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9 Belowground costs: hydraulic conductance

EDWIN L. FISCUS

There are three traditionally recognized functions of root systems: an-
chorage, water absorption, and procurement of mineral nutrients. More
recently, production of growth regulators has been recognized as another
important root function. In terms of survival advantage, the extremely
high degrees of interaction and interdependence of these functions make
it impossible to state that any one is more important than any other, or
even that such a question really has any meaning. I shall confine my
remarks to the water absorption function and arbitrarily treat that func-
tion as the sole benefit derived by a plant from its root system. It should be
apparent, however, that because the other functions are also dependent on
system size, most of the growth analysis will be relevant to them as well.
Further, I shall not attempt a comprehensive review of this subject but
shall use data primarily from my own laboratory on Phaseolus vulgaris,
because similarly extensive data are difficult to find.

This chapter will be divided into two sections, the first dealing with root
conductance as the benefit, and the second dealing with the cost to the
plant of producing that water supply system. Specifically, the ultimate aim
of this chapter is to estimate the cost of a unit of hydraulic conductance.

Benefits

Theory of hydraulic conductance

It has long been recognized that the flux of a fluid through a
system (roots, pipes, etc.) can be described as the product of a driving force
and some sort of conductance. The simplest kind of system is one in which
the conductance is constant and the force—flux relationship passes
through the origin. Unfortunately, root systems are generally not that
simple. The main complicating factor arises because root systems accumu-
late solutes of various kinds at the expense of metabolic energy, thus
creating osmotic gradients within the system. The relationships between
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Figure 9.1. Total volume flux and instantaneous and differential resistance
functions for a typical Phaseolus root system. L, =4 X 10~" m s! MPa™};
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the osmotic gradient and the hydrostatic gradient, usually the major driv-
ing force, are flux-dependent, so that depending on particular circum-
stances, the two forces may aid or oppose each other. The result of these
interactions is a system with characteristics similar to those in Figure 9.1,
which shows conductance (not a conductance coefficient) directly related
to the flux rate. A great many problems arise in the interpretation of these
relationships that are directly traceable to inconsistent and imprecise use
of terminology, especially that related to conductance and resistance. For
example, in discussing pressure- or tension-driven radial flow through
roots, there are many ways in which the term “conductance” can be used
in a single flux equation. Throughout the rest of this section I shall attempt
to clarify this terminology and then discuss the interpretation of other
relevant transport coefficients to define more clearly the water transport
characteristics of a Phaseolus root system under different circumstances.

Water flow through whole root systems can be described adequately by
the model we proposed several years ago (Fiscus 1975). This model was
based on the well-known membrane transport relationship

Jo= L,(AP — oAlIl) (9.1)
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where J, is the volume flux in m® m~2 571, AP is the pressure difference in
MPa, AlIl is the osmotic pressure difference in MPa, ¢ is the reflection
coeflicient or the osmotic efficiency, and L, is the hydraulic conductance
coefficient of the system in m® m=2 s~! MPa™!. Please note that in order to
make comparisons with the previous literature, the numerical value of L,
asgiven hereis 0.1 times the value in cm® cm=2 s~ bar™!, a frequently used
set of units. Also, J,in m® m™2s71is 0.01 times the value in cm® cm™2 571,

The relationship between xylem tension, included in AP, and water
absorption is frequently nonlinear (Mees and Weatherley 1957; Lopu-
shinsky 1961, 1964; Kuiper and Kuiper 1974; Fiscus 1975; Fiscus and
Kramer 1975; Markhart et al. 1979; Sands et al. 1982). By examining the
osmotic component of the driving force, we can discover possible reasons
for the nonlinearity (Dalton et al. 1975; Fiscus 1975). If, for convenience,
we use the van’t Hoff approximation, we can write the osmotic difference
in equation (9.1) as

ATl = RT(C® — CY) 9.2)

where R is the gas constant, T'is the temperature in degrees Kelvin, and the
C’s are the concentrations of solutes in mol m™3 outside the root and inside
the xylem, respectively.

Animportant feature of equation (9.2) is that C*is an inverse function of
J»and a direct function of J,, the total solute transport rate, so that

C=J/J (9.3)

Therefore, C', as a component of the driving force, is itself determined by
the total volume flux.

