when two or more loci serve the
same function, for example, by producing an identical enzyme that
results in an observable phenotype (Fig. 2.1). If either locus can produce
a functional gene product, then the enzymatic pathway functions. Only
when both genes are “knocked out” or homozygous for a recessive, non-
functioning allele is the biochemical process interrupted, producing a
different phenotype. In a diploid F, population segregating for recessive
mutants at both loci, this results in a 15:1 phenotypic ratio. Examples
include antibiosis to an insect pest in maize (Zea mays) (Byrne et al,
1998), and gene-for-gene pathogen resistances in which an incompatible



2. EPISTASIS AND PLANT BREEDING 41

A allele B, allele

enzyme A enzyme B Genotypic
substrateP, —— productP, ——» productl,— value = 20

Two-locus genotypic values

B,B, BB, B,B,

AA, 20 20 0
AA, 20 20 0
AA, 0 0 0

Fig. 2.2. Complementary gene interaction farm of epistasis. Functional gene products
from both foci A and B are required to produce the optimum genotype. Genotypes homozy-
gous recessive at either of the two complementary loci have inferiar genotyvpic value,

reaction due to one host resistance gene is sufficient to confer resistance
(Flor 1956). Polyploidy, genome duplication and genetic redundancy are
common in plants (Pickett and Meeks-Wagner 1995), and this suggests
that genes with duplicated functions may also be common. As an exam-
ple, two stamenoid petal genes in Brassica napus that map to homoe-
ologous chromosomes must both be homozygous for recessive mutant
alleles in order to confer the mutant morphology (Fray et al. 1997).

C. Complementary Gene Interactions in Biochemical
and Molecular Pathways

Complementary gene interaction can result when two or more genes
code for enzymes that function at different points in the same pathway,
so that functioning products from all genes in the set are needed to pro-
duce the final product (Fig. 2.2). If any gene or gene product in the path-
way is non-functioning, then the final product of the pathway is not
produced. In an F, population segregating at two complementary loci,
a 9:7 phenotypic ratio is expected. Biochemical examples of this form
of epistasis include the requirement for variant alleles at two genes to
produce a unique terpenoid in cotton (Gossypium hirsutum) (Kohel and
Bell 1999) and the production of maysin in maize (McMullen et al.
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Fig. 2.3. Complicated epistasis. Gene products from allele pair A;/B, function wel]
together and praduce an optimum genotype. Similarly, gene products from allele pair
A;/B; functional well together and produce an optimum genotype. Products of allele pair
A,/B, are not functionally compatible and alone will result in an inferior genotypic value.

1998). At the level of morphology and developmental respornses, com-
plementary gene interactions have been observed for photoperiod-
sensitivity in sorghum (Sorghum bicolor) (Rooney and Aydin 1999),
and floral morphology in maize {Doebley et al. 1995).

Another form of epistasis occurs when the genotype at an early step in
a pathway can mask genetic variation at genes acting later in the path-
way, but the masking effect is not reciprocated, as it is in the comple-
mentary gene interaction shown in Fig. 2.2. This is the “classical”
definition of epistatic gene action originally given by Bateson (1909,
Chap. 4) in reference to the interaction of mouse coat color genes, These
types of gene interactions are found commonly in developmental regu-
latory pathways studied in model systems, including those affecting
sex-determination in animals, the cell cycle in yeast, embryonic pattern
formation in Drosophila (Avery and Wasserman 1992), flowering time
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and vernalization response in both barley (Hordeum vulgare} and
diploid wheat (Triticum monococcum) (Tranquilli and Dubcovsky
2000), and floral development in Arabidopsis (Parcy et al. 1998). For
example, mutations at the early-acting floral development regulator
gene, LFY, eliminate or radically transform Mowers, and this effect masks
mutations at the later-acting AP1, AP3, AG, and P! regulator genes,
which normally act to specify the different floral organs (Parcy et al.
1998). Similar gene interactions are expected to occur in other types of
molecular pathways, including disease resistance response pathways
(Crute 1998), and signal transduction pathways (e.g., the phytochrome
system, Millar et al. 1994). Direct evidence for protein-protein interac-
tions in the phytochrome system exists: the phyA protein phosphory-
lates the ery? and cry2 cryptochrome proteins in vitro (Ahmad et al.
1998), although the hiological significance of this particular interaction
is not clear (Casal 2000).

Epistasis cannot always be easily classified into duplicate or comple-
mentary forms; a rich diversity of genic interactions is possible. For
example, mutations in the Arabidopsis gene CAL, which is homologous
to the transcription factor AP1, in an otherwise normal genetic back-
ground have no phenotypic effect (Martienssen 1999). The sequence
similarity and masking effect of wild-type AP1 alleles on mutant CAL
alleles suggests that CAL and AP7 interact as duplicate genes. AP muta-
tions in wild-type CAL backgrounds, however, have a mutant pheno-
type, suggesting that AP1 is epistatic in the classical sense to CAL, To
further complicate the picture of allelic interactions between these loct,
CAIL-AP?1 double mutants have a novel phenotype that could not have
been predicted from either single-mutant phenotype alone (Martienssen
1999). Martienssen {1999) suggested that these floral identity genes have
overlapping, but non-identical functions in common developmental
pathways. Thus, interactions among these genes cannot be considered
as simply complementary or duplicated, or upstream and downstream
in a common pathway, but rather as a more subtle combination of the
two types of interactions. Comhinations of mutations in these genes
will generally result in unpredictable phenotypes.

Production of anthocyanin in maize aleurone tissue is a well-studied
example that demonstrates both duplicate and complementary gene
interactions mediated by both biochemical activity and transcriptional
regulation (Jayaram and Peterson 1990). At least three structural
enzymes, encoded by genes C2 or Whp, A1, and A2, are required to pro-
duce anthocyanin and a visible pigment (Coe 1994). Genotypes that are
homozygous for a non-functional allele at the A7 gene, which codes for
dihydroflavonol reductase, the second step in the pathway, will lack



44 J. B. HOLLAND

aleurone pigment, regardless of the A2 genotype., Similarly, if A2 is
homozygous for a nonfunctioning allele, no anthocyanin will be pro-
duced, no matter what the genotypes are at upstream genes. These com-
plementary gene interactions are mediated at the biochemical level
because gene transcription at the A1 gene is not affected by the genotype
at the A2 gene. A duplicate gene interaction occurs at the biochemical
level between the €2 and Whp genes because bath genes code for the
same enzyme, chalcone synthase (Cone 1994), and both genes must he
homozygous for nonfunctional alleles in order to cause a mutant phe-
notype. Complementary gene interaction is also observed between this
set of genes and the regulatory genes B, R, C1, and P, but this interac-
tion is mediated through transcriptional regulation. A complex tran-
scription factor composed of subunits coded for by either B or R and C1
or Pl is required to activate transcription of the anthocyanin pathway
structural genes (Goff et al. 1992). If the functioning transcription factor
complex is not present, the structural genes will not be transcribed. A
complementary biochemical interaction occurs between the B/R gene
pair and the C1/PI gene pair: if either pair cannot produce a functional
gene product, then the other pair will still be transcribed but will not be
able to activate transcription of the structural genes. Finally, there are
duplicate gene interactions between the regulatory genes themselves: B
and R code for functionally duplicate gene products, and C1 and Pl are
duplicate genes.

D. Synergistic and Antagonistic Gene Interactions

Other possible forms of genic interaction include synergistic or antago-
nistic interactions. There can be confusion because the terms synergis-
tic and antagonistic interactions have opposite meanings depending on
whether inference is made either to the phenotypic effect of mutations
of the genes or to the molecular interaction of the gene products (Casal
2000). Strong synergistic interactions among enzymes that seem to occur
at the level of biochemical activity have been reported in veast (Nie-
derberger et al. 1992). Casal (2000) reviewed the interactions among
phytochromes and cryptochromes in plants, and observed that phy-
tochromes phyA and phyB function synergistically under some light
conditions and antagonistically under others. The precise nature of the
interactions is not yet known, but almost certainly does not involve
direct physical interaction of the phyA and phyB molecules. The inter-
action is more likely an outcome of the shared regulatory networks that
are functionally “downstream” of both molecules. The two molecules are
partially redundant members of a common gene family, and therefore
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likely affect similar regulatory pathways. The molecules respond to dif-
ferent light spectra, and there is evidence that phyA regulates different
signal cascades depending on the light regime. These small variations
between otherwise seemingly-redundant molecules generate a complex
set of interactions observed between mutations in the genes, and
between these mutations and the environment.

Transgene silencing in plants represents an unnatural but clearly
defined example of antagonistic gene interactions {Nap et al. 1997),
Often, transgene constructs that are expressed at higher levels when pre-
sent individually in different genotypes have altered expression patterns
when combined with other, at least partially homologous, transgenes in
a single genotype. The silencing can be non-reciprocal, in which one
transgene is expressed but represses expression of the other gene
(Matzke et al. 1993), or it can be reciprocal “co-suppression,” in which
the expression of both transgenes is suppressed (Neuhuber et al. 1994).
In addition, transgenes can inhibit expression of endogenous genes with
which they share sequence homology (Jorgensen 1995). The suppression
of expression caused by the interactions of homologous genes can occur
at the level of transcription or post-transcriptionally. The mechanisms
by which these interactions are mediated are not completely understood,
but there is evidence for DNA-DNA interactions and methylation medi-
ating transcriptional inactivation, and for the involvement of RNA-RNA
interactions and RNA degradation mechanisms in post-transcriptional
gene silencing (Matzke and Matzke 1995). Further research on silencing
mechanisms may lead to a better understanding of normal gene regula-
tion in plants. Many plant genes exist as members of gene families, as
duplicate or redundant genes (paralogs), and as members of homoeolo-
gous groups in polyploids. Perhaps the mechanisms of gene silencing are
also involved in the natural, coordinated regulation of gene expression
and interactions among homologous and partially homologous sets of
genes in plants. Indeed, by varying the dosage of individual chromoso-
mal segments, Guo et al. (1996} demonstrated that normal maize gene
expression is determined by the interaction of regulator and structural
genes on different chromasomes.

E. Compensatory Gene Interactions

There are unlimited possibilities for different forms of epistasis, and in
the most extreme cases, the description of an allele as “favorable” or
“unfavorahle” may depend upon the genotype at other loci. Clear exam-
ples of this type of interaction occurring among enzymes is lacking, but
there is some evidence in plants for this type of “compensatory” gene
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interaction occurring at the level of DNA transcription regulation,
Research on the development of Arabidopsis thaliana has revealed
examples of this type of genic interaction.

Development in Arabidopsis is controlled in part by the action of flo-
ral meristem identity genes, such as LFY or AP1, and the antagonistic
action of the vegetative shoot identity gene, TFL1. Plants homozygous for
null alleles at the LFY or AP1 loci lose their meristem identity, at least
partially, and form flowers with shoot-like characteristics (Ratcliffe et al.
1999). Plants homozygous for null alleles at the TFLj gene have shoots
that become transformed into flowers, Arabidopsis plants transgenically
modified to over-express LFY or AP1 look similar to tfl1tfl1 mutants,
while those modified to over-express TFL1 have a much Ionger vegeta-
tive phase. Thus, over-expression of LFY mimics lack of expression of
TFL1, and vice-versa. When plants are modified to overexpress both LFY
and TFL1, the resulting phenotype is nearly normal {Ratcliffe et al. 1999).
Modified expression of TFL1 leads to a mutant phenotype in an other-
wise wild-type background, but in a background in which the expression
of LFY is similarly modified, it leads to a normal phenotype. The pheno-
typic effect of over-expression of TFL1 leads to either a mutant or to a nor-
mal phenotype, depending on the genotype at other genes with which it
interacts because of the compensatory gene interaction.

