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I. THE MEANING OF HERITABILITY

Heritability was originally defined by Lush as the proportion of pheno-
typic variance among individuals in a population that is due to herita-
ble genetic effects (Nyquist 1991, p. 248). This definition is now termed
“heritability in the narrow sense” and is designated h? (Nyquist 1991,
Pp. 248 and 250). Variations on this idea are often also referred to as her-
itability of one kind or another, such as heritability of family means (A7),
the proportion of the phenotypic variance of family means that is due
to family genetic effects, and “heritability in the broad sense” (H), the
proportion of phenotypic variance that is due to all genetic effects
(Nyquist 1991, pp. 239, 312-313; Falconer and Mackay 1996, pp. 123,
232). Whereas Lush’s definition was based on his experience as an ani-
mal breeder, in which the basic unit of observation and selection is
‘nearly always the individual animal, plant breeders deal with a great
diversity of observational units and mating systems. This complicates
both the procedures for estimating heritability and the meaning of her-
itability itself. As Nyquist (1991, p. 238) observed,
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The plant kingdom presents a great diversity of natural modes of reproduc-
tion, varying from reproduction without sexuality (asexual) to reproduction
by sexual means, cross-fertilization (allogamous), or self-fertilization
(autogamous). Mixtures of these main modes of reproduction also exist.
With self-fertilization, inbred populations exist and many unique difficul-
ties arise. . . . Considering the diverse array of plant populations which can
arise, many different estimators have been labeled heritability, and some-
times it is not clear what the exact nature of the estimator is or what is being

estimated.

Hanson (1963) urged plant breeders to unify their concept of heritability
as “the fraction of the selection differential expected to be gained when
selection is practlced on a defined reference unit.” Therefore, through-
out this review, various heritability estimators are evaluated in terms of
response to selection. Heritability has meaning only in reference to
defined selection units and response units, and these can vary among
breeding schemes.

Nyquist (1991) critically reviewed the substantial literature on esti-
mating heritability and predicting response to selection in plant popu-
lations, and he clarified many of the issues that affect heritability in
plants. Little can be added to his review of the topic except to address
some newer methods of heritability estimation that have developed and
been used in the last ten years. These newer methods include mixed
models analysis of unbalanced data, pedigree analysis, and use of DNA
markers to estimate genetic components of variation. Mixed models
analysis in general terms has been reviewed thoroughly by McLean et
al. (1991), Searle et al. {1992), and Littell et al. (1996), but the use of
mixed models analysis for plant breeding applications has not been
reviewed. Use of pedigree information to estirnate genetic variance com-
ponents in plant breeding was reviewed by Xu (2003). Ritland (2000)
reviewed the use of DNA markers for estimating heritability and other
population genetic parameters. Marker-based methods will have the
greatest impact on studies of natural populations with unknown pedi-
gree relationships and perhaps on domesticated species whose breeding
systems are not easily controlled. Recently, these methods have become
practical in part because of advances in computing power that have
made powerful but previously computationally unmanageable estimat-
ing procedures almost routine.

This chapter focuses on placing mixed models analysis procedures in
the context of typical plant breeding experiments and provides exam-
ples of computing code that can be used to obtain heritability estimates
and their standard errors with the commonly used SAS system (see
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Appendices 1 to 4). To place the estimation procedures in context, the
interpretation of heritability estimators obtained from different mating
schemes and generations is discussed.

II. RESPONSE TO SELECTION

A. Applications of Heritability Estimates

The main purpose of estimating heritability and the genetic parameters that
compose the heritability estimate is to compare the expected gains from
selection based on alternative selection strategies. One can use heritabil-
ity estimates to predict gain from selection, for example, based on single,
unreplicated plot values, and compare this to gain from selection expected
if materials are replicated within and across macroenvironments (Hoi et al.
1999). Heritability estimates are useful for comparing the gain from selec-
tion under different experimental designs, and this information—com-
bined with information about the relative costs of additional replications
within each macroenvironment, additional years of evaluations, and addi-
tional locations for evaluations—can be used to design optimal breeding
strategies (Milligan et al. 1990). Where genotype-by-environment (GE)
interactions cause significant rank changes among families evaluated in dif-
ferent environments, heritability estimates corresponding to response to
selection based on means over all environments can be compared with her-
itability based on means within subsets of local environments to determine
the optimal selection strategy (Atlin et al. 2000). Similarly, heritabilities
based on different family structures derived from the same base population
can be compared to determine which family structure is best for maxi-
mizing genetic gain over units of time (Burton and Carver 1993). Heri-
tability may vary among populations, thus, heritability estimates from
different populations can be useful for choosing appropriate base popula-
tions in which selection will be most effective (Goodman 1965). Because
heritabilities vary among traits within a population, heritability estimates
of different traits, in addition to genetic correlation estimates among the
traits, can be used to identify indirect selection schemes that may be more
effective than direct selection schemes (Diz and Schank 1995; Banziger and
Lafitte 1997; Rebetzke et al. 2002).

B. Theoretical Basis of Response to Selection

An understanding of the response to selection is needed in order to
apply Hanson’s (1963) definition of heritability as the fraction of the
selection differential expected to be gained when selection is practiced
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on a defined selection unit. One way to conceive of the response to selec-
tion is as a response or change in the mean of progeny phenotypic val-
ues due to a change in the mean value of selection units brought about
by selection. The selection differential referred to by Hanson (1963) is
the difference between the mean of selected selection units and the
overall mean of the initial population. We introduce the notation S =
— iy, where S is the selection differential, y is the mean of the selected
selection units, and g, is the overall initial population mean. From ele-
mentary statistics, the expected response in any variable, Y, due to a
change in a related variable, X, is given as AY = b(AX), where b is
the coefficient of regression of Y on X, AY is the change in Y, and AX
is the change in X (Steel et al. 1997). This general formula can be applied
to response to selection by considering X as the variable representing
selection unit phenotypic values, and Y as the variable representing phe-
notypic values of random members of the response units. Thus, AX is
the selection differential, i, — tto, and AY is R, the expected response to
selection: p, — u,, where u, is the mean (or expected value) of the
response unit phenotypes in the first cycle resulting from selection
within the initial population. Summarizing, R = Sby,. Therefore, the
expected proportion of the selection differential to be achieved as a gain
from selection, or heritability, is R/S = h® = by,.

The generality of this concept of heritability is very useful for plant
breeding, because it is applicable to all plant breeding situations, includ-
ing selection within randomly-mating cross-pollinated populations, as
well as selection among self-fertilized lines (with or without subsequent
random-mating), selection among clones, and selection among testcross
progenies in hybrid crops. The generality of this concept is also a weak-
ness, because it can have many different genetical meanings, depending
on the circumstances and type of selection to which it is applied. We
agree with Hanson (1963} and Nyquist (1991, p. 313) that the only rem-
edy for this situation and the possible confusion arising from it is that
researchers clearly indicate the basis of their heritability estimates—
what is the defined reference unit for selection, and to what method of
selection does it refer? Furthermore, we suggest that the reference unit
for measuring response also be indicated along with heritability esti-
mates, as this also impacts the interpretation of heritability.

The application of the heritability formula to specific breeding situa-
tions is discussed in Section VIII. To specify an appropriate heritability
function for any breeding situation, the coefficient of regression of the
value of the response unit on the value of the selection unit is required.
Mathematically, the regression coefficient is the covariance of the phe-
notypes of selection and response units divided by the selection unit



14 J. HOLLAND, W. NYQUIST, AND C. CERVANTES

phenotypic variance (Nyquist 1991, p. 249). Specifying the response unit
phenotypic value as Y, the phenotypic value of the selection unit related
to the response unit through its female parent as Xy, and the phenotypic
value of the selection unit related to the response unit through its male
parent as X, we obtain: '

byxy= Cov(X}, Y)/Var(X),
byxm = Cov(X_,, Y)/Var(X_).

If selection is practiced on selection units related to both female and
male parents, the total expected response to selection is the sum of the
two expected responses (Nyquist 1991, p. 272):

R= bYXfo"' byxmSms

where Srand S, are the selection differentials on female and male sides
of the pedigree, respectively. '

As shown by Nyquist (1991, p. 272), if selection units related to female
and male parents have the same expected value and population variance
(i.e., no sexual dimorphism), then byx;= byxm S;=S,, =S, and the total
response to selection is:

R= [2C0v(Xf, Y)/Var[Xf]]S = [Cov(X, Y)/Var(X)]S

where Cov(X, Y) = ZCOV[Xf, Y= Cov[Xf, Y) + Cov(X,, Y). Therefore, the
heritability equation that refers to response to selection when selection
is practiced on both male and female sides of a pedigree is:

h* = Cov(X, Y)/Var(X). [1]

To apply this formula to a specific breeding method, the selection and
response units must be specified because their relationship determines
the numerator of the equation. For example, response units can be related
to the selection units as clonal (asexual) offspring, first-generation prog-
eny of random-matings of the selection units, progeny resulting from
self-fertilization of the selection units, or they can be indirectly related
to the selected units, such as offspring of relatives of the parents (called
“recombination units” by Hallauer and Miranda [1988, p- 170]), rather
than direct offspring of the selection units actually evaluated. Each of
these situations results in unique covariances between selection and
response units. Nyquist (1991, pp. 272-277) presented the selection
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pedigree diagrams and covariances between selection units and response
units for many commonly used selection schemes.

Specification of the selection unit is also necessary because the
denominator of the heritability equation is the variance among selection
unit phenotypic values. The variance among the selection units depends
on whether individuals or families are evaluated. If families are evalu-
ated, the experimental design used to estimate family means, such as the
number of replications and environments in which selection units are
evaluated, will impact the variance of selection units, which are family
mean phenotypic values in this case.

C. Reference Populations, Assumptions,
and Model Definitions

Heritability estimates must refer to a defined population of genotypes
- (Comstock and Moll 1963; Dudley and Moll 1969). Reference popula-
tions are generally assumed to be random-mating populations in Hardy-
Weinberg and gametic phase equilibria, although for self-pollinating
crops, sometimes the reference population is taken to be completely
inbred genotypes derived from a Hardy-Weinberg and gametic phase
equilibria reference population by inbreeding without selection. Diploid
inheritance is assumed throughout this chapter. To estimate the heri-
tability of the reference population, individuals or families should be
sampled at random for measurement. Also, heritability estimates must
refer to a specified population of environments (Comstock and Moll
1963; Dudley and Moll 1969; Nyquist 1991, pp. 239-243). Defining the
reference population of environments is often more difficult than defin-
ing the reference population of genotypes, and reference populations of
environments are rarely explicitly defined by researchers. Generally,
however, a reference population of environments is defined geographi-
cally. For example, public plant breeders often are assigned to develop
improved cultivars for a specific state or province of a country, in which
case the reference set of populations that is of interest to such a breeder
is their state. In contrast, international agricultural research centers are
often explicitly concerned with developing germplasm that is broadly
adapted to a loosely-defined ecological zone throughout the world. Their
reference set of environments may include, for example, all subtropical
zones throughout the world. Having defined the target set of environ-
ments, the researcher should attempt to sample test environments at ran-
dom from this population. This is also difficult, because evaluations are
often performed on experimental research stations, limiting the plant
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breeder’s ability to sample target production fields. Similarly, it is rarely
feasible for researchers to evaluate material for more than a small num-
ber of years, thus limiting the sample of potential climatic variations
under which the germplasm of interest can be evaluated. These problems
are close to insurmountable, although recent research focused on better
defining target production environments may help researchers to better
sample the reference population of environments (Gauch and Zobel
1997). We can only emphasize that researchers attempt to sample a
range of environments that represent the target production environ-
ments for the germplasm, and that at a minimum, this should include a
sample of several locations and several years.

Defining and adequately sampling the reference population of geno-
types and environments is important for estimating heritability because
this provides the context to which the heritability estimate refers. The
genotypic values of the individuals in the population may depend on
the environment or the conditions under which the experiment was per-
formed (Comstock and Moll, 1963). For example, a drought-tolerant
genotype of wheat (Triticum aestivum) will most likely be more vigor-
ous under drought conditions compared with a normal genotype,
whereas under higher moisture conditions, the normal genotype may be
superior. Thus, when the experiment is performed in only a single envi-
ronment, the estimated genotypic values cannot necessarily be used to
make inferences beyond the original environment. The scope of infer-
ence of any experiment is an important issue that is often overlooked,
but should be as well-defined as possible to avoid any confusion regard-
ing interpretation of the results. The genotypic values refer specifically
to the conditions under which the experiment was performed, and it
cannot be assumed that the values would be the same in another refer-
ence set of environments. Therefore, genetic variance depends on the ref-
erence environments as well as the genotypes evaluated. Furthermore,
the genetic variance component estimated in the experiment refers only
to the population which was sampled for the experiment. |

A clear definition of the population being sampled is also important
for the estimate of genetic variance to have any meaning. One popula-
tion of any species will not necessarily have the same amount of genetic
variation as another population even from the same species, which can
be due to many factors, such as selection, mating behavior, random
drift, migration, and mutation. Thus, for example, there is no reason to
expect that the genotypic variance estimated for a particular trait for one
population of alfalfa (Medicago sativa) will have any relevance to
another population of alfalfa. Furthermore, the variation observed for
any one trait in any population may not hold for another trait in the same
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population. For example, a maize (Zea mays) population that has been
under selection for resistance to a particular disease may eventually
become fixed for the resistant phenotype, but it may still have genetic
variation for other traits, such as yield or flowering time.

Heritability estimates must be made from data collected in multiple
locations and during multiple years representing the target set of envi-
ronments or else the estimates will be biased unless genotype-by-
environment interaction is negligible, which is rarely true for quantita-
tive characters of agronomic importance (Nyquist 1991, pp. 239 and
312). This bias arises because the genotype-by-environment interaction
variance is confounded with the genotypic variance component if the
genotypic variance component is estimated from a single environment
or from a sample of multiple locations or from a sample of multiple years
only (Nyquist 1991, pp. 288-289). Another bias can arise if researchers
ignore the cross-classified nature of years and locations during the sta-
tistical analysis of their experiment. For example, if families are evalu-
ated at three locations across three years, the environments can be
classified by year and location, leading to variance components esti-
mates for years, locations, year-by-location interaction, families, and
family-by-year, family-by-location, and family-by-year-by-location in-
teractions. Or the analysis can proceed by classifying each year and
location combination as one of nine environments, leading to variance
component estimates of environments, families, and family-by-
environment interaction. The latter choice leads to a simpler statistical
model, but also creates bias in the resulting estimate of heritability,
because the estimate of family-by-environment interaction variance is
smaller than the sum of family-by-year, family-by-location, and family-
by-year-by-location variances (Comstock and Moll 1963; Nyquist 1991,
Pp. 289-290). Throughout this chapter, the model that ignores the cross-
classification of families and environments is used only to simplify the
presentation of mathematical formulas. This should be avoided if pos-
sible in analysis of cross-classified data sets, and formulas for estimating
heritability are provided with both approaches to handling environ-
mental classification (Table 2.1, pp. 86-101) at the end of the chapter.

Having defined the reference populations of genotypes and environ-
ments, we can define the effects of the statistical model that will be used
to estimate heritability. First, assume that the genotypes are sampled at
random from the reference population, meaning that the genotypic
effects (G;'s) are independent with expected value of zero and a common
variance, 0%. Assume also that the environments are sampled at random
from the reference population of environments. Further, distinguish
between the effects of macroenvironments (which generally refer to a
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combination of a geographical location and unique weather pattern,
that is, a single year and location combination) and the effects of
microenvironments (which refer to environmental variations with-
in macroenvironments). Therefore, we introduce a term for the effect of
macroenvironments, £, and a term for the effect of microenvironments,
& Bach is distributed around a mean of zero with variance o for
macroenvironments and ¢% for microenvironments. We also introduce
a term Ry;, for the mean effect of replications (complete blocks) within
environments. This leads to a common form of the linear model for data
observed on genotypes replicated in multiple blocks within multiple
environments on a plot basis:

Yie =+ E + Ry, + G;+ GE; + & [2]
This type of model assumes that genotypes can be replicated; in Section
V.A we demonstrate how to generalize the model to nonclonal mater-
ial. The model also assumes that only one phenotypic value is recorded
on each plot. If data are taken on individual plants within each plot, the
error variance can be partitioned into variance due to random plot effects
and within-plot variance. If not, then plot effects and plant-within-plot
effects are confounded in the residual effect, which is denoted as E;jk in
Equation [2], to maintain consistency with Nyquist (1991, p. 258). See
Nyquist (1991, pp. 252-259} for details on the definition of residual vari-
ances in this model and more complex statistical models. Other than the
overall mean effect, y, all effects in this model are random.

If selection is based on the mean phenotypic value of genotypes eval-
uated in multiple replications and macroenvironments (r replications
within each of e macroenvironments), then the values of interest are
mean values of genotypes:

2E XY Ry 2.GE; ¥

}_(.j. =Hu+ izl + =1 k=1 +Gj 4+ 1=l + 4i=1 k=1 i
e er e . er
=u+E.+R..+G}.+GE..+E’_]—_ _ (3]

Similarly, if the genotypes of the next base population are evalu-
ated in replicated, multiple environment trials, their mean phenotypic
values (}_fj.) are the response unit values. We assume that the set of envi-
ronments in which selection units are evaluated and the set of environ-
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ments in which response units are evaluated are independent samples
of the common reference population of environments. In practical terms,
this means that the evaluations of selection units are different from
those in which the response units are evaluated. :

To specify this in our statistical notation, we write E, for environments
used for selection unit evaluations and E, for environments used for
response unit evaluations, and similarly, R, and R, for block effects
sampled for selection and response unit evaluations, respectively. The
number of environments sampled for selection unit evaluations is e, and
the number of environments sampled for response unit evaluations is €,
The number of complete blocks within each evaluation environment is
specified as r, for selection units, and 1, for response units. Summariz-
ing this notation, we have:

i=1,..,e, and Var(E) = 62,
I'=e,+1,.. 6, +e,and Var(E,) = 62,
k=1, .., r, and Var(R;,) = 0%,
K=r,+1,..r1,+r,and Var(R;,) = c%

Having defined the statistical model, we can expand the heritability
equation to include all of the effects that contribute to selection and
response unit phenotypes. Assuming that selection units are chosen
based on their mean phenotypic values, and response units are evalu-
ated in replicated multiple environment experiments, we are interested
in the following regression coefficient:

bee = Cov(X ;.Y ;)
Xy~ = -
Var(X ;)
eX ex ‘r:‘f e.\' EX I:‘{
s’
2E D D Ru 2GE; XY ep
COV[[# + =1 + i=1 k=1 + G} + =1 + 1=1 .k=1. ],
e, e.r, e, e,r,
e, t+e, N g, +e, Exte, I+r,
2 B 3 X By 2 CEy 2 Y e
i'=e, +1 iI'=e +1 k'=r, +1 i'=e, +1 f'=e, +1 k'=r,+1
(u+ + +Gy + + )
€y Eyly Cy €yly
e.V e.\’ 'rX eX ex rx
r4
Z E Z 2 Bk Z GE); 2 Z Eijk
(= f= k: [= = =
Var(ﬂ+11 +11 1 +Gj+1‘l i=1 k=1
eX eXIIX eX eXrX
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To evaluate the numerator of this expression, we use the formula for
the covariance between two variables, X and Y- Cov(X, V) = E[(X - )
(Y —uy)]. Applying this to the numerator of the regression coefficient for-
mula, we obtain:

CUV(X,]’,,?,}",] =

e, +e,

szEi inR(i)k EGE;';' szgak ) 2 K
E[[ i=1 4 A=l k=1 +Gj + =1 4 d=1 k=1 )[l=ex+1 +

e, eI, e, €, Ty e

¥

ex+e,  LtI, e, te, e,te, I+r,
’
S YR Yer, 3OS e
i'=e +1 k'=r_+1 I'=e_+1 =g, +1 k'=r_+1
X X +G]’ + X + X X ]].