We can further discover the roles of various solute transport compo-
nents by examining the total solute flux relationship

Jo=C(1 = 0)], + wAIl + J* (9.4)

Equation (9.4) separates the total solute flux into three components, con-
vective, diffusive, and active, each with its own distinctive coefficient.

Functional interpretation of parameters

The relationships in equations (9.1) and (9.4) were developed for
and strictly apply to single-membrane systems, which the root is almost
certainly not. And although we have repeatedly emphasized the opera-
tional interpretation of these relationships, some controversy has arisen
from my use of the coefficients. Perhaps it would have been better to have
altered them to indicate more clearly their functional nature when applied
to roots. Not having changed the notation in the past, I shall take some
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space here to clarify my use of these coefficients. Throughout, however,
remember that the transport of any substance in any system can be de-
scribed as the sum of the convective, diffusive, and active transport compo-
nents, whether or not a membrane is involved. So, even if the notation
were altered, the flux relationship would resemble equation (9.4) in form.

Convective solute flux. The C, term is usually taken as the average
concentration of solutes across the membrane, with the restriction that the
difference be small (Katchalsky and Curran 1974). Clearly, applying C, to
flow across a root can be very risky, because (1) the root is a multiple-mem-
brane system, (2) the concentration difference may be quite large, and (3)
it is only under special circumstances that we can expect to estimate with
any degree of reliability the actual concentration difference. For these
reasons, we found C, to be inappropriate for describing convective solute
fluxes through roots. We concluded that we really need a more functional
definition of the convective term, one that will tell us how much of the
external solutes are being conveyed to the root xylem as a result of being
dissolved in the water that is moving in that direction. Convection in an
open system can be described simply as the product of the volume flux and
the concentration. However, when the solution crosses a barrier that in
any way impedes the passage of one substance relative to the other, such as
a semipermeable membrane, then we need a coefficient to describe the
degree of retardation or filtration. The traditional reflection coefficient g,
just as it appears in equation (9.4), serves this purpose. But C, will now
logically be replaced by C° (Fiscus 1977), the external solute concentra-
tion, because we are interested only in how much of the solute passes the
barrier with the water. In this way, we need not worry about the specific
features of the barrier (or barriers) involved, but can describe it in terms of
a measured reflection coefficient. The first term in equation (9.4) will
therefore be altered to read C*(1 — 0)/,. Clearly, when ¢ = 1 there is no
convection, and when ¢ = 0 the solute flux will not be restricted to any
degree, an interpretation consistent with the development of the concept
of the reflection coefficient, but one that must be kept carefully in proper
context.

Diffusive and active solute flux. The diffusive and active compo-
nents of ] are also interpreted functionally, that is, as the sum of unknown
processes operating somewhere between the exterior of the root and the
xylem. J¥* can be further expanded both by the usual Michaelis— Menten
kinetics for isothermal conditions and by enlarging that treatment to span
a range of temperatures, because temperature is an important environ-
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mental variable affecting not only J¥ but also L, (Kramer 1942, 1948;
Kuiper 1964; Markhart et al. 1979). However, these enhancements to the
J¥ term are beyond the scope and purpose of this chapter.

The coefficient of solute mobility in the membrane, @, is in the nature of
a diffusion coefficient. As such, it, too, is expected to vary with tempera-
ture, both because of the Q,, for diffusion and because of temperature-
induced alterations in the fluidity of the cell membranes (Markhart et al.
1979; Markhart 1982).

Combined volume and solute flux
Substituting the modified equation (9.3) into equation (9.2) leads
to the result (Fiscus 1977)