Compensatory mutations have been studied primarily within the same
gene or in cis configurations {Cleghon et al. 1996; Kirby et al. 1995),
because it is easier to identify cis-acting than trans-acting compensatory
mutations. Nevertheless, RNA-RNA pairing among smail nuclear RNAs
(snRNAs} that compose the spliceosome (involved in intron splicing) and
RNA-RNA pairing between snRNAs and messenger KNAs (mRNAs) pre-
sent a clear example of trans-acting allele-specific compensatory muta-
tions that occur at the molecular level (Madhani and Guthrie 1994). Base
changes at a normal intron splice site in the DNA encoding a “target” gene
will prevent pairing between the resulting mRNA and a snRNA that nor-
mally binds to the site, and this will prevent proper splicing of the intron,
as demonstrated in model systems such as human cell cultures (Sun and
Manley 1995) and Drosophila (Lo et al. 1994). Similarly, mutations in the
DNA encoding the specific snRNA that binds the target site at the site
involved in pairing with mRNA prevent proper intron splicing of the nor-
mal target gene mRNA (Sun and Manley 1995). If the mutations in the
target gene and the sSRNA gene are complementary, however, the mutant
snRNA can promote proper splicing of the mutant target gene (Lo et al.
1994; Sun and Manley 1995), resulting in a normal phenotype.

Although biochemical and molecular examples of epistatic interac-
tions that cause the value ofa genotype at one locus to change from pos-
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itive to negative depending on the genetic background are rare, these
types of interactions have been observed at the phenotypic level. Exam-
ples include flowering time QTLs in Brassica (Camargo and Osborn
1996) and oat (Avena sativa) (Holland et al. 1997) and interactions
between specific P-element insertions on their effects on metabolic phe-
notypes in Drosophila (Clark and Wang 1997).

Examples of trans-acting compensatory mutations at the molecular
level have not been reported more frequently perhaps because molecu-
lar developmental biology research is biased against working with such
mutations. Tests of epistasis are a powerful tool that developmental
biologists use to determine the order of developmental triggers in gene
regulation pathways, but such tests are most effective when alleles con-
ferring complete loss-of-function at the genes under study are used
(Avery and Wasserman 1992). Avery and Wasserman (1992) advise “par-
tial loss-of-function mutations should be avoided” in these types of
experiments. Some allelic variants at regulatory genes confer quantita-
tive differences in function and perhaps even different kinds of functions,
and these “weaker” variants may confer unique epistatic effects that are
not observed with alleles that cause genes to be either “on” or “off” (e.g.,
Ang and Deng 1994). Developmental biologists attempt to understand
the basic flow of regulatory gene cascades rather than test for quantita-
tive forms of epistasis in such regulatory mechanisms, but overlooking
weaker mutations at regulatory genes may result in a biased view of the
variation in these pathways in natural populations.

The result of compensatory mutations can be described as additive-
by-additive epistasis and phenotypic values like those in Fig. 2.4 result
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Fig. 2.4. Graphical representation of additive-by-additive form of epistasis that could
result from the relationships shown in Figure 3. The optimum genotypic value is conferred
by genotypes A, A, B,B, and A,A,B,B,. Which is the favorable allele at locus A? Tt depends
on the genotype at locus B.
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if there is no dominance at either locus involved. This is a very strong,
and very extreme form of epistasis, but it illustrates the gemeral princi-
ple that in such cases the guestion, “which is the favorable allele?”
becomes rather like a Zen koan. The answer is that the advantage of
one allele versus another at one locus depends completely on the geno-
type at the second locus. There is no favorable allele, there are anly
favorable and unfavorable combinations of alleles.

IV. COMPLEX MOLECULAR INTERACTIONS UNDERLIE
QUANTITATIVE PHENOTYPES (SOMETIMES)

The examples provided above were culled from only a limited number
in which gene interactions are observable directly at the phenotypic
level and also have well-characterized molecular basis of interaction.
Given that many agronomically important traits are inherited muliti-
genically and are likely affected by numerous biochemical pathways and
developmental regulatory networks, a better understanding is needed of
the effects of multitudinous gene interactions mediated through complex
regulatory networks and pathways on quantitative phenotypes. If mol-
ecular interactions among genes and gene products are common, as we
suspect them to be, how does this affect our current notions of quanti-
tative inheritance? Can we interpret statistical genetic parameters, such
as additive genetic variance, epistatic genetic variance, heritability, and
heterosis, in terms of molecular interactions? Under what conditions are
gene interactions at the molecular level likely to have an important
effect on the phenotype? Can interactions occur at higher levels of orga-
nization (such as the phenotype) in the absence of molecular interac-
tions? Classical quantitative genetic theory alone will not provide
answers to these questions. When more realistic quantitative genetics
models are considered, the mathematics quickly become at best
unwieldy, such as when multiple alleles and inbreeding are introduced
(e.g., Weir and Cockerham 1877) and often intractable, as when multi-
ple loci, linkage, and selection are considered simultaneously fe.g.,
Kempthorne 1988}. In the face of mathematical complexity, therefore,
computer-aided simulation studies, metabolic control theory {which
interprets gene action in terms of physical chemistry of enzymes), and
network theory have been used to address some of these questions. The
results may help us to better understand the empirical data to be con-
sidered later.
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A. Models of Interactions in Metabolic Pathways

Keightley (1989) used metabolic control theory to investigate the nature
of interactions between enzymes in common or competing branches of
a biochemical pathway. An example of enzymes that compete for a com-
mon substrate are those of the citric acid cycle, fatty acid synthesis, cho-
lesterol synthesis, and ketone body synthesis pathways, all of which
require acetyl-CoA (Stryer 1988, p. 634). Keightley showed that, in most
cases, additive genetic variance is expected to be much larger than
epistatic interaction variance for metabolic pathway flux, despite the fact
that the metabolic pathways are inherently interactive. Furthermore,
most interactions between enzymes are expected to be antagonistic for
flux (Keightley 1996a; Szathmdry 1993). In this case, response to selec-
tion for increasing fitness is expected to be non- linear, with an accel-
erating rate of increase (Keightley 1996b). In contrast, interactions
between enzymes are most often expected to be synergistic if fitness is
related to optimal flux (a non-linear function of maximal flux) or meta-
bolic pool size, rather than maximal flux {Szathmdéry 1993). Although
Szathmary (1993) did not discuss the magnitude of epistatic variance for
fitness under these conditions, the contrast between his results and
Keightley's (1989) indicates that caution should be used when drawing
general inferences from these modeling studies, because the results can
depend greatly on the model assumptions. The models are limited by the
assumptions of linear pathways, nonsaturable enzymes, and lack of
feedback regulation (Szathmédry 1993). Nevertheless, Keightley’s (1989)
results suggest that strong biochemical interactions between enzymes do
not necessarily result in significant epistatic variances at the phenotypic
level.

B. A Model of Gene Interactions in Developmental
Regulation Pathways

The limitations of metabolic control theory prompted the investigation
of gene action and interaction models based on the regulation of gene
expression, rather than on metabolic flux (Omholt et al. 2000). Gibson
(1996) developed a thermodynamic model of transcriptional regulation
based on the known properties of the threshold-dependent interaction
between a gene involved in embryogenesis in Drosophila and its tran-
scriptional activator. The system modeled may be similar to signaling cas-
cades important in plant development and response to the envirornment,
Key conclusions from Gibson’s (1996) investigation of the properties of
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this model are that epistasis is a natural consequence of the physical
interaction of the gene promoter and the activator protein. Furthermore,
such regulatory networks likely favor the prevalance of compensatory
epistatic interactions in which “the same genetic output can be readily
produced by numerous different genotypic combinations™ {Gibson 1996).
These are precisely the types of epistatic interactions that have the most
profound effect on concepts of favorable alleles and selection.

How are molecular interactions related to phenotypes? Moreno (1994)
suggested that gene product dosage often has a nonlinear relationship
with phenotype, as has been frequently observed for highly redundant
developmental regulator genes in Drosophila. In this case, allelic
changes at any one of a set of redundant loci results in a change in gene
activity at the locus, but only a small change in phenotype, because of
the non-linear relationship between total gene activity of the set of
redundant genes and phenotype. If allelic variants occur simultaneously
at more than one locus of the interacting set, then the resulting pheno-
typic change is expected to be much larger than the sum of the single-
locus changes.

In essence, this is an extension to multiple loci of the argument made
by Kacser and Burns (1981) that dominant gene action is common be-
cause of the often non-linear relationship between gene dosage and bio-
chemical activity. Morenoc (1994) predicted that allelic variants at such
loci could reside at relatively high frequencies in natural populations
because their effects are minimized by the action of redundant loci.
If population bottlenecks, selection, or inbreeding shift allele frequen-
cies to the point where variant alleles at more than one locus occur quite
frequently, then the epistasis will become apparent at the phenotypic
level.

C. Boolean Regulatory Networks as Models
for Genetic Regulatory Pathways

Kauffman’s {1993) NK model of boolean regulatory networks is a gen-
eral framework in which multigenic interactions can be modeled. An NK
model is a network of N nodes (analogous to genes that act as regulatory
switches}, each of which has K inputs (analogous to transcriptional acti-
vators, enhancers, or repressors). N models the total number of genes in
the network and K models the magnitude of interactivity or epistasis.
The model is boolean because, at any one moment, each node is in one
of two states, on or off (or 0 ar 1),

Frank (1999) developed boolean networks with varying values for N
and K that expressed a “phenotype” that is a mathematical function of
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the state of a subset of the nodes. Populations of networks were created
and subjected to many generations of truncation selection for the phe-
notype followed by “sexual reproduction.” Then the quantitative genet-
ics of the network were investigated by measuring the heritability of
nodal changes and by measuring the “metabolic additivity” of nodal
changes. The heritability is a measure of the average phenotypic effect
of changing a node averaged over the whole population of network back-
grounds, while the metabolic additivity is the average phenotypic effect
of changing one nodal state within a constant network background. The
results of this simulation were that highly connected networks (high K)
had greater metabolic additivity, but lower heritability. This implies
that, if the NK networks are representative of gene regulatory networks,
then epistatic genetic variance, as well as epistatic genetic effects, are
likely to be important at the phenotypic level. Furthermore, in highly-
connected networks, “particular alleles will often be advantageous in
one genetic background and disadvantageous in another” (Frank 1999),
implicating the strongest form of epistasis, compensatory epistasis, as a
natural component of regulatory networks. These results contrast with
those of Keightley’s (1989), but are similar to those of Gibson (1996), per-
haps illustrating a fundamental difference between gene regulatory net-
works and biochemical pathways.

The question remains, however: how similar are boolean networks to
real gene regulatory networks? There is growing evidence that they are
surprisingly similar. For example, Yuh et al. (1998) demonstrated that
a gene, Endo186, that is activated specifically in the midgut of late embryo
and larval life stages of the sea urchin, is regulated by a boolean network
encoded in its promoter and upstream regulatory regions. At least 15 dif-
ferent proteins bind with high specificity to target sites within this
region, and the binding of these regulator proteins acts to turn the dif-
ferent nodes of the network on or off. One of the upstream regulatory
regions synthesizes the information encoded in the network and acts as
a switch to turn gene expression on or off. The operation of this cis-
regulatory network can be encoded in the same manner as an analog
computer {Yuh et al. 1998). Recently, simple boolean regulatory net-
works of transcriptional regulators that mimic some natural gene regu-
lation networks have been constructed artificially with recombinant
DNA techniques in bacteria (Elowitz and Leibler 2000; Gardner et al.
2000). Biological signaling pathways, however, cannot be divorced from
the reality of cells and cell structures in which they occur, and the inter-
actions between signaling pathways and the effects of spatial organiza-
tion of the cell greatly add to the complexity of gene regulation (Weng
et al. 1999).
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D. Multiplicative Interactions: Phenotypic Epistasis as an
Emergent Property of Additive Physiological Components

Multiplicative interactions among component characters of a complex
trait are a form of synergistic epistasis that can lead to heterosis, as pro-
posed originally by Richey (1942). For example, grain yvield per plant in
a cereal crop is the product of the number of tillers per plant, the num-
ber of seeds per tiller, and the weight of seeds. A linear increase in the
mean weight of seeds, if all else remains constant, will result in a mul-
tiplicative increase in grain vield in this system. There is limited empir-
ical evidence for this form of epistasis (Melchinger et al. 1994; Schnell
and Cockerham 1992), but it demonstrates that epistatic interactions can
occur at the phenotypic level without an underlying basis of molecular
interactions. In principle, epistatic interactions among genes can be an
emergent property at the level of a complex character that is not reflected
by the gene action among the same genes at the level of component char-
acters. Thus, in theory, epistasis can occur without an underlying mol-
ecular interaction!