Working out this expectation in detail is tedious, but we observe that it
simplifies greatly because the different model effects are independent.
For example, the expectations of cross-products between macroenvi-
ronment effects of selection units (E;) and genetic effects of response
units (G,) are all zero because the environment and genotype effects are
independent. Applying this rule, we obtain:

Cov(X.;,Y ) =
e, g, +e, e, 1, exte, IL.+r,
Z E; z E; Z Z A Z Z R

= ‘=, +1 =1 k= ‘=, +1 k'=r +1
E[(E—) = )]+ B[ e i
e, v e.r, e,r,

i+

e, te, e,+e, IL+1,

ZXGEU .,_2- GE;"}" 2 zx E;jk ) Z k’Z 8;,}.,1(,
E[(Gj](Gj,]] + E[[fxle )(; =6, +1 )]+ E[(42 k=1 )[1 =e,+1 k'=r,+1

X ¥ xLx

1.

Cyly

Next, because we assumed that the environments in which selection
and response units were evaluated were independent, their expected
cross-product is zero. The same holds true for block effects, genotype-
by-environment interaction effects, and error effects. This leaves only
the expectation of the cross-product of the selection and response unit
genotypic effects, which is not zero, because there is a genetic relation-
ship between them:
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COV[Y.L,?;’.] = E[[G]-](G}-f)]-

The cross-product between selection and response genotypic values
depends on their genetic relationship, which requires knowledge of
their pedigree relationship. Given the pedigree relationship, the value
of this cross-product can be determined using the theory of the covari-
ance of relatives (Section III; see also Nyquist 1991, pp. 268-277 and
296-299). It also remains to determine the phenotypic variance among
selection units (the denominator of the response equation) in order to
fully evaluate the expected value of the heritability estimator. This phe-
notypic variance is treated in Section IV.

III. COVARIANCES OF RELATIVES

A. Covariance of Noninbred Relatives

To demonstrate the covariance between genotypic values of relatives, we
start by writing the genotypic value (G) for an individual as the sum of
its additive and dominant effects at the kth locus:

Gii-‘ = a].k +0e:fc +5§,
where o is the additive statistical effect of allele ; at locus k in the
defined reference populations of genotypes and environments and 6"5. is
the dominance deviation effect due to the allele pair i and jatlocus kin
the same reference populations (Falconer and Mackay 1996, pp.
112-113; Holland 2001, p. 37). The genotypic variance caused by locus
k in a random-mating population is:

O = 2, Pref Y + Y piaf P+ Y)Y prpksky,
i=1 j=1

i=1 j=1

= 2E[(af ¥1+ El(S5 )] = 0% 4y + 02y

where pf is the frequency of the jth allele at the locus k, 0% 15 defined
as the additive genetic variance due to locus &, and Oy s defined as the
dominance genetic variance due to locus k. If the population is in
gametic phase equilibrium and epistasis is ignored, these terms can be
summed over /]oci to obtain the total genetic variance as the sum of total
additive and total dominance variances:
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]

2 _ 2 2 _ 2 2

C. = Z(O’A(k] +0p) = 0, +0;,.
k=1

Epistasis can be included by expanding the model to include two-locus
and higher-order interactions:

i -1 !
_ Kok, sk R | okl L o Kk eckk
GI]I']’J"]” = Z (C(J + a} + 61] ] + Z Z (GCOC“r + 056”7 + 60!’1”-' + 65 """" ’
k=1 k=1k'=k+1
-2 11 I x e
3 Y (cack + aad s, +. )+ ...,

k=1k'=k+1 k"=k'+1

where o} is the additive-by-additive interaction statistical effect of
allele i at locus k with allele i at locus k', aﬁﬁfﬁ}, is the additive-by-
dominance interaction statistical effect of allele 7 at locus k with allele
pair " and j” at locus &/, 66*%. is the dominance-by-dominance interac-
tion statistical effect of allele pair / and j at locus k with allele pair i’ and
j" at locus k', aoor 51 is the additive-by-additive-by-additive interaction
statistical effect of allele i at locus k with allele #* at locus &’ and allele
i” at locus k”, and aos*%%. is the additive-by-additive-by-dominance
interaction statistical effect of allele i at locus k with allele i at locus k’
and allele pair i” and j” at locus k”. The two-locus interaction effects are
defined explicitly by Lynch and Walsh (1998, pp. 85-86) and Holland
(2001). The higher-order effects are defined analogously (Lynch and
Walsh 1998, p. 85). Assuming there is no linkage between loci affecting
the trait concerned and assuming the population is in gametic phase

equilibrium, the genoctypic variance including epistatic terms is:
2 _ 2 2 2 2 2 2
Og =04 +10p+03y +04p +0pp +Coun +...,

where o7, is the variance of additive-by-additive epistatic effects, coip
is the variance of additive-by-dominance epistatic effects, o5, is the
variance of dominance-by-dominance epistatic effects, 0% a4 18 the vari-
ance of additive-by-additive-by-additive epistatic effects, and variance
components of higher-order effects are included as desired.

Using this genetic model, we can determine the genetic components
of variance that comprise the covariance of two individuals from the
same family, or between a random individual X in the selection unit and
random individual Y in the response unit in the context of selection
response. The covariance between the genetic effects for two individu-
als depends on their pedigree relationship, as this influences the prob-
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ability that two individuals inherited common genetic effects. The prob-
ability that a randomly chosen allele from a given locus in the first indi-
vidual is identical by descent {IBD) to a randomly chosen allele from the
same locus in the second individual is equal to the probability that the
two individuals share a common additive statistical effect at all loci. This
probability is represented by the symbol @ (or f, as used by Nyquist
1991 and Falconer and Mackay 1996), the coefficient of coancestry.
Identical by descent (IBD) means that the two alleles descend from the
same allele in a common progenitor (Falconer and Mackay 1996, p. 58;
Lynch and Walsh 1998, p. 132). The probability of allele pairs being IBD
equals the probability that two individuals share a common dominance
statistical effect at all loci and is represented by the symbol u. It follows
from this and from the assumptions of Hardy-Weinberg and gametic
phase equilibria and no linkage, that the genetic covariance between
individuals X and Y is: |

Cov(Gy,Gy) = 200’ +uch +(28)° 6%,

+20uciy + uloh, + (26054 + ... [4]

A formal derivation of this covariance can be found in Lynch and Walsh
(1998, pp. 141-145). If individuals are chosen at random from the pop-
ulation, both @ and u for the pair equal zero and their expected genetic
covariance is zero. If individuals are related in any way, however, the
genetic covariance is greater than zero. Rules for evaluating 8 and u and
examples of their values for commonly encountered pairs of relatives are
given by Falconer and Mackay (1996, pp. 85-88; pp. 152—-155) and
Lynch and Walsh (1998, pp. 133—145]}.

As an example, for an outbred parent and its outbred offspring result-
ing from a mating with an unrelated individual, 8 = (1/4) and u = 0, lead-
ing to:

CoviGp,Gp) = ()% +(3)o%4 + (3)0%aa +... .

In Section V, we demonstrate that the covariance of collateral relatives
from a systematic mating structure can be estimated with appropriate
experimental designs, and this leads to estimates of the genetic compo-
nents of variance in the regression of response unit phenotypes on selec-
tion unit phenotypes needed for the heritability estimator. To interpret
the covariance of collateral relatives in terms of genetic components, we
use the method described in this section. For example, for outbred half-
sibs, 6 = (1/8) and u = 0, leading to:
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Cov(HS) = (7)o} + (F)o4, + (Elokus +... .
For outbred full-sibs, 6 = (1/4) and u = (1/4), leading to:

Cov(FS) = (Yo +(Flop + 3ok, + Rod, + (5)otp + (E)ohan +... .

B. Covariance of Inbred Relatives

When relatives are inbred, Equation [4] and the equations for population
genetic components of variance given previously in Section IILA do not
hold. With inbreeding, the allelic effects within a locus become corre-
lated, leading to an additional set of three genetic parameters and three
additional probability measures required to describe the genetic variance
of the population and the covariance of relatives. The total genetic vari-
ance of a population inbred to a degree F, where Fis the inbreeding coef-
ficient, is (Nyquist 1991, p. 297): '

0¢r) = (1 + F)o% + (1~ F)o?, + 4FD, + FD,
+F1-F)H +(1+Ffo%, +...,

where D, is the covariance between additive effects and their respective
homozygous dominance deviation effects, D7 is the variance of homozy-
gous dominance effects, and H* is the sum of squared inbreeding depres-
sion effects (Cockerham 1983). The covariance of relatives X and Y if
either are inbred is:

COV(GX,GY] = EQXYO'i + 255“}‘;0'% + Z(YXY + ’}/X};]D1 + 5}'{'-5;02
HAxy = FxF)H +(20yy 0%, + ..., (5]

where 0, is the coefficient of coancestry between X and Y; 204, is the
probability that the allele pair at a locus in X is IBD to the pair at the
same locus in Y, and that neither the two alleles at a locus within X nor
within Y are IBD (this is equivalent to u if neither X nor Yis inbred); iy
is the probability that the pair of alleles at a locus within X are IBD to
each other and to one of the two alleles at the same locus in Y, and Yy 18
defined similarly; §4; is the probability that all four genes at a common
locus in X and Y are IBD; and A; 4 is the probability that the two alleles
within a locus in X are IBD and the two alleles of ¥ are IBD (Cockerham
1971, 1983). 1f the relatives descended by self-fertilization from a com-
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mon ancestor, these probability parameters become functions of the
inbreeding coefficients of the last common ancestor (F,), the relative that
descended from g generations of self-fertilization (F ), and the other rel-
ative that descended from g’ generations of self—fertlhzatmn (F,). In this

case, the covariance of relatives is denoted C,.:

1-F)1-F,)
Ctgg,:(1+1?t)aj+( g)(F >0}, +(F, + F, +2F)D,

A

H +01+F)o%,.
1_}:; t AA [Sb]

o G BIE - R) . FO-F)Q - Fy)
‘ 21— F)) 2

Further s1mp11flcat10ns occur when there are only two alleles per locus,
in which case H* = o%; if the two alleles are at equal frequency, then
D, = D% = 0 (Cockerham 1983).

Cockerham (1983), Nyquist (1991, p. 299), and Gibson (1996) pre-
sented tables of the coefficients of the five genetic parameters that
describe the covariance of inbred relatives related by some common
ancestor. (A typographical error exists in Nyquist (1991), Table 8, p. 299,
fort=2, g=2,and g = 3; change 23/8 to 25/8.) For example, the genetic
covariance of an outbred parent (S, generation) and its progeny result-
mg from a single generatlon of self-fertilization (S, generation) is C,, =
o% +(1/2)oh + (1/2)D, + 6%, (Nyquist 1991, p. 299). Note that the F, pop-
ulation is considered to be equivalent to the noninbred, random-mating
population, even though one generation of selfing has already occurred
(Nyquist 1991, p. 297), because it is in Hardy-Weinberg equilibrium.

IV, VARIANCE AMONG SELECTION UNITS

"The variance among selection units is obtained from the general formula
for the sample variance of a random variable. The population variance
of a random variable X is: Var(X) = E|X — E(X)]*> (Lynch and Walsh
1998, pp. 22-23). The sample variance of X differs slightly because E{X)
is not known, but is estimated as X from the data; therefore the unbiased
estimate of Var{X) obtained from a sample of size n is:

as n (X, - X ) 1 < T 42
= = X -X
2 Salrrr Y [n—l)é[ =X (6]




26 J. HOLLAND, W. NYQUIST, AND C. CERVANTES

(Steel et al. 1997, p. 76). Applying this to the selection units, we are inter-
ested in estimating the variance of family mean phenotypic values.
Recall from Equation [3] in Section ILC that the mean phenotypic value
of a selection unit is:

€ e I e e r

2B D Ry, 2GE; Y ¥ e

X‘ = U+ i=1 + 2=2 k=1 +G. 4 4=1 4 d=1 k=1 ‘
7 e er ! e er

The value for the overall mean is obtained using the same model, intro-
ducing g as the total number of families or genotype groups evaluated:

e e r g e g e g r
2E XY R 2.G 2. 2. GE; 222 €k
4 i=1 + i=1 k=1 + i=1 + i=1 j=1 + i=1 j=1 k=1
e er g eg _ egr

X =u

Substituting these terms into Equation [6] gives:

e 2CE

np 1 &5 = 1 i=1
6l === X, -X ] =(Ej]§;[(6f+—e“+

(}?J} —1 i
e T g e g e £
XY G XXGE XYY Nen
i=1 k=1 J=1 i=1 j=1 =1 j=1 k=1 2
)= + )%
er 8 eg egr [7]

Again, since the different model effects are independent, we can ignore
the cross-products between different model effects (such as between G,
and GE,). Therefore, the expectation of the formula in Equation [7] sim-
plifies to:

£ 2 LI s r 2 BT
1 |& Z‘ © g CE;; Z 2 CEy N Z Z 2 €
E.'[ﬁ'z—, ] = El{(——) G, - j=1 )2 +2[;=1 _i=lj=1 ]z + (;;1 =1 _d=lj=1k=1 )2 }
% g-1135 ! g =1 e eg = er egr
2 & e £ e r L
1 c j=1 G} 2 [ 3 [Z]: GE{{ E VZlGE” 2] & 2; Azﬂl S;J'k Z‘l }Z] ;l El‘ﬁ‘ 9
= (~—]) E| G, - —— E| = - F A=tk 1711 ke )
(g_lJ [;( -5 FI+ ; - - 21+ [E( = . ¥l

(8]

The expectation of the summation involving G, in Equation [8] simpli-
fies as follows:
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g
2.6

g
E[i[G, = 1g Z(G ——[G +Gy 4.+ G+ + GV

(G, -—L H-L06,46, +..4 G +G,py + ...+ G, 1]
g

g1w1+ﬂ2,2

j=1j=1j# &

L
X

ggl)ZZE[G +(“]ZE[ 3 Gl

=1 =10

—1.,, 1
= B2y gos +(— —lglg - 1)os
J4 g’
t_2g+1+g-1
=(g g g ]Gé

= (g -1)o?.

Similarly, the expectation of the sum involving GE; in Equation [8] sim-
plifies as follows:

e e &8
ZGE;}‘ ZZGEU'

g ; \
o e
J=1

e eg

g g
o ZGEH > GE, > GE,
= — EY [(GEy; + GE;; +...+ GE,;) - (& + =2 +o+ )
Z
e j=1 8 8 b4

8
2 GE,; Y GE,; Y GE,

1 < =
= — E{Y [(GE,; - =——)+(G zj—’ig )+ ...+ (GE,; - =——)12)
e j=1

). GE,
——mﬁﬁma%” )2
j=1i=1
. ZGEU

=ime@4ﬁ?—WL

e j=1
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This reduces further in the same way that the expectation of the G; term
simplified; without showing the intermediate steps, this equation becomes:

e s Y SN R O 2 _(8-1, 5
e—zE[EGEi,- ( p I = 2 (g ~1EICE;)* = (5—)og;.

A similar derivation shows the simplification of the term involving
error effects in Equation [8] to:

e r e g I
g szé-k z;zl,kzlg:}k g-1
i=1 k=1 _i=1 =t k= S A
E[}Z:l‘ ( er egr =1 er o

Putting these simplified forms back into Equation [8], we obtain:

[ g e e g 1
ZG;' zGEﬁ ZZGE;)'
1 & E(G; - =— + E(4= - — }: — )
B(S )= (12, 8 \ 8
g g p— i e r e r ,
! i Z Z kE Eiik
+E(4=2 k=1 _1=1j=1k=1 ]2
| er egr |
1 -1 -1
= (—-—]|i(g - 1)og + g ]Gf;a 18 ]0'4
g-1 er
2 2
_ 2 0Ogg O

This variance can be estimated easily in practice by dividing the mean
square for genotypes from the analysis of variance by the total number
of observations per genotype, which is er, because the expectation of the
genotypic mean square from this type of experiment is:

2 2 2
E(MSGEHOIYPE) = G'FO'G + TO-GE + O'e,

(Nyquist 1991, pp. 256-257; Steel et al. 1997, pp. 379-384). -

We can use Equation [9] to obtain the phenotypic variance among
individual, unreplicated phenotypic values of selection units, by setting
e=1and r=1. The resulting phenotypic variance is: 6% = 6% + 6% + 02.
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The reason that neither the macroenvironmental nor the block variance
contributes to this variance is because we defined it to refer to the
expected variation among plots within a single replication of a single
environment (Nyguist 1991, pp. 245 and 252). If one were to conduct a
selection experiment in which different genotypes were grown in dif-
ferent environments or different blocks and then to select on unadjusted
phenotypic values, one would have to add the macroenvironmental and
block variance components to the phenotypic variance. Since there is no
reason for such an inefficient selection procedure to be conducted, we
will not consider that case. Instead, this phenotypic variance can be used
to obtain a heritability estimator relevant to the response to selection
among plants evaluated with a single replication within the target set of
environments. Obviously, if one has data from multiple environments
and replications, they should be used for selection purposes. Neverthe-
less, the heritability on a single-plot basis is often of interest because it
suggests the magnitude of selection response that can be expected if
future cycles of selection were to be conducted with a single replication.
If such a heritability estimate is sufficiently high, the breeder may decide
that single-replication evaluations are sufficient, and that evaluation
resources can be spent elsewhere.

From Equation [9], it can be seen that increasing the number of repli-
cations within each environment will reduce the error portion of the
phenotypic variance of genotypic means, but it will not affect the con-
tribution due to GE variance. To reduce the contribution of GE variance
to the phenotypic variance of selection units, the parents should be
evaluated in more macroenvironments.

V. ESTIMATING HERITABILITY AS A FUNCTION
OF VARIANCE COMPONENTS

A. Estimating Genetic Components of Variance
from Replicated Family Evaluations

To estimate genetic components of variance in species that are not eas-
ily clonally propagated, families or lines containing multiple individu-
als related in some systematic fashion can be developed, and these
families can be evaluated in replicated trials. This permits partitioning
of the phenotypic variance into a component due to families (which is
due to common genetic effects of the members of the same family) and
components due to family-by-environment interaction and residual
effects. We use the same model as for clonal genotypes in Equation [2],
Section II.C, but instead of genotypic and genotype-by-environment
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effects (G/s and GE’s) there are family and family-by-environment
effects (Fj’s and FE,-]-’S]:

Y.jk =U+E +Ry + F] + FEI-}- + e;jk.