ORT(J* — aC"],,)]
J.+ @RT

Jo= L,[AP + (9.5)
ForvaluesofL,, g, ] and w determined experimentally (Fiscus 1977), a
typical flow curve for a Phaseolus root system looks like Figure 9.1. Equa-
tion (9.5), from which Figure 9.1 is calculated, predicts several important
features of this force — flux relationship. First, the overall flux curve will be
nonlinear initially but will approach a limiting slope at high flow rates. This
type of relationship has been demonstrated repeatedly for Phaseolus
(Kuiper and Kuiper 1974; Fiscus 1975, 1977, 1981a), Glycine (Newman et
al. 1973; Markhart et al. 1979), Lycopersicon (Mees and Weatherley 1957;
Lopushinsky 1961, 1964), Zea and Helianthus (Newman et al. 1973; Boyer
1974), Brassica (Markhart et al. 1979), and Pinus (Sands et al. 1982). The
limit of the slope is L, actually 1 /L, in the case of Figure 9.1. This limit will
be discussed more fully later under the heading of the differential resis-
tance. The second prediction is that the intercept of the curve at AP = 0 is
largely determined by J¥ and is relatively insensitive to changes in L,. A
third and very important prediction is that extrapolation of the linear
portion of the curve back to the ordinate should result in an intercept
equal to 6*I1°. That this does not usually happen was pointed out (Newman
1976) and forms the basis of the only serious criticism of the model.

Intermediate osmotic compartment. We attempted to address
Newman’s criticism and decided that there were two possibilities that had
to be considered: (1) an external boundary-layer buildup that would in-
crease I1at the root surface above the value in the bulk solution and (2) an
intermediate compartment, although not with the characteristics he then
proposed, acting in opposition to the flow. We concluded that the former
explanation was unsatisfactory because the linear portion of the J,~AP
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curve typically continued linearly up to at least 0.7 MPa (unpublished
data). If boundary-layer buildup were a problem, we would expect to
reach a point of diminishing slope long before that level of force (or flux: .
J» =20 X 1078 m s7!). The most likely explanation, at this time, involves
an intermediate compartment, some of the characteristics of which we
discovered while searching for explanations for certain growth regulator
effects. We were able to show that a pool of solutes existed in Phaseolus
roots that could be mobilized by abscisic acid (ABA) treatment (Fiscus
1981a). There appeared, in fact, to be two pools of sequestered solutes
(Fiscus 1983), one of which, possibly the cytoplasm, had an ABA mobiliza-
tion threshold at or below 1071 mol ABA cm™ root surface, and the
other, possibly the vacuole, with a threshold of 10~7 mol ABA cm™2. The
details of these pools are not essential now, but the important feature
observed was that when the ABA treatments occurred and the pools of
solutes were mobilized, there was a simultaneous increase in volume flux in
proportion to the amount by which the expected intercept (just discussed)
and the measured intercept differed. Thus, it appeared that the low-
threshold pool was acting in opposition to the pressure-induced flow, and
when that pool was mobilized, the entire J.-AP curve was shifted by an
amount that made it conform to Newman'’s intercept test. It appears, then,
that there is an intermediate compartment between the root surface and
the xylem containing normally nonmobile solutes that are asymmetrically
distributed toward the interior of the root. This pool of solutes must be of a
relatively stable size, because the intercept does not appear to shift much
during the course of an experiment in which ABA is not involved. The
implications of this for the model are quite simply that equation (9.5) will
require that the bulk external osmotic pressure be replaced by an effective
pressure (Fiscus 1977). Also, bearing in mind our discussion of the reflec-
tion coefficient, we shall need to use the actual bulk osmotic pressure when
calculating that parameter from the limiting internal concentration as J,
approaches infinity (Fiscus 1977). Making these interpretational adjust-
ments to equation (9.5) brings it very closely into line with experiment.

High fluxes and steady states. Finally, there are two very impor-
tant points relating to the experimental determination of the parameters
in equation (9.5): Almost all parameters need to be determined at high
fluxes (Fiscus 1975, 1977, 1983; Markhart et al. 1979) and under steady-
state conditions. It is only at high fluxes that we can expect to minimize
artifacts that are largely due to our inability to determine concentrations
deep within the root. Also, it is only at the steady states of volume and
solute fluxes that we can minimize other artifacts, particularly hysteresis
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effects (Kuiper and Kuiper 1974; Fiscus 1977) that are due to loading and
unloading of solutes from the tissues adjacent to the conducting pathway.
Because the exchange of ions between these tissues is slow, it may take
several hours and a total volume turnover of 10 times (Markhart 1982;
Fiscus 1983) to bring a root system to the steady state with respect to both
fluxes.