V. BIOMETRICAL EVIDENCE FOR EPISTASIS

Empirical quantitative genetics investigations into epistasis have
focused on estimating epistatic variance components or testing for epis-
tasis based on the statistical significance of deviations from simpler
additive-dominant models. Digenic epistatic variances were included in
the first statistical genetic model developed. Fisher (1918) developed the
model that is still used to partition the total genetic variance in a pop-
ulation into components due to additive variance, dominance variance,
and epistatic variance. Cockerham (1954) and Kempthorne (1954)
extended this by partitioning the total digenic epistatic variance into
additive by additive (A x A), additive-by-dominant {A x D), and domi-
nant-by-dominant (D x D) variance components, and by showing how
these epistatic components of variance are involved in the covariance
between relatives. Understanding the contribution of the epistatic vari-
ances to the covariances among relatives created the opportunity to esti-
mate epistatic components of variances using mating designs and
phenotypic observations in the same manner that additive and domi-
nance variance components had been estimated successfully (Cocker-
ham 1963),
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A, Ouicrossing Plant Species

Hallauer and Miranda {1988, Chap. 5) reviewed four studies that attempted
to estimate epistatic components of variance in maize using mating
designs. They concluded that epistatic variance is not an important con-
tributor to the genetic variance for yield in maize:

It seemns that epistasis for a complex trait, such as yield, must exist , , . but
realistic estimates of additive by additive epistasis have not been obtain-
able. Hence either the genetic models used are inadequate or epistatic vari-
ance is small relative to total genetic variance of maize populations.

One of the major problems with estimation of epistatic variance com-
ponents is that the coefficients of the additive and additive-by-additive
variance components in the covariances of relatives are often quite sim-
ilar, and the correlation between these coefficients prevents accurate
simultaneous estimation of both components of variance. The additive
and epistatic variance components become very difficuit to distinguish
(Brim and Cockerham 1961}. Since the first-order parameters fe.g., the
additive effects) are fit in the model first, this makes it difficult to esti-
mate the higher order (epistatic) parameters.

To illustrate further the difficulty of estimating epistatic components
of variance, the genetic components of variance for the simple two-
locus, two-allele system presented in Tables 2.2 and 2.3 and Tables 2.5
and 2.6 were derived for the case where all allele frequencies equal
one-half and the population is in Hardy-Weinberg and gametic phase
equilibria (Table 2.7). These allele frequencies were chosen for illustra-
tion because the epistatic variance components are simple functions
of the epistatic gene action parameters and because the epistatic vari-
ance components are maximum relative to the additive variance when
the allele frequencies are intermediate. Thus, Table 2.7 illustrates the
best possible population in which to detect epistatic variance compo-
nents. If the only form of epistatic variance is additive-by-additive,
then in this case, the ratio of additive-by-additive to additive genetic
variance is:
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Table 2.7. Statistical genetic effects and variances for twa-locus, two-allele model,
when p; = p; = q, = q, = 0.5, assuming Hardy-Weinberg and gametic phase equilibria.

Statistical Genetic Effects
Additive effects:
oy = -0t =(Y)a’ + (1/4]ad
o" = —o® =(Y,)aP + (1/4}da

Dominant effects:
8% = 8,0 = =Bt = ~('B)[d* + {¥,)dd]
8,8 = 8,0 =-8,," = {2 )dB + (34,)dd?

Additive-by-additive effects:
0ty = —00, = —0ly, = 0y, = (1/4)aa

Additive-by-daminant effects:
0By1y = 0y = 0By = —008,y,
= 08,12 = —CiBayy = —[1/4]ad

Dominant-hy—additive effects:
Btty1y = ~Beryyy = Botyys = ~ttyyy
= 8001, = =80k, = —(1/4]da

Bominant-hy-dominant effects:
88111 = _851112 = 081150 = ‘5‘31211

Genetic Variance Components
Additive variance:
o'y = 02.-1:.&1 + UzArBJ = 2Zpilah)?
+ 2Zqu (e ) = (%)1a%)? + (2™
+[1/8)[ad)® + (da)’] + (%) (a®)ad
+ (a")da]

Dominance variance:
o'p = Gln) + O = Zpipf&%)° +
Zqq(8%)° = (1/4)[(d) + (dP)?] +
{1/8)(dd)* + (1/4)[(d* + dB)dd]

Additive-by-additive variance:
O as = 4P (o )® = (1/4)[an)?

Additive-by—daminant variance:
O an = 2Epiquqi{ody)’ = (1/8)(ad)?

Dominant-by-additive variance:
O'pa = 2Ypipiq, (S )? = (1/8)(da)?

Dominant-by-dominant variance:
ofyp = Zpipqil68;)° = (1/16)(dd}?

= 551212 = —581222 = 682211 = *552212
= 808,90, = (1/4)dd

Even in the best possible case, the square of the additive-by-additive
gene action effects must be at least four times the mean of the squared
additive gene action effects in order to have a variance component of
comparable size. If there are dominant forms of epistasis, the additive
variance would become even larger relative to the epistatic component.
Epistatic gene action effects contribute to additive genetic variance, and
strong epistasis and biochemical interactions can exist in populations
that do not have large epistatic variances (Cheverud and Routman 1995:
Keightley 1989},

Due to this difficulty, other biometrical approaches have been devel-
oped to detect epistasis for quantitative characters. It is probably not a
coincidence that biometrical methods that use mean comparisons rather
than variance component estimation (for example, generation means
analysis and the triple test cross design) have regularly indicated that
epistatic eifects are important for yield in maize. The triple test cross
experimental design proposed by Kearsey and Jinks (1968) (similar to a



2. EFISTASIS AND PLANT BREEDING 55

design used earlier by Bauman 1959) tests the null hypothesis of no
epistatic effects using a comparison of means. Individuals, families, or
lines from a population developed from two inbred lines are testcrossed
to the two original inbred parents and also to the T, of the cross of the
two parents. For each member of the population, the contrast L, + L, —
2L is performed, where L, is the yield of the testcross to the first inbred
parent, L, the yield of the testcross to the second inbred parent, and L,
the yield of the testcross to the F,. Additive and dominant gene effects
sum to zero in this contrast, and only epistatic effects remain., Thus, if
the contrast is significantly greater than zero, there is evidence for epista-
tic effects. The value of the contrasts for each member of the population
is squared and then summed, leading to a direct F-test for the null
hypothesis of no epistatic effects. This test can be performed before
attempting to estimate additive and dominance effects, rather than
simultaneously with them, as is required when estimating variance com-
ponents from mating designs. This is why the triple test cross is a much
more powerful test for detecting epistatic effects, although this is still a
conservative test for epistasis, because across the whole genome, posi-
tive and negative epistatic effects can sum to zero in a comparison of
phenotypic means.

Using triple test cross designs, both Eta-Ndu and Openshaw (1999)
and Wolf and Hallauer {(1997) detected significant epistatic effects for
grain yield in maize. Similarly, Melchinger et al. (1986) detected sig-
nificant epistatic effects for grain yield in maize using both generation
means analysis and a modified diallel analysis, although epistatic vari-
ance was small relative to additive and dominance variances. Using
more complex designs, but still based on mean comparisons or regres-
sion models using means, Stuber and Moll (1971), Moreno-Gonzalez and
Dudley (1981), and Lamkey et al, (1995) reported significant epistasis for
grain yield in maize. We face a conundrum: we can detect significant
epistatic effects but not significant epistatic variance for grain vield in
maize. A major reason for this surely is that effects (first-order statistics)
are easier to estimate precisely than variances (secand-order statistics),
but we are still unsure whether epistasis is important enough to warrant
changes in breeding methods. Stuber et al. (1973) suggested that
although epistatic effects were evident, their magnitude would not sub-
stantially hinder testcross prediction based on models ignoring epista-
sis. Conversely, Wolf, and Hallauer (1997) argued that favorable epistatic
combinations unique to the B73 x Mo17 hybrid partially explained why
it was so exceptional and widely grown. Perhaps epistatic effects create
the differences between the very good and the outstanding genotypes
when most additive effects are already fixed among elite lines.
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B. Self-Pollinating Species

In autogamous species, similar results have been found: with experi-
mental designs of weak power to detect epistasis, epistasis was not
found, and where more powerful experimental designs were used, epis-
tasis was generally found to be significant. Hanson and Weber (1961) and
Brim and Cockerham (1961) employed nested mating designs and
covariances of relatives to estimate genetic components of variance in
soybean (Glycine max L.) populations, and found “only a suggestion that
epistalic variability could be important for vield” (Hanson and Weber
1961) and “the additive X additive component is small relative to the
additive component of genetic variance” (Brim and Cockerham 1961).
Again, the difficulties in estimating epistatic variance components and
the lack of a simple relationship between epistatic gene action effects
and epistatic variance may have been important reasons for the inabil-
ity to detect large epistatic variances.

Different results generally have been obtained with the use of exper-
imental designs that have better power to detect epistatic effects. Dial-
lel or NC Design II mating schemes can be used to estimate general and
specific combining abilities (GCA and SCA) with a modification of the
maize design (Hallauer and Miranda 1988, Chap. 4) that, instead of test-
ing F, progenies of the crosses, highly inbred bulks or random sets of
lines derived from several generations of selfing from each cross are
tested. This modification is necessary for practical purposes, because
producing sufficient F, seed for field evaluations is difficult in most
autogamous species, whereas producing larger quantities of seed of
inbred progeny by selfing the hybrid progeny for several generations is
relatively easy. This modification leads to a good test for epistasis
because the dominance effects that contribute to SCA in F 1 hybrids have
been “removed” by selfing to near homozygosity. The GCA component
estimated from inbred progenies reflects additive effects, while the SCA
compaonent is compased primarily of additive-by-additive epistatic
effects. Significant SCA effects, therefore, indicate the presence of epis-
tasis in these types of experiments. While more powerful than variance
component-based tests for epistasis, these are still conservative tests
because positive and negative epistatic effects may cancel each other out
when summed across the whole genome.

Epistasis for yield has been detected in numerous autogamous species
using these types of designs, including bread wheat ( Triticum aestivtim)
(Busch et al. 1974; Cregan and Busch 1978), soybean (Hanson et al.
1967), oat (Pixley and Frey 1991; Stuthman and Stucker 1975), and rice
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(Oryza sativa) (Gravois 1994), Upadhayaya and Nigam (1998) used the
triple test cross in peanut (Arachis hypogaea) and Humphrey et al.
(1969) used generation means analysis in tobacco (Nicotiana tabacum)
and detected significant epistasis. In general, these authors recognized
an important implication of epistasis for breeding methodologies: epis-
tasis reduces the correlation between early and later selfing-generation
vields, meaning that early generation testing and selection is expected
to be less effective than delaying selection until later generations, when
most of the additive-by-additive effects have been fixed within lines.
This is one of the justifications for the single seed descent breeding
method commonly used in soybean and oat.

C. Why Is There More Evidence for Epistasis
in Selfing than in Qutcrossing Species?

Although epistasis is not always found to be important for yield in auto-
gamous species {e.g., Bitzer et al. 1982), epistasis seems to have been
observed more commonly in autogamous species than in maize. Reasons
for this may be either better experimental designs to detect epistasis in
selfing species or the proposed greater importance of nonailelic inter-
actions in autogameous (particularly disomic polyploid) species. Better
experimental designs have contributed to the detection of epistasis in
selfing species by avoiding the difficulty of having to estimate domi-
nance as well as epistatic effects. With the dominance form of genic
interaction “out of the way,” any deviations from predictions based on
the additive model can be attributed to epistasis. The difficulty in detect-
ing epistatic variances simultaneously with additive and dominance
variances in maize is reflected in the more frequent detection of epista-
sis in tests based on mean comparisons than on variance components,
Thus, epistasis may be easier to detect in selfing than in outcrossing
species but of similar importance in both groups of species.