1

It is important to note that the residual term of this model, &, differs
from that used in the model for clonally propagated species (Equation
[2]). With clonally propagated species, all of the variation among plots
of the same genotype grown in the same replication or incomplete block
are due to microenvironmental effects. With heterogeneous families,
however, differences among plots of the same family in the same repli-
cation or incomplete block may be due to three causes: (1) microenvi-
ronmental effects, (2) effects of different samples of genotypes of the
same family that occur in different plots, and (3) effects due to interac-

tion between genotypes within a family and the macroenvironment
(Nyquist 1991, p. 254). The second of these terms is the within-family
genetic variance. After accounting for the other model effects, the value
of each plot is the mean or total of within-family genotypic and genotypic-

by-environmental effects plus the microenvironmental effect of the plot.
2

: . o
Therefore, the residual variance component, o7, equals o? + TW , where

o, is the variance due to plot effects: o}y is the within-plot component
of variance that includes within-family genetic variation, within-plot
microenvironmental effect variation, and variation due to interactions
between the macroenvironment and genotypes within the family; and
n is the number of plants per plot. If there are many plants per plot, the
within-family genetic component of variance contributes little to the
residual variance of this model. See Nyquist (1991, pp. 254-258) for
details on models including individual plant observations.

The family variance component can be estimated and obviously rep-
resents an estimate of some portion of the genetic variance. To determine
what genetic components of variance comprise the family variance,
one must compute the expected genetic covariance of individuals within
the family because the covariance of random individuals within the
same family grown in independent environments equals the family vari-
ance component. The covariance between two random members of the
same family grown in independent environments is the covariance
between Y; and Yijg» where 127, j=j and k= k"

Cov(Yy Yijnd = Coviu + E, + Ry + Fj+ FE; + Efjr 1+
Ly + Ry + F, + FE. , + &, k')
= COV(F}, F.)= Cov(sz, F}.J (because j = j*)
= 0%
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This covariance also equals the genetic covariance between random
members of the same family, so we can equate the estimable family
component of variance to the genetic covariance of relatives within a
family, which is interpretable in terms of genetic components of variance
(Section III; Cockerham 1963):

ElCov{Y . Yy )l = El62

where Y, and Y, are noninbred members of the same family, and:

E[Cov(Yy, Yier) = E [67
= 204y 0% + 285,705 + 2 5y + Yxy)D; + 843D, +

(where Yy and Y, are inbred members of the same family). Cocker-
ham (1963) described a method to translate variance components from
more complex mating designs into genetic covariances between relatives.
Since both the genotypic variance component and phenotypic vari-
ance among family means can be estimated from replicated family eval-
uations, it is possible to estimate heritability of family means (h?) as the
ratio of the family variance component to the phenotypic variance
among family means:
fz=Se.
0% [12]

Interpretation of such estimates may be difficult, however, if the family
variance component does not equal the covariance between selection
and response units of interest.

As an example, full-sib families can be sampled from a random-
mating population and evaluated in rreplications within each of e envi-
ronments. Based on this, the variance component due to families esti-
mates o = Cov(full sibs) = (1/2)c% + (1/4)0% +(1/4)6% 4 (from this point
forward, we will follow the convention of including the additive-by-
additive epistatic variance component of genotypic variance, but assum-
ing that higher-order epistatic terms are negligible). The family variance
component estimate divided by the estimator of the variance among full-
sib family means provides a heritability estimate of the form:
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~ 1 22 1 ~2 1 &2
‘2 Of _ §0A+z%+:;GAA
sz 152 +15%2. +14 -
20a1T,0p 1,044 P or

Is this estimator interpretable in terms of response to selection among
full-sib families? To determine this, the expected response to selection
among full-sib families is calculated as the selection differential times
the regression coefficient of random-mated offspring on the full-sib fam-
ily means representing the maternal and paternal sides of their pedigree.
The response units (random-mated offspring) are related to the selection
units through untested full-sibs that are used for recombination (X, and
X, in Fig. 2.1). (Throughout this review, we assume that selectlon units
and response units are related through untested relatives, as in Fig. 2.1
and 2.2. The same relationships hold when the response unit is a direct
relative of one of the tested members of the selection unit if many indi-
viduals comprise the selection unit. If a small number of individuals
comprise the selection unit, the expected covariance requires adjust-
ment; see Nyquist (1991, pp. 291-293) for details.

The expectation of the numerator of the desired regression coefficient is
the expected covariance between selection and response units (F ig. 2.1):

Generation

B C D

!>< Pt

| Xp. Xe Kot | X2, Xoun

Sibs contributing ¢ Sibs confributing to
FS family mean FS family mean

Generation 1 Y

Fig. 2.1. Pedigree relationship between members of full-sib family selection units (X} and
outbred progeny (response unit, Y) created from intermating remnant (untested) full sibs
of selected families.
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E[Cov(mean of X,,...X;. Y) + Cov(mean of X,,,..X,,., V)]
= E[Cov(mean of XpooXpn, Y)] + ElCov(mean of X ,.. X, Y)]
= E[Cov(sz, Y)] + E[Cov(X,,,, Y)]
= 2E[Cov(Xpp, Y)] = 2[207,y 0% + Uypy 0% + (205,107 4]
= 407y 04 + 2Uypy O + 8(6x7,y) 0% 4.

Following Cockerham (1971), the coancestry of Xy, and Y is equal to the
average coancestry of the parents of X;, and Y:

%2y = Oixpayxp1 xm) = (%)(Bsz xf1 + Bxp2 xm1) = (%)[G(A Bt Bancn)
= (%I(%](GAA + 06,5 +0p, +05) + (%](BAC + O4p + Opc + O5p)]
= GIQIGNL + Fp) + (D645 + 654) + (DN + Fp) + (2)60,¢

+ 8, + Opc + O5)]

Cumulative generations of selfing

0 A
O
0
t
N
00 0 0 0 ()\ Remnant seed of
selected unrelated
s,.. line: 0O 0 0 Sesline
g sé]gec]jon "'Xln+lxln+2"'xin+z u
unit 0 0.0 \N‘ S, plants
e Remnant S, seed: a :
- B .k 0 Z Z,... Z, -p ;
immediate response i 2 n response n
000 P () outbred
Y,..¥Y
many Y, Yy, In 0O progeny
t W
S, line: (_H
permanent response () ()...0) S line:
t:g’ -

response in
lines derived
2 P from outbred
progeny

Fig.2.2. Pedigree relationships among selection units composed of self-fertilized S, lines
and alternative response units. Response units include “immediate response” units (rem-
nant seed of the same generation line), “permanent response” units (completely inbred
progeny of tested line), outbred S, generation progeny resulting from intermating unrelated
selected lines, and inbred S, lines resulting from self-fertilizing outbred progeny. Each
response unit has a corresponding covariance with the selection unit and a correspond-
ing heritability.
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Parents A, B, C, and DJ are random members of the initial population, so
by definition, their coancestries are zero: 6,5 = 05, = 0, = 0, = O =
0pp = 0. A, B, C, and D are also noninbred, so F, = Fj, = 0. Substituting
these values into the equation gives:

Oxray = (%lllil(%l + (%](%)] = [.%)(%] - [é‘]

The coefficient of dominance variance in the covariance of Xpand Y
is the probability of their having an IBD allele pair. If X}, has alleles a
and b at a locus and Y has alleles ¢ and d at the same locus then X, and
Y have an IBD allele pairifa=cand b=dorifa=dand b=, that is,
if they have the same genotype IBD at the locus. By inspection of Fig.
2.1 it is obvious that X, and Y cannot have an IBD allele pair, because
one allele of Yis recelved from X, which is unrelated to X,. Formally,
Uxsoy = OacOpp + 0,4p0pc = 0.

Substituting these values into the equation for the covariance between
selection and response units gives (Nyquist 1991, p. 277):

E[Cov(mean of XepoXp Y) + Covimean of X ,... X, Y]] =
(3)o% + (305, + ...

The denominator of the regression coefficient between selection and
response units is the variance of family means with the following expec-
tation from Equation [9]:

~D a9 1 2 1 2 1 2 2

- - 4] oo 2 5 Oar ¥4, O0pp T 450445 O
El65]= El6; + £+ —~]=10% +10] +10], +2 4 4 +—£,
e er e er

Therefore, the expectation of the regression of response units after the
first generation of selection on selection units is:
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This regression coefficient differs from the heritability estimate based on
the family variance component given previously by the absence of the
dominance variance component in the numerator. In order to properly
estimate this regression coefficient, one needs to estimate the additive
genetic variance separately from the dominance variance, using a mat-
ing design experiment (Hallauer and Miranda 1988, pp. 64—83).
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The importance of defining the response unit also can be illustrated
with this example. If the response unit is defined as an individual in the
gametic phase equilibrium population derived by random mating
the first generation population of response units for many genera-
tions without selection, the covariance between selection and response
units in that gametic phase equilibrium population includes only the
additive variance component, and does not include the additive-
by-additive epistatic variance component (Nyquist 1991, pp. 250-251;
Holland 2001). Therefore, different heritabilities are appropriate for the
two different response units, first generation response units and
response units after many generations of random-mating without further
selection. Nyquist distinguished between these heritabilities with the
notation h? for heritability when individuals in the first generation are
the response units and h? when individuals in the random-mated equi-
librium population are the response units. The full-sib family variance
component is biased by (1/4)o% + (1/8)6% 4 as an estimator of the numer-
ator h%, and biased by (1/4)o} + (1/4)0% , as an estimator of the numera-
tor of hi..

If selection is conceived of as simply regrowing remnant seed of only -
the selected full-sib families (without intermating) in an independent
sample of environments from the same reference population of envi-
ronments, the response to this form of “selection” is equal to the selec-
tion differential times the heritability estimator based on the family
variance component. The relevant covariance in this case is the covari-
ance between the mean of the tested family and an untested full-sib from
the same family, which is expected to be (1/2)c%, + (1/4)0% + (1/4)0?%,.
Perhaps this is a trivial form of selection, because it is a single-generation
“dead end” that does not permit long-term selection response, but at
least this provides an interpretation of the heritability estimator based
on the family variance component.

With this example in mind, we present heritability estimators based
on different experimental and mating designs in Section VIII and Table
2.1 at the end of the chapter, accompanied by an interpretation of each
estimator in terms of selection response. We also indicate the bias pre-
sent in the numerators of these estimators relative to h%. The heritabil-
ity estimators based on family variance components from outbred clonal
families, half-sibs, and families created by testcrosses to an inbred line
can all be interpreted directly in terms of response to selection among
these family types and measured in corresponding family types devel-
oped after intermating the selected parents. In contrast, with full-sib fam-
ilies and self-pollinated lines, the interpretation of heritability estimators
based on family variance components is difficult, and such heritability
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estimates have less practical utility, being interpretable only in terms of
very limited concepts of selection, unless the genetic variance is fully
composed of additive genetic variance.

Finally, we caution that aside from the potential biases in estimates of
heritability calculated as the ratio of family variance component to phe-
nolypic variance due to nonadditive genetic components of variance,
there is also a statistical source of bias in this type of estimator. The dif-
ficulty is that the expectation of this ratio does not necessarily equal the
ratio of the expectations of family and phenotypic variance components:

4 6% El6%]

~Small portions of the variances and covariances of the estimated vari-
ance components (see Section V.C.1) contribute to the expectation of
such a heritability estimator (see Lynch and Walsh 1998, pp. 808—-809
for the expectation of a complex variable such as heritability). Researchers
can compute the bias for specific cases of this type of heritability esti-
mator, but we expect such biases to be small. Furthermore, as sample
sizes increase, this source of bias will decrease in magnitude. Thus, this
heritability estimator is asymptotically unbiased, in that:

E(ﬁ;) =hi,ase,1,f — .
Specifically, when heritability is estimated as a ratio of linear combi-
nations of variance components using the methods described in Section

V.B.1 (when data are balanced) and V.B.4 (in the general case), the esti-
mator is consistent, meaning that:

S 2
Pr {(hjﬁl - h?l) > s] — Oase,r,f — o, for any positive ¢,

or with a slight abuse of notation:

hi — hf, ase,r,f — o

B. Variance Component Estimation Procedures

1. Balanced Data. Traditionally, plant breeders and quantitative geneti-
cists have estimated heritabilities based on variance components esti-
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Table 2.2. ANOVA layout for balanced data from a replicated evaluation of f half-sib
families in r complete blocks within each of e environments.

Source of Variation Degrees of Freedom Expected Mean Square
Environment e—1 ol + fob + ok + rfol
Rep (Environment) {r-1)e o+ fob

Family f-1 Ol + ro%, + ero
Family x Environment (f—1)e—-1) c?+ rod,

Error (f=1)r—1)e o2

mated from ordinary least squares analysis of variance (ANOVA).
Observed mean squares were equated to their expectations (linear func-
tions of variance components) and the variance components were esti-
mated algebraically as functions of mean squares. This estimation
method is referred to as the method of moments (Milliken and Johnson
1992, pp. 233-239). Rules for deriving expected mean squares are given
by Steel et al. (1997, pp. 379-384) and by Milliken and Johnson (1992,
pp. 216-231), and specific ANOVA layouts including expected mean
squares for numerous mating and experimental designs are presented by
Hallauer and Miranda (1988) and Nyquist (1991). Equations for com-
puting observed mean squares are given in most standard statistics texts,
including Steel et al. (1997). To illustrate the method of moments esti-
mation procedure, an ANOVA layout including expected mean squares
for an experiment involving fhalf-sib families evaluated in rreplications
within each of e environments is presented in Table 2.2.

The variance component due to half-sib families is estimated with the
following linear function of observed mean squares:

MS

~2 Family

- MSFamﬂyxEnvironment
O =

er

By Equation [10], the expectation of this family variance component is
the covariance between half-sibs, which is equal to one-fourth of the
additive genetic variance plus one-sixteenth of the additive-by-additive
genetic variance:

A29 1.2 1 .2

The variance among half-sib family means can also be estimated as a
function of the family mean-square estimate, based on the following
expectation:
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MSF . 2 2 2 2 2

. ! O, + IO +ero Crz O

E[U%]zE[ T == FE L =op + - 4 2
er er e er

The heritability corresponding to selection among half-sib family means
- is commonly estimated by the ratio of these two estimators using Equa-
tion [12] (Nyquist 1991, p. 278):

s “n 142 1 A2
f]z _ O-F _ O-F _ 4 O-A + 16 GAA
f1 = - ~2 sz 1 A2 ~2 -
MSpomire /€7 ., 6 FE , O n 20art 5024 ©
b oL + &2 4 — £ 10,2 + 1 0_2 + 4 16 E
F e er 4 A 16 ~ A4 e er

In these equations, we have assumed that the data are balanced, that
is, that e, r, and f are constant values and no data are missing. In this case,
standard errors of the variance component estimates are estimable (Hal-
lauer and Miranda 1988, p. 91), and methods for estimating confidence
intervals for heritability estimates based on nested mating designs were
developed by Graybill et al. (1956) (for a biased estimator of heritabil-
ity) and Broemeling (1969) (for an unbiased estimate of narrow-sense
heritability). Knapp et al. (1985}, Knapp (1986), and Singh et al. (1993)
derived exact confidence intervals for heritability on a family-mean
basis for some typical plant breeding experiments. Knapp and Bridges
(1987; also see Nyquist 1991, p. 311) developed approximate confidence
intervals for family-mean based heritabilities estimated from more com-
plicated plant breeding designs, such as perennial crop traits measured
over time and factorial mating designs replicated over environments. All
of these methods involved functions of mean squares and assumed that
data were balanced.

2. Unbalanced Data. Generally, plant breeding experiments are designed
as balanced experiments, but often unbalanced data sets arise for
unplanned reasons: seeds of particular families may not be sufficient for
complete replication, plots may be lost due to planting or harvesting
errors, or plots may be discarded due to exceptional stresses. The effects
of unbalanced data include changes in the coefficients of variance com-
ponents in the expected mean squares, loss of independence between
mean squares, and unknown distributional properties of variance
component estimates. The changes in the coefficients of expected mean
squares can be handled using methods given by Milliken and Johnson
(1992, pp. 219-231), and correct coefficients of variance components
in the expected mean squares can be computed with software packages
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such as SAS (Rawlings 1988, pp. 466—467; SAS Institute 1999). Also, an
approximate method to handle missing data in experiments designed to
estimate heritability is to predict the missing plots using an analysis of
covariance (Steel and Torrie 1980, pp. 426-428; Nyquist 1991, p. 262).
Using these methods, variance components and heritability can be esti-
mated using method of moments procedures. The variance-component
estimates are unbiased, but no longer are they minimum variance esti-
mators (Shaw 1987; Milliken and Johnson 1992, p. 233). Furthermore,
their distributional properties are not known (Shaw 1987; Milliken and
Johnson 1992, p. 233}, such that estimates of the precision of variance
component estimates and heritability estimates are not available.
Another approach is to eliminate those families that are missing data,
in order to obtain a balanced data set, but this decreases the efficiency
of the estimate.

Better estimates (those with smaller variances and with known dis-
tributional properties) can be obtained using maximum likelihood meth-
ods, specifically, restricted maximum likelihood (REML]). When data are
completely balanced and there are no negative estimates of variance
components under the ANOVA method, the ANOVA and REML vari-
ance component estimates are identical (Shaw 1987). When there are
missing data, resulting in an unbalanced data structure, however, REML
estimates of variance components are more desirable because they are
consistent estimators, asymptotically normally distributed, and their
asymptotic sampling dispersion matrix is known (Shaw 1987; Searle et -
al. 1992; Dieters et al. 1995). Modern computers and software have made
REML-based estimates of variance components relatively easy to obtain.
For example, GENSTAT and PROC MIXED of SAS provide robust and
convenient methods for conducting REML analysis of many types of
mixed model designs (Littell et al. 1996; Payne and Arnold 1998; SAS
Institute Inc. 1999).

3. Maximum Likelihood and Restricted Maximum Likelihood Estima-
tion. In this section, the procedures involved in maximum likelihood
estimation are described with a minimum of mathematical detail. This
process is also described in Milliken and Johnson (1992, pp. 239-242)
and Lynch and Walsh (1998, pp. 853-867). The computational proce-
dures are too complex to be performed by hand reasonably, so they can
only be effectively implemented using computers. It may be of use to
some readers to understand the basic procedure that occurs in the com-
puting process.

Maximum likelihood estimation is a general method of estimating
any sort of parameters from data. It can be used any time that one can
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write the likelihood function of the parameters to be estimated. In com-
parison, the method of least squares in ANOVA involves solving for the
parameter estimates that fit a given model with the minimum squared
deviations. Using these solutions, the probability of the estimated para-
meter being greater than the parameter under the null hypothesis (gen-
erally that the parameters are zero) is computed, and these probabilities
are reported as p-values. Maximum likelihood estimation works in a dif-
ferent manner: it begins by postulating the likelihaod of different pos-
sible parameter values based on the model assumptions, given the
observed data. It then chooses the set of parameter estimates with max-
imum value of the likelihood under those conditions.