Comparison of L, values. Another question that is frequently
raised concerning the model is how our solution-grown root systems com-
pare with those grown in soil. Certainly they differ in appearance, the
solution-grown ones being somewhat thinner and of a more uniform diam-
eter. Functionally, however, as nearly as we can tell, with regard to their
water conduction characteristics they act very much the same. The evi-
dence for this is currently derived by comparison with the literature and is
indirect. Conductance values calculated for soil-grown plants from data in
the literature reveal that Phaseolus, Glycine, Helianthus, Zea, and Gossypium
all fall within the same range: 0.8 X 1077t0 6.1 X 10~7 m® m~2 s™! MPa™!
(Fiscus 1983). This is the entire range of values previously observed (Fiscus
and Markhart 1979) for solution-grown Phaseolus. Another opportunity
for comparison comes from a recent article (Fiscus et al. 1983) in which we
estimated L, in a model system designed to explain some peculiarities of
whole-plant water transport reported by many authors. We estimated L, as
4.3X 107 m? m2s~! MPa™}, a value that with minor refinements will
provide a good fit to the whole-plant data (Boyer 1974) on which the
estimates are based.

In addition to these comparisons there are theoretical reasons for believ-
ing that L, values determined in a root-system pressure chamber are more
realistic than those determined by osmotic methods or at low flux rates.
The main reason for this is that the effects of both the intermediate os-
motic compartment and any standing gradients in the system may be
minimized at high fluxes. The real problem that we are trying to overcome
at high fluxes is our ignorance of the axial distribution of the major param-
eters of the model. However, the experimental approach we use allows us
to conclude that the values of L, measured in the pressure chamber are
accurate and relevant to whole-plant water flow models.

Differential resistance

Given that we can determine reliable values of L, and can show
how these values vary as the plant grows (Fiscus and Markhart 1979), we
still have the problem of relating L, to whole-plant water flow or whole-
plant or even organ resistance or conductance. We would also like to relate
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the various plant organ conductances and resistances to each other and to
an overall plant conductance or resistance.

In a recent article, we discussed the concepts of instantaneous and dif-
ferential resistances and conductances (Fiscus 1983) and concluded that
the instantaneous concept, based on the Ohm’s law analogy, was not of
very great utility in dealing with plant water flow. These concepts differ in
that the instantaneous resistance (based on a misinterpretation of Ohm’s
law) is simply the ratio of the force to the corresponding flux, whereas the
differential resistance is the slope of the force-flux curve. For a system in
which the force - flux relationship is linear and passes through the origin,
these two concepts are interchangeable. However, many plant transport
systems are not linear in nature, and their force —flux relationships do not
pass through the origin. Figure 9.1 provides a useful example of how these
concepts compare. The three curves on the graph are the volume flux, J,,
the differential resistance, R;, and the instantaneous resistance, R;. It is
clear from examining the two resistance curves that experimental inter-
pretation can vary considerably depending on which concept is used. In
the one case (R;), the resistance is seen to increase with the flux to a peak,
after which point it decreases, slowly approaching the actual slope of the
curve as a limit. Because we have some intuitive notion about the meaning
of the word “resistance,” we might spend considerable time and effort
searching for the cause of this outrageous behavior. In the other case (R,),
however, the resistance is seen to decrease continuously with increasing
flow. In this instance, however, we can immediately discover the cause of
the resistance change by examining the transport function and its deriva-
tive. For example, solving equation (9.5) for AP gives us

Ap = Jo _ ORT{J¥ — oC'],)
L, J.+ oRT

(9.6)

which describes the force—flux curve in Figure 9.1. The slope of this
curve, the differential resistance, is
_dAP 1 | oRT(J¥ + owIP)

Re= g, =L, T, ¥ orTE ©.7)

which is the curve labeled R, inFigure 9.1. Immediately from equation
(9.7) we can see that the hydraulic conductance coefficient L, is only part of
the resistance term, which is seen to decrease toward 1/L,asa limit while
the volume flux increases.

At this point it may be useful to recap the various uses of the terms
“resistance,” “‘resistivity,”” ‘“‘conductance,” and “‘conductivity.” We have
described briefly the instantaneous and differential resistances, and by the

9 <
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same reasoning there must also be differential and instantaneous conduc-
tances. Also, there is the hydraulic conductance coefficient L,, which when
applied to root systems may be modified, depending on which root dimen-
sion we want to relate to the water flux. Any of the dimensions may be
useful under different conditions, and they are equally correct as long as
they are clearly defined. Thus, we can with equal validity have a flow based
on unit area, unit length, or even unit volume if we wish. The real problem
arises when the concepts are mixed indiscriminantly, such as measuring
the instantaneous resistance and then equating it with 1/L,, however
defined.