An alternative explanation is that since additive-by-additive forms of
epistasis, unlike dominance interactions, are a form of genic interaction
that can be “fixed” and exploited in haomozygous genotypes, selfing
species will tend to exhibit strong epistatic interactions, while out.
crossing species will exhibit strong dominance interactions. Mac Key
(1970) presented a thorough review of the literature and developed a
general theory of genic interactions that explains the seemingly dis-
parate breeding and genetic behavior of both disomic and polysomic
polyploids. Mac Key (1970) recognized that “polysomic polyploidy
has been found only in connection with allogamy,” and suggested that
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outcrossing served the purpose of maintaining heterozygosity and
intralocus allelic interactions. Allogamous diploid species, such as
maize, exhibit inbreeding depression and the phenomenon is exagger-
ated in the allogamous polyploids, such as alfalfa (Medicago sativa). Mac
Key (1970) suggested that almost all disomic polyploids are autogamous
species that do not exhibit significant inbreeding depression because
they compensate for the loss of intralocus allelic interactions with inter-
locus non-allelic epistatic interactions between homoeologous loci.
Ehlke and Hill (1988) demonstrated that if a tetrasomic polyploid were
converted to a disomic polyploid, the higher-order intralocus (three- and
four-allele) interactions of the tetrasomic form would be transformed
into epistatic interactions in the disomic form. This provides autoga-
mous disomic polyploids the ability to fix heterosis in inbred geno-
types, for which there is some molecular evidence in wheat (Gomez et
al. 1989). Bingham (1979) summarized the situation:

Palyploidy appears dependant on heterozygosity! The largest group of
polyploids, the allopolyploids (disomic polyploids) have fixed heterozy-
gosity in the two or more divergent genomes they possess .., The auto-
polyploids (pelysomic polyploids) {ensure] their heterozygosity through
cross-pollination . . . We can find no exatple in crop plants of a success-
ful polysomic polyploid species which is self-pollinated.

This implies that epistasis is observed more commonly in autogamous
species than in maize because epistatic effects really are more important
in selfing species, not because they are hidden in maize as an artifact of
experimentation and statistics. A corollary to this implication is that
epistasis is likely less important in polysomic polyploid species such as
alfalfa than in disomic autogamous polyploid species like wheat and oat.
While Mac Key’s (1970) theory proposes the greater importance of epis-
tasis among homoeologous loci in disomic versus polysomic polyploids,
it says nothing about differences in importance of epistasis among non-
homoeologous laci in the different polyploid forms, however. The
epistatic model in Fig. 2.1 is an example of homoeologous epistasis
{interactions among duplicated genes), while those in Figures 2.2 and
2.3 illustrate non-homoeologous forms of epistasis. Holland et al. (1997)
found no evidence for homoeologous epistasis for flowering time in oat,
although homoealogy is not well-defined in oat (Kianian et al. 1997),
Among non-homoeologous loci, autopolyploids can exhibit more forms
of epistasis in the same manner that they can have more forms of intralo-
cus allelic interactions, such as trigenic and quadrigenic interactions,
and higher-order epistasis would be promoted by outcrossing,
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VI. EVIDENCE FOR EPISTASIS FROM
PLANT EVOLUTION STUDIES

Allard (1988, 1996) summarized the resuits of numerous isozyme marker
studies of the evolution of plant populations, including wild oat (Avena
spp.), cultivated barley, and maize:

The single most important genetic mechanism in all three species groups
was the assembly of favorable epistatic combinations of alleles of differ-
ent loci by means of recurring cycles of selection, intercrossing superior
selects and inbreeding to near homozygosity leading to stable superior
multilocus genotype adapted to specific habitats.

In support of this idea, Rieseberg et al. (1996) found that, following
hybridizations of two sunflower species (Helianthus spp.) and back-
crossing to one parent, a subset of linkage blocks from the donor parent
was repeatedly fixed. Similar genome composition was observed in an
ancient hybrid sunflower species. They suggested that this was the
result of selection for combinations of alleles with favorable epistatic
effects, rather than selection for independently acting alleles (which
would have resulted in less consistent maintenance of specific combi-
nations of donor alleles). Similar results were reported in interspecific
backcross populations of cotton (Jiang et al. 2000).

VIL. MOLECULAR MARKER
INVESTIGATIONS OF EPISTASIS

Fasoulas and Allard (1962) were perhaps the first to use genetic mark-
ers to measure epistasis in plants. They developed four near-isogenic
lines (NILs) of barley differing only for their genotypes at two unlinked
loci. Each locus conferred discrete phenotypic effects, crange lemmas
(oa) or smaath awns (rr), and the four NIL genotypes were QORR, OCr,
0oRR, and oorr. They crossed the NILs to develop a population con-
taining all nine possible two-locus genotypes, and evaluated individual
plants phenotypically for numerous traits, including yield components.
This permitted a two-factor analysis of variance, as proposed by Fisher
(1918), the factors being the two loci (representing the additive and
dominant effects of each locus separately), and the interaction between
the two loci (representing the epistatic interactions hetween the two
loci}. A key to this type of experiment is that it allows an orthogonal par-
titioning of the additive and epistatic effects; with adequate sampling
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sizes, there is little confounding of or correlation between the effects, as
occurs in the covariances of relatives in mating designs. Fasoulas and
Allard (1962) observed that epistatic interactions were significant for ali
traits studied and the magnitude of epistatic effects was on average half
of the additive effects. Russell and Eberhart (1970) used three morpho-
logical marker loci and a similar design to detect significant additive-by-
additive and dominant-by-dominant forms of epistasis for grain yield in
matze.

Molecular markers have made this type of analysis possible on a
genome-wide basis, although the principle remains the same (Holland
1998). With genetic maps containing marker loci about every 20 cM
throughout a genome, epistasis between pairs of quantitative trait loci
(QTLs) that might reside anywhere in the genome can be detected. DNA
markers have been used to document the existence, magnitude, and
nature of epistatic interactions among QTLs in crop species (Li 1998).

Early efforts using molecular markers generally did not provide evi-
dence for important epistatic interactions (Tanksley 1993). For example,
Edwards et al. {1987) detected numerous QTLs for yield in maize, but
found no strong evidence for interactions among them, Their study had
very large samples from two populations and good power to detect epis-
tasis, and was limited only by incomplete genome coverage (17 to 20
isozyme loci, with some chromosomes unmarked). Subsequent QTL-
mapping studies for vield in maize have either ignored epistasis (Austin
and Lee 1996; Veldboom and Lee 1994) or found epistatic interactions
among QTLs to be of minor importance or unrepeatable over environ-
ments (Lubberstedt et al. 1997:; Melchinger st al. 1998). Openshaw and
Frascaroli (1997), in contrast, detected numercus epistatic interaction
effects of similar magnitude to QTL main effects in a very large sample
of maize progeny (976 F; testcrosses). Inclusion of epistatic effects along
with the main effects in a multiple regression model increased the
explanatory power of the model by only a small amount, however.

Cockerham and Zeng's (1996) reanalysis of Stuber et al.’s (1992) data
from a NC Design 11 experiment involving a population derived from the
cross of the two most prominent maize inbred lines, B73 and Mo1 7,and
augmented by molecular marker data demonstrated strong evidence for
epistasis for grain yield, however, Their analysis was unique in that it
did not test for interactions between different marker loci; rather it
exploited a unique feature of the Design I11, the testcross of each prog-
eny to both parent lines. This provided a test for epistasis based on con-
trasts between means of marker genotypes at a single marker locus
testcrossed to different parents, similar to a triple test cross analysis, but
on a locus-by-locus basis. What they tested for, and found in abun-
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dance, were epistatic interactions between two or more QTLs linked to
the same marker locus. They did not attempt to test for epistasis between
different marker loci. In addition, important epistatic effects have been
found in maize between QTLs affecting biochemical phenotypes (Damer-
val et al. 1994), floral morphology (Doebley et al. 1995), and insect resis-
tance (Byrne et al. 1996). Interactions between QTLs affecting wood
yield components were detected in the outcrossing tree species Euca-
lyptus grandis and Pinus radiata {Grattapaglia et al. 1996; Kao et al.
1999).

Studies in self-pollinated species have more regularly given evidence
for important epistasis among yield QTLs. Yu et al. {1997) found sig-
nificant epistasis for yield QTLs in rice and attributed heterosis in an
elite rice hybrid to epistasis. Li et al. (1997) also reported major epista-
tic effects for rice yield QTLs. These results contrast with those of Xiao
et al. (1996, 1995) who found no evidence for epistasis in their rice
QTL-mapping experiments. Epistasis for yield was also detected in map-
ping experiments in barley (Thomas et al. 1995), soybean (Orf et al.
1999), and tomato (Lycopersicon esculentum) (Eshed and Zamir 1996:
but see deVicente and Tanksley 1993). Epistasis among ()JTLs has been
found more frequently for simpler traits, such as flowering time in cat
(Holland et al. 1997), rice (Yano et al. 1997), and Brassica {Camargo and
Osborn 1996); oil and protein contents and height in soybean (Lark et
al. 1994, 1995); and disease resistance in rice {Pressoir et al, 1998).
Eshed and Zamir {1996) suggested that the different conclusions about
the importance of epistasis among QTL-mapping studies may be attrih-
uted in large part to the experimental materials used. Epistasis is often
not found when mapping is performed in F, or recombinant inbred line
populations, in which segregation occurs throughout the genome.
Tanksley (1993) suggested that these types of mapping populations were
not ideal for investigating QTL interactions, whereas near-isogenic lines
(NILs), like those used by Fasoulas and Allard {1962), would be more
useful for that purpose because they stabilize the genetic background
such that the main effects and interactions of the regions of interest are
not confounded with genetic effects in other regions of the genome,
Doebley et al. {1995) reported a good example of this very phenomenon:
epistatic effects between two QTLs affecting plant and floral morphol-
ogy of maize were not detected in an F, population, but were found to
be very important in a study using NILs.

Marker-assisted selection studies have sometimes unwittingly turned
up evidence for epistasis. For example, the effect of introgression of chro-
mosomal regions from wild into cultivated tomato genotypes was found
to vary depending on the recurrent parent genotype (Tanksley and
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Hewitt 1988). In some cases, a supposedly favorable allele had unfa-
vorable effects in a specific genetic background (Tanksley and Hewitt
1988). Similar results were reported by Stuber (1994), who mapped
(ITLs affecting grain yield in maize, ignoring the possibility of epistasis
(Stuber et al. 1992}, and used marker-assisted selection to transfer favor-
able QTL alleles from donor parents into elite backgrounds. There
seemed to be no advantage to introgressing more than two to four of six
favarable donor chromosome segments, and there may be some disad-
vantage to it {Stuber 1998). The likely explanation is that there are unfa-
vorable epistatic effects between some of the otherwise favorable donor
QTL alleles or there are favorable epistatic combinations in the elite
background that are disrupted by multiple introgressions (Stuber 1998).

Statistical methods for detecting epistasis in QTL experiments are
improving. Maximum-likelihood estimation procedures for detecting
and estimating QTL epistatic effects were developed by Wang et al,
(1999) and Kao et al. (1999). Wang et al.’s (1998) method searches
for epistatic interactions throughout the genome, while other methads
allow only for testing for interactions between QTLs with significant
main effects. The advantage of being able to test for epistasis among
all possible pairs of genomic regions is that gene pairs with additive-
by-additive interactions do not necessarily have additive effects, and
can therefore be missed by mapping algorithms that test for epistasis
only between QTLs with significant main effocts, The drawback is
greater computational complexity and greater difficulty in determin-
ing significance thresholds because of the numerous statistical tests
conducted.