The likelihood function of the data depends on the assumptions made
about how the data are distributed. The likelihood function indicates
how likely it is to observe the data given a model and its distribution.
The likelihood function is based on the probability density function
(PDF) for the model. For example, the PDF for a single observation of a
normally distributed random variable y is:

e—{y—mzllzoz)
Py |l u, c?) =

270

(Casella and Berger 1990, p. 103). The equation involves two parameters:
the mean () and the variance (6%). The mean indicates where the peak
of the distribution is (where a randomly-chosen data point is most likely
to be), and the variance indicates how “spread” the distribution is. If the
variance is high, it is more likely to observe data points farther from the
mean than if the variance were low. So, given a mean and a variance for
a normal distribution, and given a value of an observation, the proba-
bility of observing the data point is obtained with the PDF. Given a dif-
ferent mean and variance, but the same data point, however, one might
calculate a different probability for the data point. There are an infinite
number of possible combinations of means and variances that could be
used, but they will differ in terms of how likely it was to observe the data
point from any of them. The maximum likelihood estimate of the mean
and the variance is that pair of estimates that together gives the highest
likelihood of observing the data. From among all of the infinite possi-
ble combinations of means and variances, we are interested only in the
one with the highest likelihood, that is, the maximum likelihood esti-
mate. Obviously, with only a single data point, one cannot estimate
both a mean and a variance. So, we need a function that describes the
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likelihood of observing a whole set of data points. This can be derived
very simply by remembering that all of the observations from the dis-
tribution are drawn randomly and independently (if we do the experi-
ment properly), and, therefore, the joint probability of observing n
independent events (i.e., data points) simultaneously is simply the prod-
uct of the probabilities of observing each event individually:

P(y,,¥s o0 ¥n l 1,6%) = HP(.V;' | g, 0%).

=1

The likelihood of the parameters given the data is equivalent to the
probability of the data given the parameters:

L0V y1, Vo ooos Vo) = PV, Voo oos Yol 1, 0%),

The likelihood function is the same as the joint PDF. However, the joint
PDF is regarded as a function of the random variables y,, conditional on
the parameters, whereas the likelihood function is viewed primarily as
a function of the parameters, conditional on the observations y,. Recall
that there is an infinite set of means and variances that can be tried by
calculating their likelihood. We will describe a combination of mathe-
matical and “searching” methods that can be used to identify the best
estimate out of all of the possibilities. _
As an example, considér a simple two-factor factorial experiment in
which a quantitative trait is observed. The linear additive model for the
experiment is:
Vig = s+ 04+ B+ of; + €5

If both A and B are considered random, the following standard model
assumptions about the distribution of random model effects are made:

a ~ N(0, 62),
B ~ N(0, op),
aﬁ -~ N(O! Gfxﬁ)y

g ~ NID(0, 62).

The likelihood function of the parameters given the data (with n total
observations) is based on the known distributional properties of multi-
variate normally distributed variables. The PDF for this type of model,
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which is an extension of the standard normal distribution, but permit-
ting more than one random effect in the model, is (Lynch and Walsh
1998, pp. 194-195):

~L{Y-py VT (Y-p)

AJ2rt IV

The elements of this equation include the mean and the variance
component parameters that we wish to estimate; the observed data, Y,
which here is written as a vector of observations y,, y,, ...y,; and the
variance-covariance matrix of the observations, V. If we choose a set of
values for the parameters of interest (the variance components), we can
calculate the likelihood that those parameter values would have pro-
duced the data actually observed.

The distributional assumptions inherent in the model are used to
determine the structure of variance-covariance matrix, V, for the entire
data set, Y. V indicates the covarjances between every pair of observa-
tions in the entire data set. We can determine the expected covariance
between any two observations (¥}, and Y1) by expanding their values
in terms of the model effects as follows:

E[Cov (Y Yi’j’k’)] = E[Cov (1 + o, + B; + Of; + € 1+ O +
B+ oy + g4)] =
E[Cov (u, u) + Cov (i, ;) + Cov (y, B;) + Cov (u, o) +
Cov (. &) + Cov (e, 1)
+ Cov (&, ;) + Cov (e, ﬁja] + ... + Cov [}3}., Bi)+ ... +
Cov (aBy;, aB;y) + ... + Cov (€05 €3]

The covariance between a constant and anything else is zero, so all of
the covariances involving the constant u are zero. All of the expected
covariances between different factors, such as Covl(g,, ﬁf) are also zero
because there is no covariance between the level of one factor and the
level of another if we have a properly randomized experiment. So
the ellipses in this formula includes many of those covariances, which
are all zero. The formula then reduces to:

ElCov(Yy, Yiu)l = ElCov (e, o) + Cov (B, By} + Cov (o3, o) +
Cov (g, €54)].

If i#i’, then the two observations were made on different levels of A, in
which case they have expected covariance of zero, because the levels of
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A were drawn at random from the population of A levels. However, if i
= i’, then E[Cov (e, @;)] = ¢2. This reasoning can be applied to each of
the covariances. If the two observations have the same level of B in
common, then their covariance includes og. If they have both the same
levels of A and B in common, then their covariance includes o7, 6§, and
o.p Finally, the expected covariance of any observation with itself
includes o2 along with o3, 6%, and 0%

The V matrix includes all of the covariances between each observa-
tion and is used in the PDF of the model that includes all of the normally
distributed parameters (05, 65, 625, and 62). Using as an example a two-
factor factorial experiment in which each factor has two levels, and
with two replications of each treatment combination in a completely ran-
domized design, the following data set and models result:

Yin =+ + By +afyy + &5,
Y =l+0ay+f; +0fy, + &,
Yiu=H+0a,+ 0, +af; + &y,
Yigp=H+a;+f,+ 0, + &,
Yo =+ 0, + By + 0y + €59y,
Yo, SR+ 0+ By + 0y + €5y,
You s+ 0, + B, + 0f5; + €55,
Yoz =t + 0 + By + Oy + 555,

The covariances among these observations are included in the V
matrix, in which the first row and first column correspond to covari-
ances involving observation Y,,,, the second row and second column
correspond to covariances involving Y,;,, and so forth. Using the nota-
tion 0% = 6% + 0} + 625 + 0%, and 0%, = 0% + 05 + 025, the V matrix appears
as follows:

’—t}’% cu O, O 05 05 0 0O
oy Op O, O, O 03 0 0
6, 0, Or Gy 0 0 o0; o}
V= 0"2, G% oy 07 O 2 0 2 O'Z 0'23
og o3 0 0 o7 oy o, O,
o o; 0 0 oy o o) o
0 0 o3 03 0, 0. OF oy
0 0 o; o; o, o, oy oF ] [13]

To simplify the search for the parameter estimates, the derivative of
the likelihood function can be taken with respect to a parameter. The
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value of that parameter that makes the derivative equal to zero represents
the maximum likelihood value of the parameter given the other para-
meter values. This method is based on the fact that the derivative of any
function with respect to a variable equals zero at the point where the
variable causes a peak (maximum value) in the function. The natural log
of the PDF is usually easier to differentiate than the PDF, and the max-
imum point of the log of a function is also a maximum point of the func-
tion itself. Computation of the likelihoods becomes impractical for very
large sample sizes, whereas computation of the log likelihood is much
easier. Therefore, in practice, the log of the PDF is differentiated and set
to zero to solve for the maximum likelihood value of the variable with
respect to which the derivative was taken. The log of the likelihood func-
tion equation described above includes some constant, k,, which wiil
“disappear” upon differentiation:

loglL(y, 05,05, 045,0; | V)] = k; = 3log | VI-2(Y - ) VY — ).

The derivative of this log-likelihood function with respect to one of the
parameters (e.g., ¢2) is computed, set equal to zero, and the equation is
solved for the maximum likelihood value of that parameter. The same
is done for the next parameter (e.g., 63), and so on. A complication is that
the likelihood of any parameter depends on the value of the other para-
meters in the model, because the V matrix contains all of the different
variance component estimates. Thus, an initial set of estimates for all of
the parameters is required and the parameter estimation process must
be iterated until a stable sclution for all parameters is found. The itera-
tive procedure usually, but not always, converges to the best possible
solution. '

This roughly describes the process that the MIXED procedure in SAS
uses to obtain REML estimates of variance components. REML is a mod-
ification of the general maximum likelihood that produces parameter
estimates with smaller bias (Lynch and Walsh 1998, pp. 789-791). REML
proceeds by first estimating the fixed effects in the model, then by max-
imizing the likelihood function of n* residual orthogonal contrasts,
where n* is the number of degrees of freedom remaining after fitting the
fixed effects in the model (Lynch and Walsh 1998, pp. 789-791). The
method of transforming the original data to the n* residual orthogonal
contrasts is shown in Lynch and Walsh (1998, p. 790). A simple and very
instructive example of the difference between maximum likelihood and
REML is given by Steel et al. (1997, p. 411).
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The PROC MIXED output provides a list of the number of iterations it
used to find the estimates. If it cannot converge to a solution, it provides
a warning statement that the solutions did not converge. If this happens,
the estimates are not unique and should be viewed with suspicion. One
can try again by starting with new initial parameter estimates. Having
estimated the variance components with REML, heritability estimates can
be computed as functions of the variance component estimates.

4. The Likelihood Ratio Test. Mixed models analysis does not involve
computation of mean squares of random factors; therefore, F-tests for the
effects of random model factors are not available with mixed models
analysis. Instead, the null hypothesis that a variance component for fac-
tor i is equal to zero {Hy: 6% = 0, H,: 6% > 0) can be tested with a likeli-
hood ratio test. To conduct the likelihood ratio test, one must analyze
two models separately. One model, referred to as the full model, contains
all the parameters of interest, including the variance component for fac-
tor i, o2 A second model, called the reduced model, contains all of the
same parameters, except for the one whose significance is to be tested,
o2 The likelihoods or the log likelihoods of the two models are com-
pared using the likelihood ratio (LR} test:

IR = 2log2E- = —Zlog% = —2flog(Ly.,)  log(L, ]I,
ad F

where L is the likelihood of the maximum likelihood full model, Ly 4
is the likelihood of the maximum likelihood reduced model, and “log”
refers to the natural log, as in Section V.B.3 (Steel et al. 1997, pp.
412-413; Lynch and Walsh 1998, pp. 857-858). The LR statistic is dis-
tributed as a ¥* with degrees of freedom equal to the number of para-
meters dropped from the full model to make the reduced model.
Typically, each variance component is tested one at a time, leading to
LR statistics with one degree of freedom. For example, if there are 100
levels of the random factor i in the experiment and it has 99 degrees of
freedom associated with it in the model, the LR test constructed by
dropping that factor (and thus the parameter o) from the model has only
one degree of freedom. For the test of the null hypothesis that a variance
component is zero, the p-value of the LR test should be divided by two
(Self and Liang 1987). The example given in Steel et al. (1997, pp.
412-414) demonstrates that the p-value of the LR test is approximately
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twice as large as the exact F-test of the same hypothesis. Likelihoods
(and twice the log likelihoods) of models are part of the default output
of SAS PROC MIXED, so the LR test is easily accomplished in practice.
Cervantes-Martinez et al. (2001) used likelihood ratio tests to test the sig-
nificance of family and family-by-environment variance components in
a plant breeding experiment.

5. Mixed Models Analysis. Heritability estimation via REML will be ben-
eficial when data are unbalanced (Section V.B.2). REML estimation of
heritability has an additional advantage in that it can easily be per-
formed in the context of mixed models analysis methods. We suggest
that this will prove useful to plant breeders because it facilitates simul-
taneous estimation of variance components and heritability in different
populations included in the same experiment. Mixed models analysis
will also permit estimation of variance components and heritability
from incomplete block designs (and perhaps spatial analysis methods),
leading to improved heritability estimates through better control of
experimental error. Also, with mixed models analysis, heritability esti-
mation can be combined with best linear unbiased prediction (White and
Hodge 1989). Combined estimation of genetic components of variance
from multiple experiments containing different genetic entries with
some known genetic relationships may be possible by augmenting the
mixed models approach with pedigree analysis methods. Furthermore,
mixed models are more appropriate than ANOVA for handling repeated
observations on experimental units, as commonly occurs in perennial
crops (Nyquist 1991, pp. 260-264; Littell et al. 1996, pp. 87—-134). We
confine ourselves in this chapter to briefly demonstrating simultaneous
estimation of variance components from different populations grown in
the same experiment, including incomplete blocks designs.
The general mixed model has the form:

y=XB+Zu +e, [14]

where y is a vector of observed values, X is a design matrix for fixed
effects, B is a vector of fixed effects, Z is a design matrix for random
effects, u is a vector of random effects, and e is a vector of error effects
associated with each observation (White and Hodge 1989, pp. 278—280;
Lynch and Walsh 1998, p. 746). Using our previous example from
Section V.B.3 of a two-factor factorial experiment with two replications
of a completely randomized design and two levels of each random
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factor, the model can be written in mixed model form using the fol-
lowing matrices: '

: YT =Y, Y1, Yo Yz Yo Y0, Y, Y,00l,
u’= le, G, B, B, of3y, of,, of3;, of3z,),

T
e = [g), €112 €129 €120 Er1q €312 €939 E395].

The columns of the Z matrix correspond to the rows of the u matrix (or
the columns of the transposed u matrix shown). For each observation,
the Z matrix indicates whether or not it is affected by each random
model effect in u:

[10101000
10101000
10010100
10010100
01100010{
01100010
01010001
01010001,

X is an 8 x 1 column vector of 1’s, Bis a 1 x 1 vector containing the only
fixed effect in the experiment, y. Putting these matrices together gener-
ates the data set of eight observations and eight combinations of model
effects already given in Section V.B.3: '

Yin=u+o,+ B +of, +¢&,,
Yi,=p+ o, +f, + aﬁu * &9y,
Vin=u+o,+B,+0f,+¢,,
Yipp = +o, + B, +af, + €,
Van=u1+0,+ B +aff, +¢&,,,
Yoo =M+ 0, + By +0f,; + &,
Yor=t+0,+ B, +aBy, + &,
Yoo =i+ 0y + B, + 0y, + €5,

The variance-covariance matrix of the observations, V, in this case is the
same as in Equation [13], but in the mixed model it is arrived at by equa-
tion: V= ZGZ" + R, where G is the symmetric matrix that includes the
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variances and covariances between random effects in the model (all off-
diagonal elements are zero:

2
Gaﬁ_

R is a symmetric matrix that generally contains the error variance along
the diagonal (Lynch and Walsh 1998, p. 748). In this example, ZGZ" is
equal to V given in Equation [13], except that ZGZ" lacks the error vari-
ance terms, which are instead partitioned into the R matrix. One utility
of the mixed model is that it permits estimation of both fixed and ran-
dom effects (Littel et al. 1996, p. 499}:

B=X"VX) X"V,
GZTV '(y - Xb).

u

The significance of fixed-effect factors is tested with F-tests, whereas the
significance of random factors can be tested with likelihood ratio tests
(Section V.B.4).

Another major benefit of mixed models analysis is its flexibility in
modeling the variances and covariances of random and error effects. Per-
tinent to the estimation of heritability, the form of the G matrix can be
modified to fit different variance-covariance structures among the ran-
dom effects, permitting both the simultaneous fitting of incomplete
block effects along with variance component estimation or the estima-
tion of unique variance components for different subsets of genetic
entries. We will not explicitly demonstrate the inclusion of incomplete
block effects in the model, as it is straightforward to add another random
effect to the model and estimate the block effects and variances sepa-
rately from the genetic components of variance in the G matrix.

To separately estimate variance components for different sets of entries
in an experiment, one needs to model the G matrix so that it permits dif-
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ferent subsets of levels of the same factor (e.g., the family factor or the line
factor in a heritability estimation study) to have unique variances. For
example, we assumed in Section V.B.3 that all levels of factor A were
drawn from a common reference population and have the same variance:
o ~ N(0, ¢3). With mixed models procedures, however, we can estimate
separate variance components for factor A for different subsets of entries.
Formally, we can allow each group g to have a unique variance for fac-
tor A: o, ~ N(0, 0%,), and the estimation of these separate variance com-
ponents for factor A is accomplished by modifying G.

To demonstrate by expanding the previous example of the two-factor
factorial experiment (Section V.B.3), we assume that four different lev-
els of factor A were sampled and that potentially levels 1 and 2 have a
common variance for factor A (6%,)), whereas levels 3 and 4 were drawn
from a population of factor A with a unique variance, (6%,)). If each level
of factor A occurs with each of the two levels of factor B and is replicated
twice, this experiment would have 16 observations, as follows:

Yin=s+o,+ 0 +aBy; +&,,,
Yip=H+a,+f +ofy +&,,,
Yigo=p+a,+ 5, +af, +&,,
Y=+ o+ B+ 0, + &y,
Yo =+ 0, + By + 0ffy, +€,,,
Yo =1+ 0y + By + 0, + €59,
Yo =+, + 3, + 0fy, + &5,
Yyp=H+a,+ 8, +af,, + &,
Yoy =i+ 0, + B + o, + &5,

Yy =H + 0y + By + affy, + €,,,.

Compared to the model in Section V.B.3, the B vector is unchanged, but
the other matrices change. The X matrix is augmented from an 8 x 1 to
a 16 x 1 matrix by adding eight more rows of ones. The u vector is aug-
mented from an 8 x 1 to a 14 x 1 vector by adding columns correspond-
ing to two additional factor A main effects and four additional AB
interaction effects. The Z matrix is augmented by adding six additional
columns corresponding to the additional rows of the u vector, and eight
additional rows corresponding to the eight additional observations. The
G matrix structure is similar to the previous example, except that it
would have dimensions of 14 rows and 14 columns, in which the first

two diagonal elements are ¢7,,), the next two diagonal elements are Oozp
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the next two diagonal elements are 63, and the final eight diagonal ele-
ments are 055 From this structure, ZGZ" models the covariance of two
observations with the same level of A to include 6%, if these observa-
tions have levels 1 or 2 of factor A, or to include 6%, if the observations
have levels 3 or 4 of factor A. The e vector increases by eight rows to
account for the new observations, and the R matrix is augmented with
eight more rows and columns, but has the same diagonal structure as
before.

Similarly, one could also assume that the subset of entries drawn
from the population of levels of A with variance ¢%,, may also have a
unique interaction variance with factor B: o24,), as opposed to o, for
the second subset. These could also be fitted in the model by modifying
the G matrix appropriately. Finally, one can also fit unique error vari-
ances for different subsets of entries by modifying the R matrix such that
one group has error effects drawn from the population with variance
0%y and the other has error effects drawn from the population with vari-
ance o2y, |

The ability to separately model variance components for different sets
of treatments in the same experiment has considerable utility for variance
component and heritability estimation experiments in plant breeding. For
example, if one wants to compare unselected populations to popula-
tions derived from one or more generations of selection from it, it is rea-
sonable to want to study the effect of selection on both population means
and variances, as well as on heritability. Previously, plant breeders han-
dled this by estimating population means with an ANOVA based on all
of the data, and then by estimating variance components separately for
subsets of families belonging to different cycles of selection. The latter
procedure is inefficient if incomplete block designs were used: generally,
if subsets of entries were analyzed for variance components, incomplete
block effects were ignored in the analysis because, otherwise, severe data
imbalance resulted. Even if incomplete blocks were maintained in the
analysis of separate groups, considerable information on both complete
and incomplete block effects was lost. The improved precision of esti-
mates of genetic effects permitted with incomplete block designs was thus
lost when estimating variance components. With mixed models analy-
sis, however, a single analysis procedure can be used to estimate com-
plete and incomplete block effects (thus improving precision), and to
estimate unique variance components for subsets of genetic entries rep-
resenting unique reference populations.