Also from equation (9.7) we can draw some inferences about how R,
might vary with changes in all the parameters of the equation. The equa-
tion does in fact suggest which parameters might be most profitably manip-
ulated to achieve some desired end. For instance, in the past it was com-
mon practice to use natural root-pressure exudation rates (AP = 0) to
determine L, values. Notwithstanding the standing gradient effects, it is
easy to show (Fiscus 1975, 1977, 1981a) that the volume flux rates in such
a system are determined almost entirely by /¥ and should be very insensi-
tive to changes in L, over a wide range.

Without belaboring the point any further, we can conclude this section
by stating that in addition to providing us with experimentally testable
hypotheses, the differential resistance concept also provides a common
link that joins transport processes throughout the whole plant (Fiscus et al.
1983) and allows a unified physical treatment of diffusive, convective, and
active transport processes in the liquid and vapor phases of the entire
system.

Having defined the various kinds of conductances and resistances and
briefly indicated their use, we shall now make some estimates concerning
the cost to the plant of producing these facilities for water uptake and
transport.

Costs

In earlier work we found that the Phaseolus root system could be
divided into four very distinctive size classes according to external diame-
ter (Fiscus 1981b). The variability in diameters was such that there was
practically no overlap between the size classes, and it became a relatively
easy, though tedious, task to measure the contribution of each class to the
total root surface area. We also found that once the plants had reached a
size of about 0.1 m? total root area, the proportions of the various size
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classes remained relatively constant. Because of this constancy, we were
able to use average values for plants larger than 0.1 m? for many of our
calculations and for some purposes will continue to do so here.

Growth model

Growth of the projected leaf area, the area of each root size class,
and the total root area can be described by an exponential sigmoid func-
tion of the form

a

A=TT o

(m?) 9.8)

where ¢ is the time in days, a is the maximum area, and 4 and » are growth
coefficients given in Table 9.1. Although we used a simple power function
in previous work, it is not generally considered a good growth model
because it does not account for maturity and senescence effects. So we
replace the power function with equation (9.8) and fit our previous data
(Fiscus 1981Db) to that function.

Although the root surface area is the geometric parameter we think
most relevant to determining rates of water absorption, accounting for the
energy necessary to produce that surface area requires some relationship
between rates of dry-matter and surface-area accumulation. We can start
with the fundamental relationships

M= pV and V= ATd 9.9)
where M is the dry matter in g, p is the dry weight (DW) density in g dry
matter [cm3 fresh volume]™!, Vis the volume in cm3, A is the surface area in
cm?, and d is the mean diameter for each root class or for the whole root
system in cm. Values for p and d are taken from previous work (Fiscus
1981b). Combining relationships (9.8) and (9.9), we get for M, in g, as a
function of time,

M= =51 +oem) (9.10)

and for the rate of dry-matter accumulation,

M pdabne™
—_— 1
dt 4(1 + be)? ©.11)
in g DW day™.

From the relationships (9.9), simple geometry allows us to form the
area/dry-matter ratio

A/M=4/pd 9.12)
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Table 9.1. Geometric dimensions and energy and mass relationships for solution-grown
Phaseolus root systems®

Size Diameter A/M % of A/E,

class (cm) (cm?g™) class1 (cm?kf™) a b n r?

1 0.0245 1458 100 91.1 0.560 130 —0.15 0.98
2 0.0540 661 45.3 41.3 0.155* 80 —0.13 0.89
3 0.0831 430 27.5 26.9 0.108®° 30 —0.10 0.92
4 0.1159 308 21.1 19.2 0.128 20 —0.07 0.61
Total 0.0311 1148 78.7 71.7 0.90 85 —0.13 0.97
Leaf area (m?) 0.79 125 —0.15 0.96

¢ The average energy content of the dry matter is 16.01 kJ [g DW]!. Note that the coeffi-
cients a, b, and n give the areas in m2.