VIIL. WHY IS THERE MORE EVIDENCE FOR EPISTASIS FROM
QTL EXPERIMENTS THAN FROM BIOMETRICAL STUDIES?

QTL-mapping studies seem to provide more evidence for epistasis for
yield and other important agronomic traits than classical biometric stud-
ies (Li 1998). With molecular markers, the gene action effects of specific
chromosomal regions can be estimated, providing two great improve-
ments aver classical biometric methods of quantitative genetic analysis.
First, estimation of effects in specific chromosomal regions provides con-
siderable power over biometric methods that test for the average or total
gene effects of the entire genome (in which case positive and negative
interactions among different pairs of loci may sum to near zero), Second,
QTL studies can estimate gene action effects (e.g., a and d) rather than
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just statistical genetic effects such as average allelic and genotypic effects
(..,  and 8] in populations of specific allele frequencies. A major lim-
itation of quantitative genetics has been that statistical genetic effects are
generally not reliable indicators of the underlying gene action; QTL-
mapping methods provide a more direct route to understanding gene
action.

A caveat should be added that, while genetic marker methods have
improved our ability to resolve complex quantitative traits to their
underlying genetic factors, biases and limitations are inherent to QTL-
mapping experiments. A difficulty in interpreting (ITL-mapping exper-
iment results is that simultaneous detection and estimation of the effects
of numerous genetic factors using typical population sizes (75 to 200
progenies or lines) results in multicolinearity, or correlations among
the regressor variables, a problem commonly encountered in multiple
regression model selection and estimation (Rawlings 1988). In the case
of QTL-mapping experiments, linked marker loci (the Tegressor vari-
ables) are obviously correlated. The effects of QTLs linked within 20 cM
of each other cannot be reliably separated in typical QTL-mapping
experiments (Kearsey and Farquhar 1998). What is less obhvious, but still
very problematic for selecting those loci that best account for the
observed phenotypic variation and estimating their effects, is that
unlinked loci generally are also correlated to some extent simply by sam-
pling a finite population. QTL effects estimated at one marker locus,
therefore, may be partially confounded with the effects of QTLs on other
chromosomes. The result is that QTLs with small effects tend to remain
undetected, QTLs with intermediate effects are detected in some sarm-
ples and not others, and the effects of those (ITLs that are detected are
overestimated (Beavis 1994; Openshaw and Frascaroli 1998: Utz et al.
2000). Independent progeny samples drawn from the same population
may give quite different results (Melchinger et al. 1998). The problem is
serious for estimating (QTL. main effects and becomes worse for estimates
of epistasis among QTLs (Utz et al. 2000), F urthermore, making multi-
ple tests for QTLs complicates the determination of a proper statistical
threshold for declaring the presence of a QTL (Churchill and Doerge
1994), and this problem also becomes more serious when performing
m(m-1)/2 tests for epistasis among all pairs of m marker loci in the
genome (Holland 1998; Holland et al. 1997). Real certainty in the exis-
tence and magnitude of epistatic interactions among QTLs will require
isolation of the different allelic combinations into a homogeneous back-
ground using NILs and similar approaches (Doebley et al. 1995), where
these statistical difficulties can be minimized,



64 J. B, HOLLAND

IX, IMPLICATIONS OF EPISTASIS
FOR PLANT BREEDING

Does it matter to plant breeders whether epistasis is an important com-
ponent of gene action for yield? Will the presence of significant epista-
sis affect breeding methodology? The surumary answer, to be defended
below, is that if epistasis is important, then, current plant breeding
methods and paradigms are adequate in the short-term, but will almost
surely limit long-term progress.

What are the implications for breeding methodology if epistasis is of
general importance? Epistasis is treated only in passing in some standard
plant breeding textbooks (Fehr 1987 but see Allard 1999, Chap. 11), and
deciding among alternative breeding strategies if epistasis is important
is difficult. Baker (1984) suggested that epistasis most likely will be of
importance in self-pollinating species because of the larger coefficient
of additive-by-additive epistatic variance of covariance of relatives in
inbred generations, but he doubted that epistasis would have much
impact on breeding cross-pollinated crops. Thus, the implications of
epistasis for plant breeding methodology will depend on the breeding
system of the crop and the current methods for breeding and seed
production because these determine the types of epistatic effects that
can be propagated reliably. Specifically, breeding methods for self-
pollinating crops, cross-pollinated hybrid crops, and cross-pollinated
non-hybrid crops will be affected in different ways. Selfing species
allow fixation of additive-by-additive epistatic effects in cultivars, while
all types of epistatic effects can be fixed in F, hybrid cultivars. The fre-
quencies of various epistatic effects in cultivars that are derived from
multiple generations of cross-pollination (approximating random mat-
ing}, in contrast, may fluctuate over generations.

Below I discuss the influence of epistasis on hoth inbreeding depres-
sion and heterosis and illustrate three effects of epistasis on response to
selection: (1) epistatic variance can shift to additive variance under drift
or inbreeding; (2) epistatic variance contributes to “temporary” response
to selection in outcrossing populations which can be captured as a form
of heterosis using appropriate breeding procedures but may be otherwise
squandered; and (3) fitness or vield is not a simple function of allele fre-
quencies, resulting in rugged adaptive landscapes filled with local fit-
ness optima on which breeding populations can become stranded. If
epistasis is important, then marker-assisted selection schemes should be
designed to exploit it.
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A. Inbreeding Depression and Heterosis

Inbreeding depression is the difference between the mean of a popula-
tion inbred to a level measured by the inbreeding coefficient, F, and the
random-mated population from which it was derived. Midparent het-
erosis is the difference between the mean of an F, population derived
from the cross of two populations and the average of the means of the
two parental random-mated populations.

1. Inbreeding Depression. The mean of a population inbred to a degree
F, in the absence of gametic disequilibrium, and allowing for two-locus
interactions {(Kempthorne 1957, Chap. 20; Weir and Cockerham 1977] is:
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where 1, is the mean of the random-mated population, n is the number
of loci, and the summations are over loci and alleles for the dominance
term and over locus pairs and allele pairs for the dominance-by-
dominance term. Thus, only dominance and dominance-by-dominance
statistical effects contribute to inbreeding depression. In the case of the
twa-locus, two-allele model, this relates to the gene action parameters
as follows:

Br = Hg — 2F[(P1Pz](dA + (g — qz)da + 2q,q,dd) + (4:192)(d® + (p1 — p2lad
+ 2pp.dd)] + 4F*(p,q,p.q.)dd
= Wy — 2F(pap2)(@* + (q, — q2)da) + (4,9 Hd” + (p, - plad)]
+ 4F(F-2){(p19:p-q.)dd

If allele frequencies are equal (p; = p; = q; = q, = 0.5), then ad and da
gene action effects do not contribute to inbreeding depression and only
dominance and dominance-by-dominance epistatic gene action effects
contribute. At other allele frequencies, however, ad and da effects can
affect inbreeding depression.

Epistatic effects on inbreeding depression are sometimes considered
to be deviations from a multiplicative interaction rather than additive
model, as discussed in section II of this review. Fu and Ritland (1996)
presented evidence that inbreeding depression for fecundity conforms
to a model of multiplicative interactions, whereas inhreeding depression
for viability deviates from a multiplicative model in Mimulus gutiatus.
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Remington and O’Malley (2000) aiso found that inbreeding depression
for viability in loblolly pine (Pinus taeda) was best explained by a mul-
tiplicative model.

2. Heterosis. The treatment of heterosis is mare complicated because the
statistical genetic effects in different populations cannot be related sim-
ply to each other due to the differing allele frequencies (Stuber and
Cockerham 1966). To demonstrate heterosis in terms of gene action
parameters for the special case where the two parental populations have
the same two alleles at both loci, but may have them in different fre-
quencies, the allele frequencies at the A locus in one population are
denoted p, and p,, and the allele frequencies for the A locus are p, - ¥a
and p; + y,, where y, equals the difference in the frequency of allele 1
between the two populations. Similarly, the allele frequencies at the B
locus are written as q, and g, in one population and q, — yz and q, + v,
in the second population. Assuming that the parental populations are
in Hardy-Weinberg and gametic phase equilibria, the midparent mean
(the average of the two parental population means) can be written as:

Hyp =1 + (p; — p, ~ va)a? + (Q; - q2 — yg)a®
+[2p1ps + (p1 ~ Py - yalvald + (2q.q, + (9, — qz — valyeld®
+[p: = Py — @) = (@1 ~ Qudya — (py — Py + 21ayslaa
+ [2(p1 = P2)qug: ~ 204G,574 + (Py — p2)(qs — Galyy— 2(qy ~ Qolvays
+2yay5" ~ (P — plyp’lad + [2pypy(g, — ) + (py — pa)lg; — q.)ya
~ 2D1P2¥ — 2(p1 — P2)VaYa + 2Va'ye — (q, — q,)vailda + (4P 1P29:19;
+2(p, — P2)0:9.¥4 + 2D:pa(qy — qs)ys + 2(p, - pJJg, - o)y ays
= 29192V4° — 2P1Pays’ ~ 2(0) — Q)¥a’ Vi - 2(py — PolVays’
+ 2 viivetldd

The mean of the F, population derived from the inter-population cross
(which is in neither Hardy-Weinberg nor gametic phase equilibria) is:

M1 =m + (P = P2 = pa)a® + (g, — Q. — yp)a® + [2p,p, + (p, — py)yald?
+ (2019, + (q; - qlyuld” + [(py — p.)as — a,) ~ (g1 — qu)ys — (p,
= Pa)Vs + vavalaa + [2(p; - po)aiq, — 2q.quy4 + (py — P2)a: — az)yy
= Q1 — qlyayslad + [2p;pa(g; —q,) + (P —pa)lg, - U2)Va — 2D1PaVs
—(p:i - p2lvayglda + (4p:p.q:9: + 2(p, - P2)@iqaya + 2pip.lq,
- qz),VB + (pl - pz)((h - Q2)K4,Va]dd

Mid-parent heterosis is the difference between the F 1 and mid-parent
means, and in this case equals:
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Heterosis = i — Mp = ¥a°d* + v5°d” — yaysao + {4y — Q)Vays — 2vays’
+ (py — paJygtlad + [(py — palyays — 2¥4'Vn + (@ — q2)va’lda
+ [—(py = p2)qy — QudVays + qu(hYAZ + 2P1Pz]"b’2 + 2(q,
— Q)ya’Va + 2{p1 — Pa)vays’ — 2¥a°vsldd

Comparing this result to the result for inbreeding depression shows that
although heterosis can be considered “simply inbreeding depression in
reverse” {Falconer and Mackay 1996) if there is no epistasis, this is not
strictly true when there is epistasis.

By defining the effects in reference to the equilibrium population
derived from the F, by sufficient random mating, heterosis can also be
expressed in terms of statistical genetic effects as:

Heterosis = pg — e = ¥a°D* + 75°D° — vaypAA

where D* = 8., — (%)(8,,2 + 8,,), D = 8,5 — (%)(8,,% + 8,,"), and AA =
00, — OU0Lys — 0Ll + 00, (Willham and Pollak 1985). Similar expres-
sions, with varying notation, were given by Hill (1982} and Lynch (1991).
The interpretation of these statistical genetic expressions is that hetero-
sis depends on dominance of favorable alleles isolated in the parental
populations or by favorable additive-by-additive interactions between
alleles in different parental populations, or both (Lynch 1991). The pur-
pose of expressing heterosis in terms of gene action in this review is
to emphasize that although heterosis is a function of dominance and
additive-by-additive epistasis statistical effects (Hill 1982; Lynch 1991;
Willham and Pollak 1985), it is also a function of dominance and
additive-by-additive, additive-by-dominant, and dominant-by-dominant
gene action effects. This is true because the statistical dominance and
additive-by-additive effects incorporate additive-by-dominant and dom-
inant-by-dominant gene action effects (Table 2.6). The practical result
of this is that hybrid cultivars and population-cross cultivars can exploit
all forms of epistasis because they contribute to heterosis.

3. Multiplicative Epistasis and Heterosis. Multiplicative gene action is
a special case of the general gene action formulae given in Tables 2.2 and
2.3, wherein the epistatic gene action effects are the products of the
single-locus gene action effects, scaled to the midparent value:

aa = {a* x d®)/m; ad = (¢ x d)/m; da = {d* x a®)/m; dd = {d* x d°)/m.