Another advantage is that genetic covariances between related families,
lines, or individuals in different generations of inbreeding from the same
reference population can be estimated, along with estimation of separate
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genetic variances for each generation. As discussed in Section I11.B, the
genetic expectations of variance and covariance components under
inbreeding are complex, involving more than simply additive and dom-
inance genetic variances (Equation [5]). By testing related lines in dif-
ferent generations of inbreeding and appropriately modeling the genetic
variance componentswithin generations and covariances between gen-
erations, it may be possible to obtain better estimates of the nonadditive
components of variance than have been reported to date (Cornelius and
Dudley 1976). Similarly, it is sometimes of interest to compare the
genotype-by-environment interactions of different populations grown in
the same sets of environments in order to determine if environmental sta-
bility differs among the populations (Holland et al. 2000), and this can
be accomplished by modeling unique GE interaction variances as well as
unique genetic variances for the different populations. Finally, the
method is robust for missing data, as already discussed.

These new modeling approaches are already available in practice to
most plant breeders. For example, all of the analyses described can be
performed with SAS PROC MIXED (Littell et al. 1996), with careful use
of the “group” and “subject” options available with the “random” and
“repeated” statements. SAS code for specific examples of models with
multiple genetic variances are provided in Appendices 3 and 4, and SAS
code and example data sets are available at www4.ncsu.edu/~jhol-
land/heritability.html. Tests are available in PROC MIXED for hypothe-
ses generated with these new analysis approaches. If separate variance
components are estimated for different subsets of families, one can test
the hypothesis that the different subsets have a common population vari-
ance, by also analyzing the data as if all entries were from a single pop-
ulation, and using the likelihoods of the two models to conduct a
likelihood ratio test of the hypothesis (Section V.B.4).

6. Difficulties Remaining with Mixed Models Analysis. At least one
major practical and one major theoretical difficulty currently hinder
wider adoption of mixed models analysis by plant breeders, at least in
the short term. The practical difficulty is that the computer memory
required to estimate all of the fixed and random effects and the covari-
ance components can easily exceed the computer memory available to
most plant breeders if a complex model and a large data set are analyzed.
Each additional variance component parameter to be estimated dra-
matically increases memory required. For example, we attempted to
estimate unique variance components for five separate genetic popula-
tions simultaneously from data collected by Cervantes-Martinez et al.
(2001). The study included 100 genotypes within each population that
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were randomly assigned to sets, with each set designed as a lattice
within each of four environments. Approximately 15 percent of the data
points were missing. Due to memory limitations, it was not possible on
either a personal computer with 256MB RAM or on a UNIX server with
2GB of RAM to simultaneously estimate with SAS PROC MIXED the five
unique genetic variance components, five GE interaction variances, five
unique error variances, and common variances due to environments,
sets, complete blocks, and incomplete blocks. Therefore, we resorted to
analyzing the populations separately. With less complex experimental
designs, however, these types of analyses are feasible today (e.g., Appen-
dix 3), and the more memory-intensive computations may be possible
in the near future, given the constant and rapid advances in computing
processor speed and memory availability.

Research on alternative algorithms for finding maximum likelihood
solutions for large and unbalanced data sets also presents a way to solve
the computational difficulties of REML. When the number of parameters
in a model becomes large, PROC MIXED requires large amounts of mem-
ory to identify the maximum likelihood solution with REML because it
uses a ridge-stabilized Newton-Raphson algorithm to maximize the log-
arithm of the residual likelihood function (REML) (SAS Institute Inc.
1999). This method finds the optimum solution in fewer iterations com-
pared to other methods (Lindstrom and Bates 1989), but to do so, it
requires matrix inversion. Inversion of the large, sparse matrices associ-
ated with models with many parameters is the most memory-intensive
portion of the algorithm. A less memory-intensive alternative to the
Newton-Raphson algorithm is the derivative-free (DF) algorithm (Graser
etal. 1987) in which the residual likelihood function is evaluated explic-
itly, and its maximum with respect to the variance-covariance compo-
nents is located without matrix inversion. Although the DF algorithm
requires less central processing unit (CPU) time per round, it often
requires many more rounds of iterations to obtain converged estimates
(Boldman and Van Vleck 1991), making it slower to converge. However,
it has been found that this procedure is computationally feasible for
experiments involving very large data sets (Graser et al. 1987; Meyer
1989, 1997). Another approach is the use of the Takahashi algorithm to
invert large, sparse matrices, which removes most of the constraints on
algorithms to invert large matrices. In particular, average information (AI}
REML is a quasi-Newton algorithm which requires first derivatives of the
likelihood, but replaces second derivatives with the average of the
observed and expected information to approximate the second derivative
matrix of the function evaluated at the optima. This algorithm has been
found to be computationally highly advantageous over DF procedures
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(Meyer 1997). The Al REML procedure also produces approximate stan-
dard errors of variance component estimates, which are not available
with the DF REML procedure. These standard errors are useful for esti-
mating the precision of heritability estimators (Section V.C). Many strate-
gies to reduce the computations in each round of iteration and the
number of rounds required to reach convergence have been included in
the derivative-iree REML (DFREML) (Meyer 1989) and multiple trait
derivative-free REML (MTDFREML) (Boldman et al. 1993) programs.
MTDFREML software also can implement the AT REML algorithm (Bold-
man et al. 1993). However, these programs have been designed specifi-
cally for applications in animal breeding, and are not available for
application in plant breeding yet.

A theoretical difficulty also needs to be resolved before mixed mod-
els can be implemented widely for plant breeding experiments. Mixed
models can handle both fixed effect factors and random effect factors
simultaneously, but plant breeders often deal with a situation that is not
easily handled in current mixed models. Often, plant breeders randomly
sample lines or families from an experimental population to estimate
variance components and heritability in the reference population, in
which case the families are a random effect. Generally, however, check
entries (usually widely accepted cultivars) are also included in the same
experiment so that breeders can compare the best lines from the exper-
imental population to the check entry. Obviously, the check entries
were not drawn from the same reference population as the experimen-
ta] lines. Nor can it reasonably be argued that the check entries are ran-
dom samples from some other reference population; the check entries
were chosen specifically because they are superior! Thus, one could
argue that the check entries represent a group of fixed effects, whereas
the experimental entries represent random effects drawn from a separate,
but definable, reference population. It is not obvious how to handle this
situation with mixed models analysis. Although one can model separate
variance components for experimental entries and check entries, it
seems that in theory no variance component can be associated with the
check entries.

Plant breeders did not face this dilemma previously because ANOVA
procedures were used for both estimating family means and variance
components, and the same equations were used to estimate the family
mean squares from a multiple-environment trial whether families were
considered fixed or random. Even the F-test for families was the same
whether families were considered fixed or random (but changing envi-
ronments from fixed to random would cause differences in the F-test for
families). Therefore, means for both experimental and check entries and
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standard errors for their comparisons could be estimated from the
ANOVA including all entries. Then, after dropping check entries, a new
ANOVA could be performed to obtain the mean squares, and, conse-
quently, the variance component, due to random experimental families
only. A similar approach could be used with mixed models: all entries
could be considered fixed effects for the purposes of making comparisons
between experimental and check entries. Then a second analysis could
be performed on the experimental entries only, considering them random
effects, to estimate the genetic variance component in the reference pop-
ulation. This is an entirely reasonable approach, because in this case, for
the purposes of making comparisons between experimental families and
checks, one is interested only in the families actually included in the
experiment, rather than in making inferences to the reference population
from which they were sampled. (White and Hodge 1989, pp. 29 and 64,
discuss the reasons that families can be treated as fixed for some purposes
and random for other purposes.) However, some efficiency may be lost
with incomplete block designs, as previously mentioned. If there were
some way to treat only the check entries as fixed effects and the experi-
mental entries as random effects in the same analysis, one could use such
an analysis to estimate the variance components of the random entries
while obtaining information on incomplete and complete blocks from the
check entries, maximizing the precision of the estimates. In such a case,
it still seems to make more sense to conduct a second analysis, consid-
ering all entries as fixed effects, to make comparisons among the lines
included in the experiment. Otherwise, using a mixed models analysis,
the random family effects are predicted, rather than estimated (Lynch and
Walsh 1998, pp. 748-749), and best linear unbiased predictors (BLUPs)
of the random families are used for comparisons (Robinson 1991). Thus,
even if possible, this type of analysis would raise the issue of how exper-
imental line BLUPs can be compared to check entry means from the
same experiment. In any case, we are not satisfied with considering all
entries, including both checks and random samples from experimental
populations, to be random effects drawn from a common population, for
the purpose of making comparisons among them with BLUPs, as we
have done in some cases (Cervantes-Martinez et al. 2001) simply to make
papers acceptable to journal editors. We know of no theoretical work or
guidance on this subject and suggest that such work would be useful to
plant breeders.

Finally, we also note that the correct expectations of mean squares in
the mixed model remains controversial, and that this can affect the vari-
ance component estimates. Statisticians do not agree on whether the
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expected mean square of a random factor should include the variance
component of the interaction of that random factor with a different fixed
factor. The debate centers on the assumptions of the model used, specif-
ically, whether interaction effects between fixed and random factors
must sum to zero across all levels of the fixed factor (Rawlings 1988, pp.
468-469; Steel et al. 1997, p. 411). Unfortunately, the model and conse-
quent expected mean squares used in SAS PROC MIXED differ from
those traditionally used by plant breeders (Steel et al. 1997, pp. 379-384).

C. Precision of REML-based Heritability Estimators

1. Approximate Standard Errors of REML-based Heritability Estimators.
Heritability estimates can be constructed from the REML variance com-
ponent estimates using Equation [12], but the sampling variance of such
a heritability estimate is not immediately obvious. Dickerson (1969) pre-
sented an approximate standard error for heritability estimated based on
variance component estimates, but it is conservative (Hallauer and
Miranda 1988, p. 49) and not generally recommended nowadays (Nyquist
1991, p. 310).

The delta method (Lynch and Walsh 1998, p. 807) provides a general
method for obtaining approximate standard errors for any statistic based
on estimates with an estimated or known sampling variance-covariance
matrix., Gordon et al. (1972), Dieters et al. (1995), Singh and Ceccarelli
(1995), and Hohls (1996) proposed approximate standard errors for spe-
cific heritability estimators using the delta method. The general form of
the approximate standard error estimator for variance component-based
heritability estimates proposed by Gordon et al. (1972) is appropriate, but
the specific formulas provided by them are based on covariance estimates
of the estimated variance components that were derived assuming bal-
anced data. Estimates of the covariances between the estimated variance
components are provided directly by REML estimation procedures. The
use of these estimates is appropriate whether or not the data are balanced
when the sample size is large. Hohls (1996) described an appropriate
method to obtain approximate standard errors for heritability estimates
from a design Il experiment, but his derivation of the standard error was
incorrect. Dieters et al. (1995) compared two different approximations and
an empirical estimate of the variance of heritability estimates, finding
that both approximations performed reasonably well compared with the
empirical estimate. Singh and Ceccarelli (1995} derived approximate stan-
dard errors for heritability estimates based on REML estimates of variance
components for single- and multiple-location trials of random genotypes.
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Here, we derive approximate sampling variances and standard errors
of heritability estimates based on variance and covariance components
estimated by REML. The variance component estimates require the
assumption of normally-distributed data, but do not require the
assumption of balanced data. The proposed method is robust for miss-
ing data, assuming that data are missing at random (Little and Rubin
1987). All components necessary to use the equations are included in
the SAS PROC MIXED output, and SAS code to obtain the compo-
nents and to compute the estimators directly is presented in Appen-
dices 1 to 4.

An estimator for narrow-sense heritability for family means (h% Sec-
tion V.A) is:

j2 - 8t
o
Op

where 0% is the family variance component in the reference population,
and 0%is the phenotypic variance of family mean deviations in the ref-
erence population (Equation [12]). The phenotypic variance of family
mean deviations is estimated as the sum of the estimates of the genetic
variance component and other variance components multiplied by
coefficients. The other variance components generally include those
corresponding to family-by-environment interaction (FE) {o%;), exper-
imental error (6%), and within-plot variance (62), if data on individual
plants are available. To obtain a general form for the sampling variance
of the heritability estimate, the phenotypic variance component will be
written as:

Gp = OF + 0,65 +¢,65 +... + ¢, 62,

where k is the number of variance components contributing to the phe-
notypic variance of family means; and 62, o3, ..., 6% refer to the (k-1) other
variance components whose estimates are multiplied by coefficients c,,
€3, -, €y, TESpectively, and summed along with 0% to estimate phenotypic
variance of family mean deviations. To estimate the sampling variance
of the heritability estimator, estimates of sampling variances of all of the
variance component estimates included in the heritability equation are
needed. In addition, estimates of the covariances between all of the vari-
ance component estimates included in the heritability formula are
required. These elements can be written as a k x k variance-covariance
matrix, C:
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V(%) Cl6%,6%) - Cl6%,6}
& |Cl65.63) Viey) - Cl63.67)
C(6},6%) Cl63,67) - V(6%

where f/(o’ ?) refers to the estimated variance of the ith variance com-
ponent estimate, and C(o"%0"%) refers to the estimated covariance
between the ith and jth variance component estimates.

The variance component estimates computed by REML procedures
are asymptotically normally distributed, with variances and covari-
ances given by the C matrix. The approximation to normality improves
with larger sample sizes (Searle et al. 1992). The delta method can be
used to obtain the approximate variance of a function of asymptotically
normally distributed estimators (Lindsey 1996; Lynch and Walsh 1998,
p. 807). Therefore, given REML estimates of the variance components
and of the elements of the C matrix, and considering the heritability
estimate to be a function of the estimators, 6°%, "3, 6%, ..., 0" 5, we can
apply the delta method to obtain the approximate sampling variance of
the heritability estimate. In general, the approximate sampling variance
of any estimator, ¢, that is a function of k moments, m,, m,, ..., m, is
given by:

2
0 op J
ve) = 3|22 | vim)+ 32222 cim,, m,)
A om; j=r Om; dm,. [15]
[see, for example, Mode and Robinson (1959) or Bulmer (1985, p. 86)].
This formula is obtained as the first two (lowest order} terms in the Tay-
lor series expansion of ¢ around its true value. Equation [15] can also be

written in matrix form as:

1T . - —

3 3
| 8;;1 Vin,)  Clm,m,) - Clm,,m,)] a;;
Vig)=| am, || ) Vimd e Cmemdl B
i Clmy,my) Clmy,my) - Vim,) | ji
| omy | | omy |
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Applying this quadratic form to the heritability estimator, gives:

— ~ ...T — n —_

2 2

on’ R’

062 | rn . "o A 1] os?

a]}f V(GE)  C(6%,6%) .. C(62,62) af;

f S nD A T al P Y i

i — ||Clor.0;) V(5,) <o Cloy,01) || —
V(D) = | 362 e z . 2T 962

G2, 6%) 662,64 - Ve R

ah; L F k 2 k . k ah?-

362 6%

The k x 1 column vector containing the derivatives of the heritability
estimator with respect to the different variance components included in
the estimator will be referred to as d. In this way, the general formula
for the sampling variance for the heritability estimate can be expressed
in matrix notation as:

V(k2) = d'€d. | [16)

The estimated C matrix can be obtained directly from the output of SAS
PROC MIXED (SAS Institute Inc. 1999) and from GENSTAT (Singh and
Ceccarelli 1995; Hohls 1996; Payne and Arnold 1998). All that remains,
therefore, is to determine the derivatives involved in the d vector to
obtain a specific formula for the sampling variance of a particular heri-
tability estimator.

The derivative of the heritability estimator with respect to any of the
variance components in the equation can be written as:

o _ (4) 325 ~(63)2%F

a6 ~2 \
’ [6%)

Therefore, the d vector can be simplified to:
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o\ 362 [y 62
(6%) agg -(6%) aag | (63 )~ (63 ) _
ot 12602 |1 (oo
] I T WS
L1350 (4|63 (6% )o-(6% e
_ _(G”)ac‘ri__( F)aai —
63-63)/68|  [1_f)]
_ 1 —(czé'f;)/&f; _ 1 '—Czj'\l?'
63 . Gp|
P es)rt P e fi |

This can be further generalized by specifying the relevant variance com-
ponents in a matrix called o, and defining the family and phenotypic
variances as functions of coefficient vectors A; and A, multiplied by o:

o
o,

Ap = : [18]
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—1—T—0§_

Op = 0 O-g = (7;0,
0] o |
1 -Tpcrf;—

ot =|% | |%|= Mo
x| [oF ]

Using these equations, the d vector can be written as:

d- oi%[kG - (hﬁxp]]- [19]

As an example, we will derive the sampling variance for heritability
on an experimental-unit basis (plot basis) estimated from an experi-
ment in which data are taken on a set of random half-sib families grown
in randomized complete block trials in multiple environments. In this
case, heritability on an experimental-unit basis is estimated by:

B = Gz - Gy
f7 ona | 2 a2 ~2

where 0% is the family-by-environment interaction variance compo-
nent, and ¢?2 is the experimental error variance component.
The variance-covariance matrix of the variance component estimates is:

V(62) C(6%,6%) C(6%,62)
C=|C6%,6%) V%)  C(6%.62)|

G62,6%) C(6%.62) V(62)

The genetic and phenotypic coefficient vectors are:

17(;:[1 0o o]
= 1 1]
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Applying the delta method, we obtain:

61

[oh? | (62, 462 &2, + 62
dG (63)° &%
qoloh || =6 |_a| -6k
967 637 | 63| 6%
oh? -6 ~6%
dor | L (63) | . 6
O+ 0o + 05 — 62
% 1- i
=1 s = |- = Lirg - (B
Op Op Or | _p2 o
2 f
i G )

V() =d"Cd
1 |(6Fp + 62V VI(6F) + (6 V(6%) + VI(GE) + 20(6%,,62)]

(63)F | —26%(675 + 62)[C(6%,62;) + C(62,62)]

The estimate of heritability on a family-mean basis has the following form:

~2
o o
f - B
OF +—TE 4 2&
e er

the C matrix remains unchanged, and the A; and A, vectors are:

1 1
e erl|

leading to estimates of the phenotypic variance of family mean devia-
tions and heritability as follows:

A =[1 o O]andllT,:[l

. . s~ A6 6
6% = AL6, hj%— G- _ZF

 aTa T
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The d vector is:

1 A
d - 'é\-_%'[lG - (h?lp)]:

and the variance of the estimate of heritability of family means is
obtained with Equation [186].

The standard error of the heritability estimate is the square root of the
variance (Equation [16]}). For example, the standard error of the heri-
tability estimate on a plot basis in the example given is:

£
se.(hf] =

7 \f (63 + 62 ) V163) + G1F1V(63) + V(62) + 20162 621 - 2636 + 62)IC6E 6% + G162 2]
This formula is algebraically equivalent to that given by Singh et al. (1995),
who also used the delta method. It is also equivalent to the estimator
obtainable from a general form given by Gordon et al. (1972) when data are
balanced. Gordon et al. (1972) derived their covariance estimators by
assuming balanced data and independent mean squares, but this may not
be valid when data are unbalanced. On the other hand, whether or not data
are unbalanced, the variances and covariances of the elements of the her-
itability estimator are given by the C matrix estimated by REML procedures,
assuming large sample sizes. We can be certain, therefore, that the variance
estimators described here are valid in the case of unbalanced data.

2. Alternative Methods for Estimating Precision of REML-based Heri-
tability Estimates. The approximate standard errors of heritability esti-
mate may not lead to reliable confidence interval estimators, because of
the unknown distribution of the heritability estimates (Lynch and Walsh
1998). The delta method approximate standard errors also assume large
sample size, and it is not known exactly how large the number of fami-
lies, environments, or replications an experiment should have to obtain
valid estimates of precision of heritability estimates. Dieters et al. (1995)
compared estimates of standard errors of heritability for two traits in
pine trees (Pinus elliottii) estimated with the delta method to those estj-
mated with a simpler approximation given by Dickerson (1969) (see
Nyquist 1991, p. 310) and an empirical estimate. They reported that the
delta method approximation of standard error of heritability appeared
to be reliable, but seemed slightly less conservative and perhaps more
biased than the Dickerson approximation.

An alternative to estimating approximate standard errors based on
parametric methods is the use of data resampling techniques to obtain
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both standard errors and confidence intervals for heritability estimates
(Lynch and Walsh 1998, pp. 569-570). Furthermore, resampling meth-
ods to obtain estimates of heritability may be more robust for smaller
sample sizes than the delta method estimators. Zhu and Weir (1996) sug-
gested that better estimates of variances of heritability estimates for dial-
lel designs can be obtained with the jackknife method (Miller 1974)
than with approximate formulae. This may also be true for other mating
designs. Knapp and Bridges (1988) also used jackknife methods for esti-
mating confidence intervals for ratios of variance component estimates,
but they noted that the extension of jackknife methods to complex data
structures was difficult because the optimal data resampling strategy to
use in jackknifing in complex experimental designs is not always clear.
For example, if data exist on multiple families evaluated in multiple
replications within multiple environments, it is not obvious how to
properly resample the factorial data set to simultaneously account for
uncertainty in family, FE interaction, and error variances. Further
research on the reliability of delta method approximations and resam-
pling methods for estimating the precision of REML-based heritability
estimates would be helpful.

D. Accounting for Unbalanced Data in Formulas for
Heritability on a Family-Mean Basis

The estimates of the variance among phenotypic means (c}) that serve
as the denominators of heritabilities on a family-mean basis in Table 2.1
are correct only if the data are balanced. In the balanced case, the divi-
sor for each variance component comprising o2 represents the number
of effects corresponding to that variance component included in each
family mean. For example, family j might be evaluated in e environ-
ments. In this case, each family mean includes an average over e unique
FE effects, and the contribution of ¢%; to the variance among family
means is reduced by a factor of exactly e. Therefore, the divisor of 6%,
in the formula for the variance among family means is e. '

As described in Section IV, the phenotypic variance of family means
can be obtained as the mean square for families divided by the total num-
ber of observations per family (Nyquist 1991, pp. 256-257). The phe-
notypic variance of family means is also equal to the variance of a family
mean plus the variance component due to families. However, this is no
longer true when data are unbalanced because the total number of obser-
vations per family is not equal among families. Also, the coefficients on
the variance components in the expected mean square for families are
not integers corresponding to consistent numbers of levels of the design
factors as when data are balanced (Section V.B.2).
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Selection among families when data are unbalanced should be based
on the least square means of families. Therefore, by analogy to the bal-
anced data situation, when data are unbalanced, one can compute the
phenotypic variance of family means as the average variance of the fam-
ily least square means plus the variance component due to families.
Least square means are computed as Lﬁ where § is the vector of fixed
effects (Section V.B.5) (including family effects in this case), and L is the
vector of coefficients that define a least square mean, according to rules
described by Rawlings (1988, pp. 460-462; see also SAS Institute 1999).
Differences among least square means are defined as (L, - L )[)’ where L;
and L; are the vectors defining the two least square means. The variance
of a dlfference between least square means is computed as (L, — L)
(X’ V‘IX) (L; — L] (SAS Institute 1999). The average variance of com-
parisons of least square means across all pairs of least square means can
be computed and summed with the variance component for families to
obtain the phenotypic variance of family means. This factor can then be
used as the denominator for heritability formulas on a family-mean
basis. Another approach is to simply compute all of the family least
square means, then calculate the variance among those means. Finally,
one could compute the coefficient for the family variance component in
the expected mean square for families given the actual unbalanced
design of the experiment (using the random statement in PROC GLM of
SAS, for example, SAS Institute 1999), and divide the mean square for
families by the coefficient to obtain the variance among family least
square means. The mean square may have to be constructed as a linear
function of variance-component estimates from PROC MIXED, multi-
plied by the appropriate coefficients in the expected mean squares,
obtained from PROC GLM. We are not certain how to simply relate
these expressions to the linear combinations of variance component
estimates, as was possible for the balanced data situation (Equation [9]).
Further research to clarify this issue is needed. From empirical investi-
gation, we have found that Equation [9] is a good approximation to the
empirical variance among family least square means if e is replaced by
ey, the harmonic mean of the number of environments per family, and
er is replaced by p,, the harmonic mean of the total number of plots in
which each family is observed. The harmonic mean of the number of
environments per family is:

[
L1
2

8h=

H
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where ¢, is the number of environments in which the jth family is tested.
The harmonic mean of the number of plots per family is:

f f
Pr = = :
foq ﬁ_l"
=1 % =R

I

1=1

where r;; is the number of replications of family j in environment i, and
p; is the total number of replications (plots) of family j across all envi-
ronments.

VI. ESTIMATING HERITABILITY FROM
PARENT-OFFSPRING REGRESSION

A. REML Estimates of the Parent-Offspring
Regression Coefficient

REML methods can be used to estimate the parent-offspring covariance
and the parent phenotypic variance, leading to a REML-based estimator
of heritability. This approach follows that outlined in Section V, and will
be the optimal method when data are unbalanced. Furthermore, with
mixed models analysis and appropriate experimental design, one can
simultaneously estimate heritability from parent-offspring regression
and from the ratio of the family variance component to the phenotypic
variance of family means. An example of this method is presented in

Appendix 3.

B. Heritability Estimated from Parent-Offspring
Regression without Inbreeding

We demonstrated in Section III.A that the genetic covariance between
outbred parent and outbred offspring is (1/2)c% + (1/4)c%, (ignoring
higher-order epistatic terms). If parents and progeny are grown in inde-
pendent environments, then the covariance between their phenotypic
values is the genetic covariance (Section IL.C). If parents and progeny are
grown in the same (or nonindependent) environments, however, the
covariance between their phenotypic values will include a portion of the
genotype-by-environment variance component, requiring a more com-
plex analysis of covariance to partition the genetic variance component
from the genotype-by-environment interaction variance component
(Casler 1982; Nyquist 1991, pp. 281-282).
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The expectation of the regression of offspring values on parental val-
ues is identical whether a single offspring from each parent or the mean
of many offspring are measured. If parents are random-mated via open-
pollination and the phenotypic value of only one parent of each prog-
eny set is known (corresponding to selection on one parent only), then
the regression of offspring on parent phenotypic values is equal to half
of the narrow-sense heritability:

h,

2 [

]_ | CovP.0)| _ 394 + 0%
o Var(P) o2
where h% = narrow-sense heritability corresponding to selection response
in response units that are members of the initial population formed by
intermating selected parents (Section V.A; Nyquist 1991, pp. 250-251).
This is distinguished from the permanent response to selection, as mea-
sured in a population derived from the initial response population but
resulting from many generations of random mating (Section V.A). The
epistatic variance components do not contribute to the numerator of the
permanent response to selection (Nyquist 1991, pp. 250-251; Holland
2001), so narrow-sense heritability corresponding to permanent
response to selection has the familiar form:

%

R =

]

op

(Falconer and Mackay 1996, p. 160; Nyquist 1991, p. 251). Formulas for
hZ can be obtained from the formulas for h% simply by deleting the
epistatic components of variance from the numerator.

If the phenotypic values of both parents of each progeny group are
known (corresponding to selection on both parents), then the regression
of offspring values on mean parental values is directly equal to the
narrow-sense heritability:

m?
Var(P)

Var[} (P, +P,)] %{Var(Pf] + Var(P,)]

Cov(P,0)| Cov(; Py +;P,.0) ] Cov(P;,0}+1Cov(F,,C
Elbssl = E ’ = = 2

207 os (20]

These regression coefficients provide estimators of narrow-sense her-
itability in Lush'’s original sense because the phenotypic variance in the
denominator is the phenotypic variance of individual plants. Because
data are taken from individual parental plants, these estimators are use-
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ful only to the extent that individual plant data are useful. Thus, such
estimators are probably more useful for traits that are not greatly affected
by interplant competition.

A major advantage to estimating heritability from parent-offspring
regression is that the sample of parents chosen does not have to be a ran-
dom sample from the reference population, in contrast to all of the her-
itability estimators based on variance component estimation (Falconer
and Mackay 1996, p. 181; Lynch and Walsh 1998, p. 537; Nyquist 1991,
p- 281). In some cases, breeders have data only on selected plants and
their offspring, and in such a case, the parent-offspring regression
method will provide an unbiased estimator of heritability.

C. Heritability Estimated from Parent-Offspring
Regression with Inbreeding

Heritability may be estimated from the regression of self-fertilized off-
spring phenotypic values on their parental values. For example, parents
in a random-mating population may be self-fertilized to form S, fami-
lies and the regression of S, line means on S, parents has the follow-
ing expectation:

2 1,2 1 2

= K

Elbs ¢ 1= -
55 Var(S,plants) o5

(Nyquist 1991, p. 303). Such heritability estimators are appropriate only
for obtaining the expected response to selection conducted in the same
parental generation and evaluated in the same offspring generation as
used in the estimation experiment. For example, the heritability estima-
tor based on the regression of Sy, line means on their S, parents can be
used to obtain the expected response to selection among S, plants as eval-
uated in Sy, lines. However, if one is interested in the response to selec-
tion among S, plants as evaluated in highly homozygous lines derived
from them (S, lines), one requires the numerator C,,, (equal to 6% + D,
+ 0%,) in the heritability estimator. Similarly, if one is interested in the
response to selection among S, plants as measured in outbred progeny
developed from intermating the selected S;'s (or the selfed progeny of the
Sy's), one requires the narrow-sense heritability estimator given in Equa-
tion [20] that does not involve 6% or D, in the numerator.

More frequently, plant breeders have data on earlier and later gener-
ations of inbreeding of lines derived from the same common ancestor.
For example, F, generation lines can be regressed on F, generation lines
derived from the same common F, ancestor. Using the S-generation
notation, this is the regression of S, lines on their S, , parents, and the
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relevant covariance is C,,- = Gy, = 0% + (1/8)0% + (5/4)D, + (3/16)Dj +
o4 4 The relevant phenotypic variance in the denominator of the regres-
sion coefficient is the phenotypic variance among S, line means, which
includes C,,, = Gy = 0% + (1/4)c%, + D, + (1/8)D5 + 6%, as the genotypic
variance component. In general, the expectation of the regression coef-
ficient is:

Elbz;)= Cray
oP C.E o
' + fgg " + el )
w T g er (21]

Such heritability estimators strictly refer to response to selection among
S;¢ lines as evaluated in S, offspring lines. It also refers to selection
among individual inbred plants as measured in later generation inbred
lines by setting t = g. The permanent response to selection evaluated in
highly homozygous offspring lines involves the numerator C,,.. The
response to selection evaluated in outbred progeny involves the addi-
tive portion of C,,, (which also equals the additive portion of C,, .} in the
numerator.

Nyquist (1991) suggested that appropriate estimators of heritability
corresponding to the response to selection among S, plants as measured
in S, lines can be obtained by adjusting the regression of S,, lines on
S, parents for any pair of generations ¢ and g (p. 305). Assuming that the
genetic variance is completely additive, the heritability estimator can be
obtained from the parent-offspring regression of any pair of inbred gen-
grations as:

h2 = bOP
1+ F(1-b,)

where F, is the inbreeding coefficient in generation t. Gibson (1996)
showed that this estimator can be severely biased for particular allele
frequencies if nonadditive effects are important or if genotype-by-
environment interactions are important, but in any case, this estimator
is closer to the regression of S, lines on S, parents than is the unad-
justed regression coefficient of S, lines on S, parents. Perhaps Nyquist
(1991, p. 305) and Gibson (1996) did not emphasize strongly enough that
this correction is valid only if the regression estimate to be adjusted
involves phenotypic values of individual parents in the S, generation.
If the parental values instead are phenotypic means of S, lines, then the
phenotypic variance among parental values cannot be ad]usted to equal
the phenotypic variance among individual S, plants.
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Holthaus et al. (1996) estimated the heritability of 8-glucan content in
oat (Avena sativa) using the regression of self-fertilized progeny means
on individual single-plant values of highly inbred parents. They then
adjusted the estimate to refer to selection among noninbred plants using
Smith and Kinman’s (1965) correction of h® = b,p/(2F,) = b,p/2 {for
homozygous parents with F, = 1). Nyquist (1991} pointed out that the
Smith and Kinman correction factor is incorrect, and the adjusted her-
itability estimate [1 + F, (1 — b,)] should be used instead (p. 305). There-
fore, Holthaus et al. (1996) should have made the following adjustment
under the assumption of predominant additive genetic variance: h* =
bop![1 + F(1 — byp)] = bop/1.5, resulting in an estimate of h* = 0.55/1.5 =
0.37, rather than h® = 0.26.

VII. ESTIMATING REALIZED HERITABILITY

Distinct from all other estimation procedures discussed in this chapter,
realized heritability estimation relies on determining how much of the
selection differential applied in previous generations was achieved as a
response in progeny. It is a retrospective analysis, although the estimate
can be used to make predictions about future responses to selection in
similar populations, at least in the short-term. Realized heritability (h%)
can be estimated by rearranging the response to selection formula and
solving for heritability as a ratio of the observed response to selection
(R) to the observed selection differential (S):

)

R =

T

| =

In order for this estimate to be freed from GE interaction bias, the response
to selection should be measured in an independent environment from the
selection differential. This formula can be generalized to estimating real-
ized heritability from response to multiple generations of selection by per-
forming standard least squares regression of cumulative response on the
cumulative selection differential (Hill 1972; Nyquist 1991, p. 283). Walsh
and Lynch (1999) proposed a weighted least squares analysis to account
for variation due to genetic drift and for correlations between responses
observed in different cycles when estimating realized heritability. If selec-
tion differentials and responses are measured from n cycles of recurrent
selection, the weighted least squares estimate of realized heritability is:

R =(S"V'S)'STVR,
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where § is an n x 1 column vector of cumulative selection differentials,
R is an n x 1 column vector of responses, and V is an n x n variance-
covariance matrix of the selection response. The elements of V are:

1 1
W, = [ZEhf + —}— + “—U]O'J%
_ 2.2 14 2

where F; is the inbreeding coefficient in cycle i (0 < i < j), M, is the num-
ber of families from cycle i tested in the evaluation trial, and o2 is the
phenotypic variance among family means, and h?is the heritability esti-
mate itself. One can use the standard least squares regression estimate
of realized heritability as an initial estimator to use in the V matrix of
the equation, and then use the equation iteratively until converging on
a stable solution. The standard error of the realized heritability estimate
is the square root of the sampling variance: Var(h? = (§"V-'S)"1. Holland
et al. (2000) used this method to estimate realized heritability from three
cycles of recurrent selection for grain yield in oat.

VIII. EXAMPLES OF HERITABILITY ESTIMATES

A. Broad-Sense Heritability for Clonally Propagated Species

For clonally propagated species, the genotypic content of parents and
their offspring are identical, therefore, the expected covariance of parent
and offspring phenotypes from independent environments is equal to the
total genotypic variance: E{Cov(Yy, Yyl = E[Cov(G,, Gl = 6% = 6% + 0%,
+ 0%+ Ohp+ Opp + ... It follows from this that the response to selection
among clonally propagated individuals or families involves the total geno-
typic variance. Therefore, we seck heritability estimators of the form
o5/0}, which are referred to as heritability in the broad sense, “H” (Nyquist
1991, p. 239), as they refer to the proportion of phenotypic variance due
to total genotypic variance. Such estimators are not relevant to selection
response in sexually reproducing populations, but in clonally propagated
populations they are useful for predicting response to selection.

Broad-sense heritability estimators can vary, depending on the exper-
imental design and on the selection unit, as these will impact the pheno-
typic variance in the denominator of the heritability function. When data
are taken on individual plants within plots in a replicated multiple-
environment trial with cross-classified environments, the model for
phenotypic data is:
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GY;+ GLY 5 + €530 + Wiiagpms

where L, is the effect of the ith location; Y is the effect of the jth year;
LY is the effect of the interaction between location 7 and year j; GL; is
the effect of the interaction between genotype / and location i; GY, is the
effect of the interaction between genotype [ and year j; GLY; is the effect
of the interaction between genotype I, location i, and year j; and w,,,
is the effect of the mth plant within the ijki/th plot. In this case, the phe-
notypic variance of individual plant deviations from their block mean
is: 0% = 0% + 0%, + 0%y + 0%,y + 02 + 072, and heritability corresponding
to selection among individual plants within a block is:
A= 66 _ S5
6L+ 06k + 6ty +0ey, + G2+ 62 G

where o2, is the within-plot variance component (Table 2.1.1.A). If selec-
tion is based on plot mean values within one replication, the selection
units are averages across the n plants per plot, leading to a heritability
estimator of the form:

2
H; = % e (Table 2.1.1.B).

GL + 6l +6hy +Glyy + 02 + -2

If selection is based on family-mean values averaged across years (but
from one location), the selection units are averages across n plants per
plot, rreplications per environment, and y years, leading to a heritabil-
ity estimator of the form:

~Z

~2
~ o &
Hy = ~ GAZ S f; {Table 2.1.1.C).
~ -~ O- G [e) o‘ o"_.
y y yr o yrn

If selection is based on family-mean values averaged across locations
within one year, the selection units are averages across n plants per plot,
r replications per environment, and / locations, leading to a heritability
estimator of the form:
=2 ~2
~ c o
H; = v c— ——— =~ (Table 2.1.1.D).
Ocry + EE“ + _0;W_ Op
Ir I

. 6L .
Gé+%+oéy+
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Finally, if selection is based on family-mean values averaged across all
vears and locations sampled, the selection units are averages across n
plants per plot, rreplications per environment, y years, and ! locations,
leading to a heritability estimator of the form:

6_2
PP ;= - (Table 2.1.1.E),
Ccvr , ey  Oe  Ow  Op
y ly Iyr lyrn

~2
~ _ GG
H; =

~2
Oc

6%+ S+
If a similar evaluation is conducted with cross-classified years and

locations, but data are taken on plot totals only, the model for pheno-

" typic data becomes:

Yigm =B+ Li+ Yy + LYy + Ry + Gy + GLy + GYjy + GLY  + €.