As mentioned in section IV D, one plausible manner in which multi-
plicative gene action can occur is when a complex character is the
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Table 2.8, Example of multiplicative gene action for a complex trait, W, which is the
product of traits X and ¥, controlled independently by loci A and B, respectively.

Two-locus genotypic values

B-locus genotype

B8, B,B, BB,
A-locus
genotype X w Y X w Y X w Y
A4, 5 15 3 3 15 3 5 5 1
AA, 4 12 3 4 12 3 4 1
AA, 1 3 3 1 3 3 1 1 1
Trait
Gene action
parameters X w Y
m 3 6 2
at 2 3 0
a? Q 4 1
1 3 i}
af 0 2 1
a 1] 2 1]
ad I} 1 0
der I 2 0
dd 0 1 0

product of two or more subcomponents; e.g., grain yield is the product
of seed number per plant and mean seed weight.

A numerical example of this type of multiplicative gene action is
shown in Table 2.8, where a trait, W, is the product of traits X and Y.
The genes affecting X and Y operate independently; the A locus affects
trait X but not Y, while the B locus affects trait Y but not X. The two loci
exhibit no epistasis for either traits X or Y, but they exhibit multiplica-
tive epistasis for trait W due to the multiplication of components X and
Y (Table 2.8). In this situation, heterosis in character W can arise from
two sources (see review by Schnell and Cockerham 1992). One source
is the multiplication of heterosis observed for character X {due to dom-
inance at locus A) with heterosis observed for character Y (due to dom-
inance at locus B). The second source of heterosis is from multiplicative
interactions of the subcomponents directly. This can be expressed as

Hy = M1 — Hamppwy = (Hrﬂp(muf\qu])(h}chy -1)- (.uij[X] — Uz (Wea vy
~ Hpavy))/4
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where the first part of the right hand side of the equation is due to the
product of heterosis (measured as the ratio of the F, mean to the mid-
parent mean} expressed for traits X and Y individually (hx = Leago/Mup
and hy = Wy Huey)» TeSPectively), and the second part of the right
hand side is due to multiplicative interactions of the traits (Schnell and
Cockerham 1992).

As an example of heterosis in a complex trait, assume that there are
two populations sharing the same two alleles and the same gene action
at both loci as in the example in Table 2.8, but differing for allele fre-
quencies at the two loci. If the first parental population has allele fre-
quencies of p, = 0.2 and q, = 0.8, its mean for the sub-component and
complex traits will be: ppyxy = 2.12; Wpyv) = 2.92; and yp, ) = 6.19. If the
second parental population has allele frequencies of p, = 0.8 and ¢, =
0.2, its mean for the sub-component and complex traits will be: Ppye =
4.52; Wpyyy = 1.72; and Mpywy = 7.77. Therefore, the midparent trait means
are: Pyppg = 3.32; tvpry) = 2.325 and Uypw = 6.98. The trait means of the
interpopulation cross F; will be: ey = 3.68; Ppyy) = 2.68; and Hpyw) =
9.86; and the resulting heterosis for the three traits will be: Hx = 0.36;
Hy = 0.36; and Hy, = 2.88. Heterosis measured as the ratio of F, and of
the midparent means for the three traits is: hy = 1.108; hy = 1.155; and
hw =1.413.

Following Schnell and Cockerham’s (1992) formulation, part of the
heterosis in W (Hy = 2.88) is due to the multiplication of heterosis
within components X and Y: [uMP(x]uMpﬁ-J][hXhY —1)=(7.7){1.28 -1} =
2.16. In genetical terms, this fraction arises from the multiplication of
dominance statistical effects within loci (Schnell and Cockerham 1992).
The remaining portion of heterosis is due to the multiplicative effects:
~{pai) — Meze e — Upay) /4 = —(-2.4){1.2)/4 = 0.72. In genetical terms,
this portion arises from the additive-by-additive statistical epistatic
interactions between loci (Schnell and Cockerham 1992).

Schnell and Cockerham (1992) suggested that, with increasing num-
ber of pairs of loci involved in epistatic interactions, the first part of
heterosis (due to dominance statistical effects) would be the more sub-
stantial component of heterosis in the complex trait, and the second part
{due to additive-by-additive statistical effects) the lesser. The reason for
this is that heterosis at each additional locus involved in the multi-
plicative interaction is multiplied together, so with more loci affecting
heterosis, the first portion is the product of more component heteroses,
and so will become larger. In contrast, with increasing numbers of
multiplicatively-acting loci affecting the trait, the additive-by-additive
statistical effects will tend to contribute less to heterosis because the
allele pairs contributing to a positive multiplicative interaction must
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be dispersed in the parental populations if they are to contribute posi-
tively to heternsis. For example, if the A, B, and A,B, allele pairs are
more favorable, the greatest heterotic effect from this epistatic combi-
nation will occur when one parent population has a higher frequency
of A, and a lower frequency of B, than the other parent. As more loci
contribute to the multiplicative interaction, all of the favorable allele
pairs cannot be dispersed between the parental populations. For exam-
ple, if three loci are involved and the favorable allele pairs ara A;B, and
AzB,, A;Crand A,C,, and B,C, and B,C,, and A, and B, are dispersed and
A, and C, are dispersed, then B, and (, cannot be dispersed simultane-
ously. B, and C, would both have to be at higher frequencies in one of
the parental populations than in the other, and their epistatic effect
would contribute negatively to heterosis. This reasoning also applies to
the contributions of additive-by-additive effects to heterosis in the more
general case. With many loci contributing to heterosis, the additive-by-
additive effects of locus pairs contributing to heterosis will tend to be
positive as often as negative, and in net may contribute little to heterosis.
The multiplicative model illustrates how epistatic interactions can
occur between two or more sub-components of a complex pPhenotypic
trait in the absence of molecular interactions, How realistic is the mul-
tiplicative model? Melchinger et al. (1994) reviewed the literature and
found several reports of heterosis arising from multiplicative interac-
tions in crop plants, In most cases in which appropriate data were avail-
able to make the determination, heterosis was due primarily to
multiplication of sub-component heterosis, rather than to multiplicative
epistasis, in accordance with the prediction of Schnell and Cockerham
(1992). Melchinger et al.’s (1994) own data on heterosis in crosses
between large- and small-seeded Vicia faba cultivars, however, demon-
strated that multiplicative epistasis can make an important contribution
to heterosis. They suggested that the parental cultivars represented dif-
ferent types of cultivars from distinct germplasm pools that were
selected for different yield components. A limitation to significant mul-
tiplicative epistasis occurring generally for yield is the likely existence
of negative genetic correlations among the yield sub-components, For
multiplicative interactions to occur, the sub-components must be uncor-
related (Melchinger et al. 1986), but in reality, many pairs of sub-
components will compete for a common pool of energy and nutrient
resources, resulting in their being negatively correlated in general,
Finally, while there is reason to believe that epistasis generally may
not contribute greatly to heterosis, relative to dominance, data on the
subject are limited. Lynch (1991) interpreted the results of Moll et al.’s
(1965) classic study of the relationship between genetic divergence and
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heterosis in maize as evidence that additive-by-additive effects were
important positive contributors to heterosis. As mentioned previously,
for this to occur requires that favorable allele pairs be dispersed among
populations, contrary to the general expectation that coadapted gene
complexes are more likely to exist within populations than between pop-
ulations (Lynch 1991].

B. Epistatic Variance Can Be Transformed into Additive
Variance after Bottlenecks

A surprising result of theoretical studies that have investigated the effect
of finite population sizes on genetic variances is that, following a pop-
ulation hottleneck, the genetic variance within a sub-population or
breeding line may increase, rather than decrease, as expected under a
purely additive model (Falconer and Mackay 1996), and as taught more
or less as dogma in plant breeding courses (Fehr 1987). If epistasis is
important and allele frequencies are initially intermediate, population
bottlenecks can result in increased additive genetic variance {Cheverud
and Routman 1996; Goodnight 1988; Whitlock et al. 1993). This is
counter-intuitive, but consider the simple model of fitness resulting
from the epistatic pair of loci described in Figs. 2.4 and 2.5. When the
population has intermediate allele frequencies, it is on the saddlepoint
in the middle of Fig. 2.5. In this case, additive genetic variance is zera,
because within each locus, neither allele is more favorable than the
other. Fig. 2.5 assumes a Hardy-Weinberg population, implying a very
large population size and stable allele frequencies without selection. If
population size is restricted, random drift takes effect, and if, for exam-
ple, allele A, drifts by random chance to less than 50% frequency, while
allele B, by chance remains close to 50%, then on average the B; allele
will be most often associated with the A, allele, resulting in an unfa-
vorable epistatic combination (Fig. 2.5). The B, allele will be commonly
associated with the A, allele, resulting in a favorable genotype. Now the
alleles will have average effects different from zero, causing additive
genetic variance. The population will respond to selection: A,B; geno-
types will be the most commonly selected, and A; and B, allele fre-
quencies will increase,

Cheverud and Routman (1996) consider epistasis as a source of
increased additive variance following bottlenecks, but ancther per-
spective is that epistasis can suppress additive genetic variance in large,
random-mating populations with intermediate allele frequencies.
Indeed, modifier genes epistatic to other genes can act as “capacitors”
for genetic variance, masking the potential genetic variance until allele
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Fig.2.5. Graphical representation of a 3-dimensional adaptive landscape resulting from
the additive-by-additive epistasis shown in Fig. 2.4. Mean population fitness is a function
af allele frequencies at loci A and B and is maximum when hoth A1 and B1 alleles are fixed
or when both A2 and B2 alleles are fixed. These two points are adaptive peaks on the fit-
ness landscape. For a papulation to shift from near cne peak to near the other requires an
intermediate reduction in population mean fitness.

frequencies at the modifiers shift to allow expression of differences at
other loci (Rutherford and Lindquist 1998). This is simply the reverse
of the phenomenon described by Morenao (1994) and discussed in sec-
tion IV B, in which epistatically-acting mutants at low frequency can
act additively, but when shifted to higher frequency act more obviously
in an epistatic fashion. Lépez-Fanjul et al. (1999) argued that increases
in additive variance following bottlenecks were limited to situations in
which allele frequencies were intermediate at both loci or at extreme fre-
quencies at one or both loci before the boitleneck and that such condi-
tions are unrealistic in natural populations. Nevertheless, they may be
common in plant breeding populations developed by mating unrelated
genotypes.

Deliberate inbreeding by sib-mating or selfing is expected to result in
increased variation among lines and decreased variation within lines,
and this is exploited by plant breeders who wish to enhance gain from
among-line selection by maximizing differences among lines and min-
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imize differences within lines (Fehr 1987). If epistasis is strong enough,
however, there can be more heritable variance within lines than ex-
pected. Unfortunately, experiments to empirically determine that epis-
tasis causes increases in genetic variances under inbreeding must be
exceedingly rigorous because genetic variances within some subpopu-
lations can increase by chance even under a completely additive model,
so large numbers of subpopulations and individuals within subpopula-
tions need to be sampled to have adequate statistical power to reject the
additive model (Lynch 1988). Furthermore, dominance effects can also
cause increases in genelic variances under drift and inbreeding (Robert-
son 1951; Weir and Cockerham 1977), so the experimental design must
be able to discriminate the effects of epistasis from those of dominance.
As aresull, there is a paucity of good data on the subject. Recent reports
based on extremely large-scale and rigorous experiments have provided
differing conclusions. Whitlock and Fowler (1999) found that additive
variance within Drosophila subpopulations decreased as expected under
a completely additive model, while Cheverud et al. (1999) demonstrated
that an increase in genetic variance under inbreeding was caused by
epistasis in mice. Rasmusson and Phillips (1997) attributed part of the
surprisingly high gains from selection within barley populations derived
from closely related lines to enhanced genetic variance from epistasis,
but this is only anecdotal evidence.