If plot means are calculated from the plot totals, then £}, in the formula

replaces

n
Z W (ijkl)m

€ t+ =

in the previous formula for an individual (Section IL.C). Family heri-
tabilities on a plot basis and on a family-mean basis are similar to those
just presented, with the substitution of o? + (6%/n) for o2. Also, plot
totals themselves can be analyzed (Table 2.1.2.A, B, C, and D; see
Nyquist 1991, pp. 259-260).

If data are collected on individual plants within plots and the envi-
ronments are an independent sample of all locations and years (not sim-
ply different, random locations within one year or different, random
years within one location), or if the cross-classification is ignored {with
the introduction of bias as described in Section I1.C), the statistical
model becomes:

ijkl =f+E + Ry + Gj + GEU + € + Wi
The phenotypic variance of individual plant deviations from their block
mean is: 03 = 0 + 0% + 02 + 0%, and heritability corresponding to selec-
tion among individual plants within a block is:
A a2 &2
H=—08 S = A‘; (Table 2.1.3.A).
Oc+0g +0,+0, O
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Family heritability corresponding to selection among plot means within
one replication is:

~ s} g

H, = G o = Af (Table 2.1.3.B).
~2 | a2 =2 O, Op
Og +0gp +0; + -

Heritability corresponding to selection among family means averaged
across all environments is:

22 ~2
- o Y
H; = 4 =, (Table 2.1.3.C).
Seg , O:  Ow OF

e er ern

og +

If data are taken only on plot totals, then the statistical model is modi-
fied by substituting £, for

I
Z Wik

Ejjic + ‘_M_n >
and heritabilities on a plot basis and on a family-mean basis follow (Table
2.1.4.A and Table 2.1.4.B). (See the text for Table 2.1.2 for cross-classified
environments instead of an independent sample of environments.)

These formulas can also be applied to the situation in which genotypes
are replicated in multiple locations in a single year, by substituting o,
for 07 and I for e in the preceding formulas, but this results in a posi-
tive bias to the estimate of o7 and a negative bias to the estimate of
genotype-by-environment interaction variance (Nyquist 1991, pp.
288-289). Similarly, these formulas can be applied when genotypes are
replicated in multiple years at a single location, by substituting 6%, for
o%r and y for e in the preceding formulas, but this also results in a pos-
itive bias to the estimate of 6% and a negative bias to the estimate of geno-
type-by-environment interaction variance (Nyquist 1991, pp. 288-289).

B. Heritability Estimated from Half-sib Family Evaluations

Half-sib families can serve as selection units, in which case, remnant seed
of selected half-sib families is often used for intermating to form a new
population. In this case, the response to selection depends on the regres-
sion of random-mated offspring derived from remnant half-sib seed of
two selected half-sib families on the selection units. The covariance
between selection and response units on either the male or female side
of the pedigree equals (1/8)(1 + Fp)o + [(1/8)(1 + Fp)]°0% 4. Considering
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that selection occurs on both parents of the offspring, the expected
response to selection is twice this value, (1/4)(1 + F.)o% + (1/32)(1 +
Fp)*c?% 4, divided by the phenotypic variance of half-sib family means
(Nyquist 1991, pp. 274-275).

The variance component due to half-sib families, 0%, is equal to the
covariance among half-sibs, (1/4}(1 + Fp)o? + [(1/4)(1 + Fp)]*6%., (Sections
IIL.A and VIILD). The ratio of the half-sib family variance component to
the phenotypic variance of half-sib family means has the expectation:

E[h)zﬂ] = E 6'2 6'2
G%‘ + FE 4+ ¢
e er

) L0+ Fplo + L0+ F )03,

L1+ Foby + 21+ Flo’y o2
4 16 £
+

e er

LA+ Fpoy + 21+ FpYoh +

In this case, the expected value of the estimator of heritability is almost
equal to the true parameter h%, with a small upward bias of (1/32)(1 +
Fp)’0%, in the numerator. Specific formulas for heritability estimates and
their standard errors based on evaluation of half-sib families can be
obtained by modifying the equations in Section 5 of Table 2.1.

C. Heritability Estimated from Full-sib Family Evaluations

The estimate of the ratio of the full-sib family variance component to the
phenotypic variance among full-sib means was given in Section V.A, and
was shown to be different from the desired heritability estimator for
selection among full-sib families. The desired heritability function for
selection among full-sib families can be estimated only if the additive
and dominance genetic variance components can be partitioned. Such
partitioning is made possible by mating design experiments, as
described in Sections VIII.D and VIILE.

D. Heritability Estimated from NC Design 1

The NC Design I involves mating a sample of m plants as male parents each
to a separate sample of f females, and evaluating the progenies in r repli-
cations within each of e environments. This permits the estimation of the
variance components due to male parents and due to female parents nested
within male parents, which have the following genetic expectations:
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E(6%,) = Cov(HS) = )1 + Fp)o? + (1) + Fp)P0%,,
E(67 ) = Cov(FS) - Cov(HS)
=1+ Fp)I3)o} + Q+ Fp)Jop + (31 + Fp ok, - (3ol - (551 + Fploh ]

= (1+ Fp)l(Qo + 1+ F)Fop + 551+ Fokal,

where Fp is the inbreeding coefficient of the plants crossed to form the
full- and half-sib families.

If one were interested in conducting a recurrent selection program
using the data obtained from the nested design, observed means for nei-
ther independent half-sib or full-sib families exist. Instead, selection
could be conducted on the basis of male group means (the mean of all
full-sib families that have a common male parent) or means of nonin-
dependent full-sib families. The heritability of male group means based
on plot total data is:

~ 6—2
)%1 = = AZM = " (Table 2.1.6.D,
-~ O- 0- O- O- ’
G2, + FM) , Omp | Orune | O Table 2.1.7.C).
e ef erf

The phenotypic variance among nonindependent full-sib family
means is obtained by adding the sums of squares for males and females
within males to obtain the sum of squares for nonindependent full-sib
families. That sum of squares is then divided by the corresponding sum
of the degrees of freedom to obtain the mean square for nonindependent
full-sib families, with the following expectation:

E(MS
_ (m=1)(07 + rofug + Ifoys + ercra, +erfor )+ m(f — 102 + o}y + eroiay,
(m-1)+m(f -1)

nonindep. FS )

(m -1+ mf — m)(0% + 10\ 5 + €10 5,y,) + (m - (rfo’y +erfos,)

m-1+mf —m

Amf =1)(GL + 10}y + eropn) + (= 1)(rfos, + erfoy)

mf -1
(m—1)
= O + IOpp + €M0 g + —— (IfGhy + erfol, )
(mf ~1)
rf (m~1)

2 2 2 2
.+ IO (e + €TI0 p(p + {Onp +E03).

m b

(mf -1)
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This shows that there is less variation among nonindependent full-sib
family means because a different male parent is not mated to every
ferale. Thus, the heritability for nonindependent full-sib family means
is estimated as:

(1+~~~~~++ﬁﬂm_1]]c}§,f
R = mf 1 (Table 2.1.6.C
& flm—1) ~;  Ohpy . =2 Gre . O Table 2.1:7..B’}.
(mm)[aM+ . ]+JF(M)+T+73;

Selection acts on the additive genetic variation in both the male and
female components, but not on the dominance variation present in the
female component.

Hallauer and Miranda (1988, p. 80) suggested the following heritabil-
ity estimator for the Design I experiment based on noninbred parents (F,
= 0) {(see Nyquist 1991, pp. 294-295):

R ~2
4G2 . + (M) 4 Ze
FiM) e er

The expectation of the numerator of this estimator is 6% + (1/4)6% ,, which
makes it appealing as an estimator of narrow-sense heritability, but it is
incorrect as an estimator of narrow-sense heritability because the denom-
inator is not equal to the phenotypic variance among individual plants.
Therefore, it is not appropriate to predict the expected response to selec-
tion among individual plants. Furthermore, the denominator contains
more than one times the genetic variance because error variance in this
case contains within-family genetic variation divided by the number of
plants per plot. This may contribute only a small fraction of the genetic
variance if the number of plants per plot, replications, or environments
is sufficiently large. This estimator cannot be interpreted in terms of
response to selection among individual plants nor among half-sib or full-
sib families, so we do not recommend its use (Nyquist 1991, p. 295).

E. Heritability Estimated from NC Design 11

The NC Design 1l involves a factorial mating each of m plants as males
to each of f plants as females and evaluating the mf full-sib families in
each of r replications within each of ¢ environments. The variance
components due to a common male parent, a common female parent,
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and the interaction between male and female parents have the follow-
ing expectations:

EG5) = Cov(HS) = (3)(1 + F,)o% + (3 + F, o,
E[OA'i] = Cov(HS) = (%][1 + FB]O'i + [[%)(1 + FB]]ZO'iA ,

E(6}) = Cov(FS)-2Cov(HS) = (3)1 + F,)(1 + F;)o3,

where F, is the inbreeding coefficient of the male plants, and Fjy is the
inbreeding coefficient of the female plants crossed to form the evaluated
families (Cockerham 1963; Nyquist 1991, pp. 269-270). Heritability cor-
responding to selection among half-sib families can be estimated with
either the male or female half-sib variance component, or the average of
the two (Table 2.1, Sections 8 and 9). As in the case of the Design I exper-
iment (Section VIIL.D), an estimate of narrow-sense heritability is avail-
able if individual plant data are collected (Table 2.1.8.A).

Hallauer and Miranda (1988, p. 71) suggested the following heritability
estimator for the Design II experiment based on noninbred parents (Fp = 0):;

2 2 2’

er

405, + 405, +

However, this estimator is not interpretable in terms of response to
selection among individual plants or among families; therefore, we do
not recommend its use.

F. Heritability Estimated from Testcross Progenies

Testcross progenies that are evaluated in hybrid crops represent a special
case. As an example, we consider a random-mating reference population
from which individual plants, families, or inbred lines are sampled, and
crossed to an unrelated inbred “tester” line to form testcross progenies. The
testcross progenies are evaluated phenotypically and superior progenies
selected. The plants, families, or lines that were parents of those superior
progenies are intermated to form an improved population. New plants, fam-
ilies, or lines are sampled from the improved population, and these are test-
crossed to the same tester line. The gain from selection of interest is the
difference between the mean of the testcrosses of the improved population
and the mean of testcrosses of the original population.
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We define a special genetic model to handle the genetic effects
observed in testcross populations. The reference population in this case
is not a Hardy-Weinberg random-mating population; instead, it is the
nonequilibrium first generation population derived from crossing plants
or lines sampled from a Hardy-Weinberg equilibrium population to a
common inbred tester line. The single-locus genotypic model for the
testcross population is: '

G]-T =lr+ 05+ Oy + 5jT,

where @, is the effect of the jth allele derived from a plant in the exper-
imental population, o is the effect of the allele from the inbred tester,
and 6, is the dominance interaction effect of the pair of the jth allele and
tester allele. Melchinger (1987) developed theory for a two-locus, two-
allele model with linkage and epistasis, but for simplicity, we will ignore
epistasis and assume that the single-locus model generalizes to a multi-
locus model simply by summing over loci. All of the testcross plants
inherit one allele in common from the inbred tester line, so the genotypic
model simplifies to: G, = u* + a*, where u* =y, + ot and the average
effect of the jth allele from the experimental population is confounded
with its dominance interaction with the tester allele: o* = ; + &;7. The
total genotypic variance in the testcross population is:

0% = ElGyr— B(G)F = Elu* + oy — u* ) = Elo*? = 6%,

The genetic variance is entirely due to the differences in the average effects
of alleles from the experimental population in combination with the tester
allele, and we term this variance ¢’ to indicate that it is an additive
genetic variance only in reference to this specific testcross population.

Consider now the genotypic effects segregating within the equilibrium
population from which plants were sampled to cross to the inbred tester:
Gy =4+ a; + a;+ 5. The mean value of testcross progeny derived from
a single plant in the experimental population is:

Gy = G)Gir +Gir) = BN ™ + o) + (¥ + o) = p* + Glo* + o).

The variance component due to testcross families derived from indi-
vidual plants in the experimental populations is then:

El67] = Var(G}) = EIG], - E(G])F

= Elu* + (e + ) - p* P = (DEl(ee* + o).
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The o;* and o;* effects are uncorrelated if the experimental population
is in equilibrium, so this simplifies to:

El67] = Var(G}) = G)[E(eV + Ele])’]
= A)ohn + o) = A%y

The meaning of this is that the genetic component of variance among
testcross families is half of the total genetic variance among testcross
progeny.

We can generalize this model to include inbreeding in the experi-
mental population, in which case the probability that the two alleles
from a single individual are IBD is F. The mean of the testcross popula-
tion is not affected by inbreeding in the experimental population, how-
ever. With probability F, the parent of the testcross family is inbred at
an arbitrary locus, and the mean genotypic value of the testcross family
at that locus is u* + «;*. With probability 1 — F, the parent of the test-
cross is not inbred and the mean genotypic value of the testcross family
at a locus is u* + (1/2)[e* + ;*]. Therefore, the variance of testcross fam-
ily mean genotypic values equals:

E[6}] = ElVar(G;)] = FELO;F + (1 - FE[&) o] + of)f

= o'y + 31 - F)R2)o %) = G + Floh .

If F = 0, this reduces to Elc?] = Var(G'fj) = (1/2)0% ) as already shown.
If F =1, Elo}] = Var(G3) = 0% ).

Now consider the response to selection among testcross progeny. The
selection unit is a testcross family derived from a single plant in the
experimental population. The response unit of interest is the testcross
family of a progeny from the mating of the selected plant (or its selfed
progeny) from the experimental population to another plant from the
experimental population. The genotypic value of the parent plant based
on the mean of its testcross progeny {the selection unit) is:

T — 4% 1 * *
Gy=u" + 3lo™ + 0%l

This parent plant can be inbred to an arbitrary degree, F, which is the
probability that a; = @, and, therefore, that o;* = a;*. Its random-mated
progeny will inherit one allele from it (either i or j) with equal probability
and one allele from the other parent (arbitrarily named k). Therefore, the
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mean genotypic value of its random-mated progeny in testcross to the
same tester (i.e., the mean genotypic value of the response unit to which .
it is related) is:

mean testcross value of progeny of G7;
= p* + (Ploy* + o + o + = p* + G)o* + o) + (D).

The covariance between testcross values of parent and offspring is:

Cov[GTL.

If?

progeny of G{] = Govl(u* + (7)le* + o)),
(e + (PN + o) + ()]
= El(3)lo* + o* )(2)o* + o) + ()0 *)]

= (El(e")oy*) + (o5*)oy*) + (o )ey*) + (e *)oy™)]

(because El(c;*){0g*)] = 0)
= (%][E[af*z] + E[aj*z] + 2E[OC]-*C!]-*]]

= (Ho%n + O%n + 2FEl0;*?]) (because Eloj*a*] =

E{o;*?] with probability F)
= (%](1 + F]Giam-

If F = 0, then Cov|G7, progeny of G| = (1/4)0% 1.

If selection is practiced on both parents, then the response to selec-
tion involves two times the covariance between selection and response
units, and this heritability is estimable as the ratio of the genotypic
(testcross family) variance component to the phenotypic variance of
testcross families:

3 Sl + Flo _ Sc?

2 2 2
O A(T)E )+ (o200 Op

er

A=

1+ Flloqq +

If inbred lines from the experimental population are used, F refers to the
inbreeding coefficient of the last common parent of the inbred progeny.

Because the ratio of the family variance component to the phenotypic
variance is an appropriate estimator of heritability for testcross proge-
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nies, then the formulas given in Table 2.1, Sections 10 to 13, are appro-
priate for testcross progenies.

G. Heritability Estimated from Self-fertilized
Family Evaluations

Estimating heritability in self-pollinating species poses an additional
complication, because the “response unit” can vary depending on the
selection scheme. If the selection units are S, families, we can envision
at least five different kinds of response units in which response to
selection could be measured. First, one might measure the response to
selection in the remnant seed of the selected lines, that is, an indepen-
dent sample of plants within the same selected S, lines. This is repre-
sented in Fig. 2.2 as individuals X, through X, .. whose last common
ancestor was individual B, and we refer to this as immediate response
to selection (Cockerham and Matzinger 1985). Second, one might mea-
sure the response in highly inbred lines derived from many generations
of self-fertilization from the plants that composed the S, generation
selection unit. Such lines would be in the S, generation and we refer
to this as permanent response to selection, because the genotypic con-
stitution of such lines is fixed across any further generations of selfing,
in the absence of selection. Permanent response units are illustrated in
Fig. 2.2 as individuals Y,, through ¥, whose last common ancestor was
also individual B. Third, S,,,; lines derived from i additional genera-
tions of self-fertilization from the selection units could also be used as
response units. These are not illustrated in Fig. 2.2, but would be inter-
mediate between the immediate and permanent response units. Fourth,
unrelated remnant seed of selected lines could be intermated to form a
new base population, in which individual noninbred S, progeny could
be used as response units. These are illustrated as individuals Z,
through Z, in Fig. 2.2. Finally, the response unit could be Sy lines
derived from plants produced after t’ generations of self-fertilization
within the new base population. This could include S,-derived lines
(" = 0) and inbred lines derived from highly homozygous individuals
(" — cc). Such lines are illustrated as individuals V, through V, derived
from a last common ancestor, W (W= Z, if t' = 0), in Fig. 2.2.