If epistasis really can cause substantial changes in additive genetic
variance under inbreeding, predictions of response to selection practiced
among partially inbred lines based on genetic variance compomnents esti-
mated from outbred populations may be quite wrong. Within-line selec-
tion will result in permanent response from selection due not only to
additive genetic variance, but also to additive-by-additive epistatic vari-
ance (Cockerham and Tachida 1988), in contrast ta the outhred situation,
in which epistatic variance only contributes to temporary response to
selection (see section IX G). The permanency of this response, however,
depends upon not intermating different lines after selection.

Wricke and Weber (1986) concluded that the presence of epistatic vari-
ance has little effect on the optimal ratio of among- to within-line selec-
tion intensity, but their conclusion did noet account for the possibility
of additive variance increasing within lines due to drift effects. Perhaps
more attention should be given to within-line selection than is com-
monly given in pedigree breeding programs for self-pollinated and
hybrid crops. Similarly, perhaps this is another reason to employ some
form of inbreeding in cross-pollinated population improvement schemes
in addition to the enhanced ability to purge deleterious recessive alle-
les under inbreeding.
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Gathering the empirical results necessary to choose appropriate lev-
els of among- and within-line selection under inbreeding for traits
affected by epistasis will be difficult. Furthermore, direct derivation of
predicted responses to selection for a variety of complex gene action
models and breeding method combinations would be difficult and
tedious. A more fruitful approach in the near term may be computer sim-
ulations of heritable variances and selection responses covering a wide
range of variables, including different forms and magnitudes of epista-
sis and different selection schemes. Podlich and Cooper (1998) recently
developed software to implement such simulations. Their program
allows the user to specify genetic models, including any form of epista-
sis among any number of genes, heritabilities, and genatype-hy-
environment interaction effects. This may permit robust theoretical
investigations of the effects of epistasis on genetic variances and
responses to selection under inbreeding.

C. Temporary Response to Selection

A general formula for response to selection is based on the regression of
offspring values on parental values (Falconer and Mackay 1996). The
numerator of the response, therefore, is based on the covariance between
parent and offspring phenotypes. A simple way to determine the covari-
ance between parent and offspring is to write the statistical genetic mod-
els for parent and offspring, and to compute the cross-product of the
parent and offspring models. For example, a two-locus diploid statisti-
cal genetic model for a parent, X, is:

AL oA sA BB oD
G =+ o5 + a8 toy +oy + &) + Oy + 00ty + 0Ly
+ o0t + oy, + aﬁjkl + aﬁjik + (JtSijl + 861}“,
where terms are as defined in Table 2.6. We assume that the population
is in Hardy-Weinberg and gametic phase equilibria,

The total genetic variance is obtained as the expectation of the squared
difference between the value for Gy and the population mean:

o¢ = Bl(Gx - pf’] = EIG2]1-p? (Lynch and Walsh 1997, Chap. 2).
Inserting the value for Gy into this equation gives:

oc =Hu+of +af +85 +af +of + 88 + 0ty + o

2 2
+ 0oy + o0y + adyy + ad;, + ad;, + aﬁiﬂ + Séiijld] ]—p-.
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The assumptions of Hardy-Weinberg and gametic phase equilibria imply
that all of the genetic terms in the above equation are uncorrelated, sim-
plifying the equation ta:

?)+ Ello 1+ El(o 1+ BLGBS 1+ B )] + El(ecf ) +

(871 + El(co 1 + El(or, ) 1+ Ellcet . )1 + El (e )P +

(083" 1+ El(0B )] + El(ex8 . )" + El (e )°] + E[(38,)"1 - u®.

6. =E
E
H

[
[

We then define the genetic components of variance to be:

oh = El(o} 1+ El(e} )]+ Ellef ] + El{e)*]

of, = El(8] ]+ (8]
oan = Fllaey, 1+ El(oo P1 + Flloog )] + El{o0y)°]
an = El(09,9)*1+ Bl )°] + El{od 5 )1 + El(08, ]
G%D = E[(saijkl]z]J

so0 that:
Op = O% + 05 + 04, + C4p + O

The phenotypic value of parent X includes, in addition to the geno-
typic value of X, a classifiable macro-environmental effect, an unclassi-
fiable micro-environmental effect, effects due to interactions between the
genotype and these two environmental effects, plus a measurement error
effect (Nyquist 1991). We will always assume no correlation between the
non-genetic effects of parents and offspring, however, so only the genetic
value, Gy, needs to be considered in the parent-offspring covariance.

The genetic value of an offspring, Y, the progeny of a mating between
parent X and some other random member of the population, Z, depends
upon the alleles inherited from both parents. Let us assume that Y
receives alleles 7 and k from parent X and ;" and X from parent Z (we
will consider the possibility that an offspring of X inherits alleles other
than i and k from parent X later). The genetic value of Y, is then:

Gy =p+o] +of +85 +af +al + 85 + ooy + oo, +
OOt + OO + OB e + OB + OB + 0By + 88

The covariance of Gy and Gy includes the expectations of cross prod-
ucts involving the same terms (which are variances): in this case only
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af, of, and og,, are in common between X and Y, so the following qua-
dratic terms contribute to the covariance of parent and offspring:

Cov(Gy,Gy) = El{a') + () + (oo '] = Ef (@ + (@F)?] + El{ae, )]

Additive genetic variance was defined as o4 = El(o)?] + El{o}?] + El(e§)?
+ E[(cV]. E[(e})?] equals E[(e)’] and El{of)?] equals E[(c})?], so E[(a})?
+ (a])?] = (1/2)0%,. Additive-by-additive genetic variance was defined as
Oaa = El(00)%] + El (oo )] + El{o0)?] + El (ot )?). The expectations of all
squared o terms are the same, so Elfooy)?l equals (1/4)62,. Summa-
rizing, the parent-offspring covariance consists of half of the additive
genetic variance plus one-fourth of the additive-by-additive epistatic
variance:

Cov(Gx,.Gy) =1/ 2)6% +(1/4)0%,

Returning to consider the possibility that Y inherits alleles other than i
and k from X, we note that offspring of X can inherit one of four possible
combinations of alleles at loci A and B, with the following probabilities:

Proh. (Y inherits i and k from X)=1/4
Prob. (Y inherits 7 and [ from X) =1/4
Prob. (Y inherits j and k from X) = 1/4
Prob. (Y inherits jand I from X) =1/4.

The covariance between Y and X can be derived for each possible case
and weighted by the probability of its occurrence to compute the ex-
pected covariance between X and Y. In this case, the covariance between
Xand Y is the same in all cases, (1/ 2)a; + (1/4)0% 4. Therefore, the Tegres-
sion of offspring on parent phenotypes is this covariance, divided by the
phenotypic variance among the parents:

b =[(1/2)03 +(1/4)05,1/62

If selection is practiced on both males and females, the covariance
between parent and offspring generations is the sum of the covariances
between offspring and mother and offspring and father. Therefore, this
regression coefficient is generally doubled and equated to narrow-sense
heritability, h* = 2b = 63 /2. Including epistasis in the model illustrates
that this is not strictly correct. But if the parent-ofispring relationship
is the basis of response to selection, then a portion of the additive-by-
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additive epistatic variance should be included in the numerator of
heritability (Nyquist 1991). If there is a significant ameount of additive-
by-additive epistatic variance, then this will increase the parent-
offspring regression, and the expected response from selection will also
be increased. So, additive-by-additive epistatic variance is a part of the
heritable genetic variance,

Consider the case, however, when selection is performed in some
generation 0, and individuals in generation 1 are mated at random to
form generation 2. The response to selection that carries over into gen-
eration 2 is given by the sum of the expected covariances of a grandchild
in generation 2 and its four grandparents in generation 0. All of the addi-
tive effects inherited by a grandchild descend from a selected parent in
generation 0, so the additive portion of the parent-grandchild covariance
remains unchanged, but only half of the additive-by-additive epistatic
effects from child X in generation 1 are transmitted to a grandchild in
generation 2, assuming free recombination between the two loci, Thus,
response from selection in generation 1 caused by the additive-by-
additive variance is reduced by half in generation 2, and this contribu-
tion will continue to be halved in each succeeding random-mating
generation. The covariance between ancestors and randomly-mated
descendants many generations later is 3. Griffing (1960) showed that
the expected response (R) to selection (with selection differential )
observed ¢ generations of random mating after selection is:

Red o4 +(1-r)c%, ’
S5

where ris the recombination frequency between the two loci. Thus, tight
linkage will cause the epistatic portion of the response to selection to be
reduced more slowly.

Therefore, we can speak of the additive-by-additive genetic variance
as temporarily heritable, and as contributing to a temporary response to
selection, Recall that this variance can contribute to permanent Tesponse
to selection when selection is practiced within partially inbred lines,
however (Cockerham and Tachida 1988).

The increase in temporary response to selection caused by additive-by-
additive genetic variance can be nearly nullified in some special situa-
tions, however, as demaonstrated by Kimura {1965). Selection generates
gametic disequilibrium (Bulmer 1985, Chap 9; Falconer and Mackay
1996, Chap. 11), and gametic disequilibrium affects the genetic variance
(Lynch and Walsh 1997, Chap. 5). Under loose linkage and relatively
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small epistasis, and after several generations of selection, populations
are not in gametic phase equilibrium, but attain a state of “quasi-linkage
equilibrium”, in which the ratioR = f(AB)f(A,B,)/{(A;B)I(A,B,), where
f(ABy) is the frequency of gamete A,B,, attains a constant value over gen-
erations. When populations are in quasi-linkage equilibrium, the gametic
disequilibrium reduces the genetic variance by an amount nearly equal
to the value of (1/4)0% 4, and the response to selection is almost exactly
what would be predicted by considering the additive genetic variance
alone in the parent-offspring covariance (Kimura 1965). For this reason,
Crow and Kimura (1970, Chap. 5) suggest that the contribution of epista-
tic variance to temporary selection response will often be nil, unless
epistasis is strong, linkage is tight, or the response to selection in the ini-
tial generations, before quasi-linkage equilibrium has been attained, is
being considered. Since few breeding programs are conducted as truly
long-term recurrent selection programs, however, it is not certain that
many plant breeding populations are at or near quasi-linkage equilibrium.

Temporary response to selection may be even greater in polysomic
polypoids. For example, consider the response to selection in a tetrasomic
tetraploid population, ignoring the possibility of double reduction.
Expanding Kempthorne’s (1955) model for autotetraploid genotypic val-
ues for a single-locus mode! to include two loci for individual X with alle-
les i, j, k, and ] at locus A and alleles m, n, 0, and p at locus B requires
256 terms. The different types of terms can be summarized as:

Gx =1 + 8 g effects + 12 B effects + 8 ik effects + 2 8y effects +
16 o, effects + 48 afy;,, effects + 32 oy, effects + 8 imnep
effects + 36 PPy, effects + 48 BYsimno effects + 12 Bdijmnop effects
+ 16 Yipmno efects + 8 ;jumnq, effects + 1 88iikimnap effect,

where a; effects refer to additive effects, B;; effects refer to di-allelic
interactions within a locus, Vi effects refer to tri-allelic interactions
within a locus, 8y, effects refer to quadri-allelic effects within a locus,
and the other terms are interactions between effects at different loci.

When X is mated at random to another individual, the offspring of X
{referred to as Y) will inherit the following number of effects in common
with X (obtained by arbitrarily saying that Y inherits alleles i and i at
locus A and m and n at locus B from X):

Gy inherits from Gx: 4 o effects + 2 By effects + 0 v, effects + 0 Bijkl
effects + 4 aw,, effects + 4 af,_, effects + 0 OYimuo effects + 0 Bimnap
effects + 1 BBijmn effect + 0 Bimmo effects + 0 By effects + 0 Vijkrno
effects + 0 Wijkmnop effects + 0 80;jkimnop effects
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Therefare, the covariance between tetrasomic parent and offspring is:

Cov(X,Y) = (1/2)0% +{1/6)6}, + (1/4)0%, +(1/12)0%, + (1/36)57,,

where 63 refers to additive, o} to digenic dominance, 0%, to additive-
by-additive epistatic, ofp, to additive-by-digenic dominant epistatic, and
opp to digenic-by-digenic epistatic variance components. Levings and
Dudley (1963) doubled this value to obtain the numerator of the parent-
offspring regression estimator of narrow sense heritability in alfalfa.