Each of these situations involves a different covariance between selec-
tion and response units, and consequently, a unique heritability to pre-
dict the response to selection. Cockerham and Matzinger (1985)
developed response equations for selection among inbred lines as mea-
sured in their self-fertilized progeny or in outbred progeny resulting from
intermating selected lines.
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A commonly used estimate of heritability in self-fertilized species is
based on the ratio of the genetic component of variance to the phenotypic
variance of line means estimated from replicated evaluations of inbred
lines (Equation [12]). Recall that the variance component due to inbred
lines (families) is expected to equal the genetic covariance of any two
individuals within such lines (Equation [11]). Using Cockerham’s (1983)
notation: 6% = Gy, where t equals the number of selfing generations from
which the last common ancestor of the progeny were derived, and g =
g equals the number of selfing generations from which the tested plants
were derived. For example, the variance component due to S,,, lines is
Cor = 04 + (1/4)0% + D, + (1/8)D% + 6%, the variance component due
to S, lines is Cyy, = 0% + (1/16)03, + (3/2)D, + (9/32)D% + 62, and the
variance component due to S, lines is C,,, = (3/2)6% + (1/8)6% + (5/2)D,
+ (9/16)D% + (1/16)H* + (9/4)0%, (Cockerham 1983; Nyquist 1991, p.
299). In general, and assuming free recombination between genes, Creg
is given by Equation [5b]. Thus, for example, the common heritability
estimator based on the variance among S, lines is expected to equal:

52 2 4142 1 4+ a8
E[fzzl—E o ~ Ca+30p+D +2D, +0,,
f1 - 62 62 ) * 0'2 02
Gy + —FE 4 ZE Gi+%6§+Dl+%D2+ciA+ R
L e er |

(Nyquist 1991, Equation [86]). This is strictly correct only for predicting
immediate response, that is, growing remnant seed of only the selected
lines in new environments (Cockerham and Matzinger 1985; Fig. 2.2). The
presence of a subscript 1 on b, throughout in Nyquist (1991} implied
intercrossing to obtain the response unit. The symbolism of k? for self-
fertilizing populations in Nyquist (1991) was inadequate. Here, we sug-
gest the use of hy; for immediate response to selection. In general, the
covariance between selection unit and immediate response unit is Clea
which is the same as the covariance of relatives within the line, and has
the same expectation as the variance component due to lines. In this case,
the covariance between selection and response units is not doubled be-
cause each response unit is related to only one selection unit.
Cockerham and Matzinger (1985) refer to response to selection mea-
sured in completely homozygous lines developed by selfing without
selection from the selected lines as “permanent response” (Fig. 2.2).
We suggest the use of h, for heritability related to permanent response
to selection among self-fertilized families. The covariance between
selected family means and the response unit in this case is Cig = (1+F)0?,
+ (1 + 2F, + F)D, + (1/2)(F, + F)D% + (1 + F)*c%, (Cockerham and
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Matzinger 1985). The difference between the family variance component
(Cge) and the covariance between selected line means and their homozy-
gous selfed progeny (C,,..) can be easily observed in the tables given by
Cockerham (1983) or Nyquist (1991, p. 299). For example, the variance
among S, lines, as already given, is expected to be:

1
E(0%,) = Copn =05 + (%JG% + D, + (E)Dz + 0%

whereas the covariance between S, family means and their S, prog-
eny is expected to be:

3
Cor. = 04 + (3D, + (D% + 624 .

In all such cases, the additive genetic variance component is identical
in the family variance component and the covariance between selection
lines and progeny homozygous lines. Therefore, if the additive genetic
variance is the predominant component of genetic variance in the selec-
tion populations, then the heritability estimator based on the variance
component due to lines should be adequate to predict the permanent
response to selection (without intermating). If dominance variance or
any of the other variance or covariance components that involve domi-
nance are important, however, then the heritability estimator based on
the family variance component may inaccurately predict the perma-
nent response to selection. The regression coefficient of response units
on selection units involves the genetic component D,, which is a covari-
ance component, and may be negative or positive, resulting in an
upward or downward bias in the heritability estimate based on the fam-
ily variance component. In this case, estimating heritability appropri-
ately may require direct estimation of the covariance between a random
individual in the selection unit and a random individual in a homozy-
gous progeny line. -

As the selected lines become more inbred (being derived from more
generations of selfing from the last common ancestor), the differences
between the family variance component and the covariance of selection
units and homozygous progeny decrease. At the extreme, if highly
inbred lines are the selection units, then the variance component due to
lines (C,..) is equal to the covariance between the selection lines and
their selfed offspring (C,__), and the expected immediate and permanent
responses to selection are equal.

Cockerham and Matzinger (1985) also developed equations for the
expectations of responses to selection among inbred lines as measured
in outbred progenies (Fig. 2.2). They introduced the notation of Cigg for
the covariance between the selection units, which are Sy lines, and
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outbred progeny in the first generation developed from intermating
plants from selected lines. They also introduced the notation of Clgg. fOr
the covariance between the selection units, which are S, lines, and
outbred progeny in the equilibrium random-mated population devel-
oped from intermating plants from selected lines: C, .. = (1/2)[(1 + F Jo,
+ (F, + F,)D,). The two terms differ only by the inclusion of an epistatic
variance component in the response measured in the first randomly
mated generation: Gy = Gy + (1/4)(1 + F))?6% , (see Section V.A). This
covariance is doubled in the heritability function that will give the cor-
rect expected response to selection among S, lines as measured in out-
bred progeny because selection is practiced on both lines giving rise to
the outbred progeny:

A

ﬁ} _ 2C g _ (1+ F)6% +(F, + F,)D,
1 rs 2 ~ 2 '
C"gg * e + er

Note that, again, the coefficient of the additive variance in the numera-
tor of this heritability estimator is equal to the coefficient of the addi-
tive variance in the covariance of relatives within the line. Thus, if the
genetic variance for the trait is predominantly additive, the heritability
estimator based on the ratio of the variance component due to lines to
the phenotypic variance of line means should be appropriate.

Finally, what heritability function is appropriate for selection among
S;, lines developed from the initial population, followed by intermat-
ing the lines to form a new random-mated population, then deriving Sy
lines from the new population and measuring the response in these
inbred lines (Fig. 2.2)? The relevant covariance between selection and
response units for this situation has not been published to our knowl-
edge, but we can at least state that the additive portion of the covariance
will be equal to the additive portion of Ciyy @8 given previously.

In summary, in self-pollinated species, a commonly used estimator of
heritability is the ratio of the variance component due to inbred lines to
the phenotypic variance of inbred line means (Table 2.1, Sections 10 to
13). This estimator is exact only for immediate response to selection, that
is, the growing of remnant seed of selected lines in new (independent)
environments. This estimator does not exactly provide the expected
response to permanent selection (response as measured in highly homozy-
gous progeny developed by self-pollination without selection from the
selected lines) unless the selection units are already highly homozygous
lines, or unless the genetic variance is completely additive in nature. Nor
does this estimator provide the expected response to selection measured
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in outbred progenies developed from intermating selected lines, unless the
genetic variance is completely additive. The difficulty that this situation
presents is that the heritability function that is easily estimated may not
be useful for predicting response to selection in progeny types of interest,
whereas the appropriate heritability estimators for outbred progeny can-
not be easily obtained except by specialized and complex mating designs
or by direct estimation of the relevant covariance. We suggest that the
scope of inference for such heritability estimators be limited to immedi-
ate response unless sufficient evidence exists to broaden its scope of infer-
ence to permanent response or response in outbred progenies.

H. Heritability Corresponding to Selection among
Self-fertilized Half-sib and Full-sib Families

Burton and Carver (1993) derived expectations for response to selection
on the basis of self-fertilized progeny of half-sib and full-sib families
(HS-S, and FS-S, families). Including an additive-by-additive variance
component, the response to selection among HS-S, families is expected
to be:

. S(%Gj +ZD, +;ngcfm)

b

The response to selection among FS-S, families is expected to be:

7 2 7 49 2
_ S(EGA +',ED1 +—1§0-AA]

o}

Based on estimates of family variance components and phenotypic
variances of HS-S, and S, families in soybean (Glycine max) and FS-
S, and S, families in wheat, Burton and Carver (1993) suggested that
selection among FS-S, families would provide optimum response to
selection, despite the larger coefficient of additive genetic variance in the
numerator of the expected response to selection among S, ., families. The
reason for this was that more seed could be produced of FS-S, families,
permitting larger plot sizes and more replication of FS-S, than S, fam-
ilies, resulting in a reduction of the phenotypic variance among family
means that more than compensated for the reduction in genetic variance
in the numerator of the heritability equation. Holland et al. (2000) used
FS-S, families for recurrent selection in oat in order to obtain sufficient
seed to conduct replicated trials with three replications at each of five
locations and still conduct one cycle of selection per year.
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APPENDICES
SAS CODE FOR ESTIMATING HERITABILITY WITH REML

The SAS codes presented in the appendices and sample data sets for
which these examples were written are freely available on the Internet
at www4.ncsu.edu/~jholland/heritability.htrl. The symbol H is used for
h%in the codes due to limitations on typeset.

Appendix 1. Estimating Heritability from Multiple
Environments, One Replication per Environment

SAS version 8.0 code for estimating heritability and its standard for a
trait measured on one replication at multiple environments is given
here. As an example, we assumed that family means were based on data
from six independent environments. The equation for family heritabil-
ity on a plot basis from Table 2.1.13.A and the equation for family her-
itability on a mean basis from Table 2.1.13.B were used. Heritability on
a family-mean basis was approximated by setting e = 6 and r = 1 in this
example.

proc mixed asycov; class env geno; model trait = ; random
env geno;

ods listing exclude asycov covparm; ods output asycov =
covmat covparms = estmat;

proc iml;

start seh(Vv, C, LG, LP, H, SE};
Vp = LP *V;

d = (1/Vp)* (LG - (LP*H));
VH = d™*C*d;

SE = sqgrt (VH);

finish seh;

use estmat; read all into v; use covmat; read all into c:

* Note that SAS introduces an extra first column into the
matrix which must be removed;

C = C(|l:nrow(C), 2:ncol{C)]);

*order of variance components in v and ¢ matrices is o%,
., residual (=0%;);:

LG = {0, 1, 0};

LP = {0, 1, 1};
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call seh(v, ¢, LG, LP, H, SE);

print "Heritability on a Plot Basis", H, SE;

e = 6;

LP = 0//1//(1/e);

call seh(v, C, LG, LP, H, SE);

print "Heritability on a Family-Mean Basis", H, SE;
gquit; run;

Appendix 2. Estimating Heritability from Multiple
Environments, Several Replications per Environment

SAS version 8.0 code for estimating heritability and its standard error
for a trait measured on several replications at each of multiple environ-
ments is given here. As an example, we assumed that family means were
based on data from three replications within each of six independent
environments. The equation for family heritability on a plot basis from
Table 2.1.13.A and the equation for family heritability on a mean basis
from Table 2.1.13.B were used. Heritability on a family-mean basis was
approximated by setting e = 6 and r = 3 in this example.

proc mixed asycov; class env rep geno; model trait = ;
random env rep{env) geno env*geno;

ods listing exclude asycov covparm; ods output asycov =
covmat covparms = estmat;

proc iml;

gstart seh(Vv, ¢, LG, LP, H, SE};

Vp = LP™*V;

Vg = LG *V;

H = Vg/Vp;

d = (1/vp)* (LG - (LP*H));

VH = d~*C*d;

SE = sgrt(VH);

finish seh;

use estmat; read all into v; use covmat; read all into c¢;

* Note that SAS introduces an extra first column into the
C matrix which must be removed;

C = C{|1l:nrow(C}, 2:ncol(C)|);

*order of variance components in v and ¢ matrices is 0%,
02, 0%, 0%, residual;

LG = {0, 0, 1, 0, 0};

LP = {0, 0, 1, 1, 1};

call seh(v, C, LG, LP, H, 8E);

print "Heritability on a Plot Basis", H, SE;
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3;
= 6;
LP = 0//0//(1/e)// {1/ {e*r));

call seh(Vv, C, LG, LP, H, SE)};

print "Heritability on a Family-Mean Basisg", H, SE;

quit; run;

r
e

Appendix 3. Estimating Heritability in Multiple Populations
Grown in a Common Experiment

SAS version 8.0 code for estimating heritability and its standard error
within two different populations for a trait measured on several repli-
cations at each of multiple environments is given here. As an example,
the treatment design consists of equal number of genotypes from each
population randomly assigned to different sets, and the experimental
design is a replications-within-sets layout replicated three times within
each of four independent environments. The equation for family heri-
tability on a plot basis from Table 2.1.13.A and the equation for family
heritability on a mean basis from Table 2.1.13.B were used. Heritability
on a family-mean basis was approximated by setting e =4 and r= 3 in
this example. Unique family and family-by-environment interaction
variances are estimated for the two populations, but a common error
variance is assumed.

proc mixed asycov; classes env rep set geno pop;
model trait = pop;

random env set rep(env*set) pop*env set*env;
random geno{set) env*geno{set)/group = pop;
lsmeans pop/pdiff;

odg output asycov = covmat covparms = estmat;
run;

proc iml;
start seh(v,C,L&,LP,H,S8E);
Vp = LP™*V;

Vg = Lg™+*Vv;

H = Vg/Vp;

d = (1/Vp)* (LG - (Lp*H));
VH = d~*C*d;

SE = sqgrt{VH);

finish seh;
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use estmat; read all into v;use covmat; read all into ¢;

*Note that SAS introduces an extra first column intc the C
matrix which must be removed;

¢ = c(|1:nrow{C), 2:ncol(C)|);

*order of variance components in V and C matrices is o2
2 2 2 2 Eov?
2 2
Giger s CTRep ! oEnv*Pop ' cEnv*Set ! D-Geno {Set ) Popl”’ Oeno (Set}Pop2’

2 2 2 .
dEnV*Geno {Set) Popl/’ O-Env*Geno (Set) Pop2” t‘:rErrcn: -

*get heritability for first population;

*,c and LP vectors for Population 1;
¢ = {0,0,0,0,0,1,0,0,0,0};
LP = {0,0,0,0,0,1,0,1,0,1};

call seh(v,C,LG,LP,H,SE)};

print "Heritability on a Plot Basis - Population 1", H,
SE '

e =

’

Wk

r = 3;

Lp = 0//0//0//0//0//1//0//(1/e)//0//(1/(e*r)) ;print LP;

call seh(V,C,LG,LP,H,SE);

print "Heritability on a Family-Mean Basis - Population
v, H, SE;

*,G and LP vectors for Population 2;
LG = {Ololorolofolllololo};
Lp = {0,0,0,0,0,0,1,0,1,1};

call seh{Vv,C,LG,LP,H,SE);
print "Heritability on a Plot Basis - Population 2", H,

SE;
e = 4;
r = 3;

LP = 0//0//0//0//0//0//1//0// (L/e)// (1/(e*r));

call seh(V,C,LG,LP,H, SE);

print "Heritability on a Family-Mean Basis - Population
2", H, SE;

guit;

rur;
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Appendix 4. Estimating Heritability via Parent-Offspring
Regression and from Replicated Family Evaluations

SAS version 8.0 code for estimating heritability and its standard error for
a trait measured on parental and offspring genotypes in different envi-
ronments is given here. This code was used to analyze the following data
set: disease ratings were made on 140 F, (S,) parents (individual plants)
in Florida, 1991; disease ratings were made on two replications of 24-plant
row plots of all 140 self-fertilized progeny (F,, or S;,,) in North Carolina,
1991; disease ratings were made on two replications of 24-plant row plots
of a selected group of 52 S, progeny in North Carolina 1994. Holland et
al. (1998) used these data to estimate heritability from regression of 140
F,., means from the North Carolina, 1991, environment; from the ANOVA
of Sy, families grown in North Carolina, 1991, environment (biased by
family-by-environment interactions in numerator); and they estimated
repeatability unbiased by FE in the numerator using the selected set of 52
S;.; lines grown in both North Carolina, 1991 and 1994, environments.
Using mixed models approaches, a single estimator of heritability based
on the variance of all 140 S, families can be obtained, including the data
from some families in 1994 to remove FE bias from the numerator. The
equation for family heritability on a plot basis from Table 2.1.13.A and the
equation for family heritability on a mean basis from Table 2.1.13.B were
used. Heritability on a family-mean basis was approximated by setting e
equal to the harmonic mean of the number of environments in which each
family was evaluated (1.23) and setting er equal to the harmonic mean of
the number of plots in which each family was evaluated (2.42). In the same
analysis, the parent-offspring regression analysis can be performed to
obtain the heritability estimator with individual S, plants as the pheno-
typic variance using Equation [21]. Before implementing the mixed mod-
els analysis, ANOVAs were conducted to provide initial estimates of the
variance and covariance parameters to promote faster computation and
convergence on the maximum likelihood estimates. Initial parameter esti-
mates are specified in the “parms” statement in PROC MIXED. Multiple
random statements in PROC MIXED are used to permit modeling the G
matrix effects separately for different variance components. Variables
coding for the environment (“env”), the block within environment (“rep”),
the generation (“gen” = “F2” or “F3”), and the family number code are
associated with each observation.

proc mixed asycov; class env rep family gen;

model rust = ;

*the macroenvironment and block within environment effects
are treated as random variables each with a single
variance compecnent;
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random env rep{env) ;

*unique family - by - environment interaction variances
are modeled for the two different generations by using
the group option;

random family*env/group = gen;

*unique family wvariances are modeled for the two different
generations, and the covariance between families with
the same code is modeled by using the subject option and
specifying an unstructured covariance matrix and
specifying that each family has the same variance-
covariance structure;

random gen/subject=family type = un;

*unigue errxor variances are modeled for the two different
generations with the repeated command and group option;

repeated /group = gen;

* initial wvalues of variance-covariance parameters based
on the preliminary ANOVAs are introduced with the parms
command - in the order that effects are specified in the

2 2 2 2 2
random statements {0g, Oniz+ Orzisorr Ormis1) s O% o)+ Oarsa, sy ¢

O%i51yr Oiieoys Oasyy) - The variance components for GE and
Error within the F2 generation (0%i;., O.(,) are forced
to be zero with the hold option - this is necessary
because only one variance component is estimable in the
F2 generation, as data were taken on individual plants,
so the component 0., is actually the phenotypic
variance in the S, generation;

parmg (0.1451) (0.0057) (0) (0.146) (4.274) (2.5741)
(3.0086) (0) (0.7515)/ hold=3,8;

ods listing exclude asycov covparm; ods output asycov =
covmat covparms = esgstmat;

proc iml;

start seh(v, C, LG, LP, H, SE);
Vp = LP™*V;

Vg = LG *V;

H = Vg/Vp;

d = (1/Vp)* (LG - (LP*H));

VH = d™*C*d;

SE = sgrt(VH);

finish seh;

uge estmat; read all into v; use covmat; read all into c¢;
* Note that SAS introduces an extra first column into the
matrix which must be removed;
C = C(|l:nrow(C), 2:ncol{C)]);
*Note carefully the order of variance components in v and
2

; L2 2 2 2 2
¢ matrices:0z, Ozm . Opesoyr Oresnyr Frsorr Ociso,siy s Orisiye
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2 2 : :
Ociso)r Oes1y- The vector of variance components estimates

that is of interest for estimating heritability based on
$0:1 line variances includes only 6%, O%;4,, and
02, these are the 7%, 4'®, and 9" components of the V
and C matrices, respectively;

vo= v{[7T)//v4a]) /v e))

¢ =c{|{7 4 9}, {74 9}|);

LG = {1, 0, 0};

LP = {1, 1, 1};

call seh(V, C, LG, LP, H, SE);

print "Heritability on a Plot Basis", H, SE;

*the harmonic mean of the number of plots per S,.; family
is 2.42 and the number of environments in which each
family was tested is 1.23;

eh = 1.23;

ph = 2.42;

lp = 1//(1/eh}//(1/ph);

call seh(V, C, LG, LP, H, SE);

print "Heritability on a Family-Mean Basis", H, SE;

*now create a new pair of v and ¢ matrices to estimate
heritability from parent offspring regression. In this
case the variance components of interest are the 6" and
5%, respectively: Ogugg ey, and 0% ;

use estmat; read all into v; use covmat; read all into C;

v =v(|6]|)//v(]|5]);

C = C{|1l:nrow(C), 2:ncol(C)|);

c =c(|{e 5}, {6 5}|);

LG = {1, 0};

LP = {1, 1}:

call seh(V, C, LG, LP, H, SE);

print "Heritability from regression of S1 offspring on
individual parents", H, SE;

quit;

rum;
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