This result shows that in tetrasomic species, even more non-additive
terms contribute to temporary response to selection than in diploids.
Since tetrasomic species have 2x gametes, a portion of the digenic
within-locus allelic interactions can be transmitted to the progeny.
Therefore, additive-by-digenic and digenic-by-digenic epistatic allelic
combinations can also be inherited, which is why Dudley et al. (1969)
referred to 63, and o}p as “heritable” epistatic componeitls.

Again, the contributions to selection response from non-additive vari-
ances decline after the initial generation is random-mated. The contri-
butions including dominance decrease by a factor of 1/3 each generation
{Waish and Lynch 2000, Chap. 4) and become zero when the population
achieves single-locus random mating equilibrium (RME, the natural
extension of Hardy-Weinberg single-locus equilibrium to tetrasomic
species). The portions involving epistasis decline by a factor of (1-r) for
each generation of random-mating, due to the approach of gametic phase
equilibrium, Hill and Haag (1974) computed the expected gains from
selection in an autotetraploid (ignoring epistasis) and observed that the
digenic dominance variance component did not contribute to the numer-
ator of the response, in contrast to the formula given by Levings and Dud-
ley {1963). The reason for this is that the method used by Hill and Haag
{1974) implicitly assumes that the response to selection is computed
based on the comparison of a RME population resulting from selection
to the original RME population. Thus, Hill and Haag (1974) were com-
puting the permanent response to selection,

Since genotype frequencies can be fixed in inbred or hybrid cultivars,
these results are really only of practical importance for cultivars that are
populations derived from cross-pollination. Many forage crop cultivars
are synthetic or apen-pollinated populations, and many of these species
are polysomic polyploids (Busbice et al. 1972; Casler et al. 1996; Rum-
baugh et al. 1988; Vogel and Pedersen 1993). Thus the enhanced con-
tribution of epistasis to temporary selection response in polysomic
polyploids could be exploited in these crops. Although temporary
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response to selection declines with each generation of random mating
after selection, this does not imply that we should ignore this compo-
nent of the selection response. This idea contradicts some current think-
ing about polyomic polyploid breeding methods. For example, Rowe
and Hill (1984) observed that there are situations in which relative rank-
ings of autotetraploid population crosses differ in the Syn-1 and RME
generations because the Syn-1 is not in equilibrium. They suggested that
breeders of autotetraploid crops should allow synthetics to random mate
for several generations to approach RME before evaluating them. This
is a good suggestion if resulting cultivars are expected to be in RME, but
if Syn-1 or other early generation synthetics could be developed as cul-
tivars, then evaluation of Syn-1 generations is appropriate. Rather than
considering these temporary response effects to be a nuisance, methods
to exploit them should be developed. Breeding schemes that minimize
the number of generations from selection to farmers’ fields should have
an advantage if any of the epistatic variance components contributing
to selection response are important {Wricke and Weber 1986).

Hybrid cultivar development has been notoriously difficult in forage
species, but recently Brummer (1999) proposed a method to develop
semihybrid alfalfa cultivars that will at least capture a good portion of
the heterosis in cultivars, and is feasible for current forage crop seed pro-
duction technologies. Since most forage crops are currently sold as syn-
thetic populations in the Syn-3 or Syn-4 or later generations, neither
heterosis nor temporary responses to selection are capitalized upon in
farmer’s fields. Brummer’s {1999) semihybrid method can exploit het-
erosis and temporary responses due both to dominance and epistasis in
forage crops and can be used in the absence of true hybrid seed pro-
duction methods.

D. Adaptive Landscapes

Wright (1982) developed the concept of adaptive landscapes as a way
to illustrate the relationship between allele frequencies and mean fitness
of a random-mating population where epistatic gene action is important
for fitness. Adaptive landscapes are easy to describe if epistasis and over-
dominance are not important for fitness. In this case, the mean popula-
tion fitness is a monotonic function of allele frequency at each locus, i.e.,
as the frequency of the favorable allele at a locus increases, population
mean fitness will continue to increase. Natural or artificial selection for
higher fitness will push the population uphill, always resulting in higher
fitness. Eventually, the population will become fixed for the favorable
allele at all loci affecting fitness, and the population will remain stable
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at this maximum fitness. This is often termed a “Fisherian” model of
selection and respanse (Coyne et al. 1997). In terms of quantitative
genetics, additive genetic variance would be most important, epistatic
variance would be nil, and response to selection would be a function of
selection intensity and heritability. The key point is that under this
model of genetics and selection, the population will eventually, but
unfailingly, attain maximum fitness.

A simple example of a rugged adaptive landscape involving two loci
(based on the epistatic gene action in Fig. 2.4) is shown in Fig. 2.5.
Assuming the population is in Hardy-Weinberg and gametic equilibria,
mean population fitness is a function of allele frequencies at the two loci.
The resulting three-dimensional fitness curve has two peaks, when the
population is simultaneously fixed for the A, and B, alleles or far the
A, and B, alleles. If a population starts with lower frequencies of both
A, and B, alleles, selection will decrease those allele frequencies until
the A, and B, alleles are fixed. If a population starts with lower fre-
quency of A, and higher frequency of B, however, selection will initially
push both allele frequencies toward 0.5, at which point the population
is at the “saddle point” in the middle Fig. 2.5. This saddle point is an
unstable equilibrium point, and from there, the population could even-
tually progress to either of the fitness peaks. Most interesting is the pos-
sibility that one of the two fitness peaks is more fit than the other, a
possibility that does not appear in Fig. 2.5, but is easily imaginable. In
such a case, the maximum fitness point is considered a “global” fitness
peak, and the lower peak is a “local” fitness peak. Depending on the ini-
tial allele frequencies in the population, the population can easily end
up on the local fitness peak, where it will be stranded, because the only
way to get from the local peak to the global peak in this case is by first
becoming less fit, by going against the pressure of selection. Wright
(1982) generalized this situation to many loci, resulting in complex,
multidimensional adaptive landscape filled with local peaks onto which
populations are likely to become stranded if selection is the only evo-
lutionary force. Wright developed his “shifting balance theory™ of evo-
lution to suggest a manner in which populations might be able to move
from lower to higher peaks on adaptive landscapes, with genstic drift
resulting from population subdivision being the force that would allow
populations to “go downhill” against selection pressures and cross val-
leys in the adaptive landscape.

The shifting balance theary of evolution involves many processes
besides epistasis and is still hotly debated (Coyne et al. 1997, 2000:
Goodnight and Wade 2000; Wade and Goodnight 1998). The debate
should not obscure the fact that if epistasis is important (whether or not
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the entire shifting balance theory is correct), then rugged adaptive land-
scapes must exist, and if selection is never counterbalanced, populations
will likely become stranded on local fitness peaks and be unable to
reach global peaks. Furthermore, Fisherian forms of selection and
response are a part of the overall process: within a restricted range (the
scope of a single local peak), selection will operate on allele frequencies
in a regular, predictable manner. The profound implication of this idea,
however, is that long-term selection alone will not guarantee that a pop-
ulation will reach its maximum potential fitness.

Is epistasis of enough importance to result in rugged adaptive land-
scapes that would force us to rethink concepts of selection and plant
breeding? Most likely, the answer depends on one’s perspective. For
most breeders, progress toward a local fitness peak could be a lifetime’s
work. With many loci involved and complex epistatic patterns, there are
more genotypic possibilities requiring evaluation to understand the
adaptive landscapes than a typical breeding program can handle. In
addition, the importance of genotype-by-environment interactions
implies that the adaptive landscapes will be constantly shifting across
environments, and the concept of global fitness maximum may be
environment-dependent, anyway.

Nevertheless, in addition to the direct evidence cited previously sup-
porting the importance of epistasis for yield in most crops, epistatic-like
interactions and rugged adaptive landscapes seem to be inherent prop-
erties of all complex systems (Kauffman and Levin 1987; Lenski et al.
1999). The more parts comprising a system, the more rugged the result-
ing adaptive landscape and the less likely that any simple selection
function will bring the system to a global maximum (Kauffman and
Levin 1987). Plant genetic systems are very complicated, molecular and
biochemical interactions are known to be extensive (section III), and it
is almost certain that fitness and yield are not simple linear functions
of allele frequencies. In the long term it is surely worthwhile consider-
ing breeding plans that can both maximize immediate gains from selec-
tion and ensure the probability of maximizing fitness in a global sense.

We will never be able to fully understand or measure the fitness land-
scapes of breeding populations and germplasm pools; there are simply
more genotypic combinations than can possibly be evaluated. Never-
theless, this is no justification to ignore the good possibility that fitness
or yield may not be a linear function of allele frequencies. DNA mark-
ers can be used to not only map crop genomes but to also map the topol-
ogy of the adaptive landscapes of breeding populations. This will require
large population sizes, extensive phenotypic evaluations, and perhaps
special genetic stocks such as NILs (rather than typical F,-derived map-
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ping populations) in order to obtain good estimates of the fitness of
many different multilocus genotypic combinations. The tools of geno-
mics are rapidly developing to the point where interactions at the mol-
ecular level can be identified on a large scale (Ito et al. 2000). This may
allow the simultaneous evaluation of molecular interactions among gene
products along whole biochemical or regulatory network pathways, pro-
viding some clues as to what sorts of metabolic and regulatory interac-
tions are really important in plants. We may find that the effects of most
QTLs depend primarily on gene regulation rather than protein function,
as suggested by a recent QTL cloning study (Frary et al. 2000). In this
case, the ability to discriminate genic interactions that occur at the lev-
els of gene transcription, translation, protein stability, or protein-protein
interactions may be helpful in selecting and combining alleles that will
interact to produce desirable genotypes. To achieve some understanding
of the adaptive landscapes and to identify those phenotypic and mole-
cular interactions that are parts of the same process, however, we will
need to develop a science of pheromics which will relate allelic diver-
sity, allelic and non-allelic gene interactions, and allele-by-environment
interactions to the complex phenotypes that have agronomic imper-
tance. This will not be possible in a laboratory alone, but will require
coordinated field and laboratory investigations to both identity and con-
firm candidate genes and candidate gene interactions. Again, not all
multilocus genotypes can be evaluated due to practical limitations, but
a good sample of different genotypes will allow a rough mapping of the
adaptive topology. If Kauffman (1993, Chap. 2) is correct that many
local peaks cluster near the global optimum, then a preliminary outline
of the topography can guide efforts to identify optimal genotypes.
Finally, much can be gained by better grounding quantitative genetics
theory in biological reality, and at the same time expanding the impli-
cations of molecular biology to the phenotypic and population levels:
“a conceptual and methodological marriage between mathematical sta-
tistics and nonlinear systems dynamics may become quite instrumen-
tal if it is cultivated within a molecular genetic framework,” (Omholt et
al. 2000].

I have presented evidence that DNA marker technologies have pro-
vided the best method for measuring epistatic effects on quantitative
traits, and DNA markers or other genomic technologies may be required
to better exploit epistasis for crop improvement. Currently, marker-
assisted selection methods treat QTLs as building blocks that maintain
their effects in isolation or in groups. Epistatic effects are considered, at
most, a nuisance. If we can reliably identify epistatic effects with mark-
ers, we should be able to use them to select multi-locus genotypes rather
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than specific QTL alleles in an additive fashion. Software (Charmet et
al. 1999) has already been developed to implement these ideas, but this
is limited to selection within simplified populations. A chalienge for the
future will be to more comprehensively measure epistasis and to develop
methods to best exploit additive, dominant, and epistatic effects by
selection hoth within and across populations and pedigrees. Ultimately,
such methods may allow breeders to bridge the fitness valleys that exist
between elite, adapted germplasm pools, and the rich genetic resources
that exist for many crops but remain unused because of poor adaptation.
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Table 2.6.  Statistical genetic parameteurs of the two-locus, two-allele model, assuming Hardy-Weinberg and gametic phase aquilibria.
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