® Coefficients b and n were fitted for a value of a picked to be consistent with the size class
proportions discovered earlier (Fiscus and Markhart 1979).

which allows us easily to see that the smallest size class makes by far the
most efficient use of dry matter in the production of surface area. The
figures for each size class and the total are summarized in Table 9.1, where
for purposes of comparison the A/M ratios are given as percentages of
class 1 roots.

Required energy. To obtain an estimate of the total energy re-
quired to build and maintain the root water transport capacity for the
plant, we must consider three factors: the energy content of the building
blocks (E,), the energy required to assemble them into cellular structures
and to drive cell expansion (growth respiration, R,), and the energy re-
quired to maintain the structures (maintenance respiration, R,,). Several
assumptions and extrapolations are necessary to sort out these various
components of energy input. As a starting point we shall assume a constant
rate of maintenance respiration equal to 319 J [g DW]™! day™! (Penning
de Vries 1975a) (equal to 20 mg glucose [g DW]™! day~!). Given R,, and
assuming that R, (J [g DW]™! day™!) is also constant, we can estimate a
value for R, from Figure 9.2. This figure is the oxygen consumption rate
for an entire Phaseolus root system measured diurnally at approximate
hourly intervals. An estimate of the integral over 24 hr divided by time
provides us with an average for the total respiration rate for this period,
assuming a respiratory quotient of 1. Calculations based on this figure are
given in Table 9.2, where the most significant number for our purposes
is R,.

Now we shall turn our attention to the energy content of the assembled
structures. To do so requires some assumptions about the proportions of
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Figure 9.2. Diurnal changes in respiration rate for an entire Phaseolus root
system. The plant was 18 days old, with a leaf area of 0.14 m? at the beginning
of the experiment.

proteins, lipids, and carbohydrates in the tissues. Because most plant vege-
tative tissues are composed of 1% to 5% nitrogen (Bonner and Galston
1952), we assume a value of 3%, and that this is mostly protein, which on
average is 16% N. This gives us a protein content of about 19% of the dry
weight. Lipids generally compose 5% or less of the dry weight of vegetative
organs (Bonner and Galston 1952), and so we also choose an average value
of 3% for that component. Mineral ions may compose a further 5% of the
dry weight but will be considered to be an integral part of the system and as
such not possessed of structural energy in the same sense as we are consid-
ering the other components. The remainder of the dry weight (73%) is
assumed to be carbohydrate.

Table 9.3 summarizes calculations of the average energy content of the
dry matter based on standard bomb-calorimeter combustion values for
lipid, protein, and carbohydrate (White et al. 1959) and the foregoing
assumptions regarding composition.

Because part of the growth energy finds its way into the structure of the
system in the form of chemical bonds, linking carbohydrate and protein
subunits, for example, we must somehow account for the relationship
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Table 9.2. Respiratory components and other relevant data for the Phaseolus root system used in
Figure 9.1

Total glucose

equivalents
(mg) Energy
Total consumed 2.61 X 1072 mol O, 78.4 1,249
Dry weight 0.88¢g
dM/dt 0.109 g day™*
Respiration 20 mg glucose
(maintenance) (R,,) [g DW]! day! 17.6 319 ] [g DW] ! day™!
Respiration 558 mg glucose
(growth) (R,) [g DW]! 60.8 8,888 J [g DWI!

between the energy contents of the building blocks and the final structure
and the respiratory energy necessary to assemble the components. To this
end we can start by expressing the total energy of the system (E,) as

E,=E,+E, (9.13)

where E, is the energy incorporated into the structure during assembly of
the building blocks, and E, is the energy content of the building blocks.

As a first attempt to separate these components we shall examine the
situation with regard to the carbohydrates, because they constitute the
largest percentage of the dry matter, and specifically we shall examine
cellulose, because that is frequently the largest carbohydrate component
present.

Taking the combustion value for glucose as 15.69 k] g~ and that of
cellulose as 17.58 k] g~! (Crampton and Lloyd 1959), we can see an in-
crease in energy of the cellulose over the glucose building blocks of 1.9 k]
g~! or about 12%. We shall now proceed under the assumption that a
similar figure applies to assembly of the lipid and protein components.
This may not be an especially good assumption, but the proportions of
lipid and protein are relatively small compared with carbohydrate, and so
the error may be minor.

Although the 1.9 kJ g! just calculated for E, is energy we may measure
as part of E, in order to separate it from the respiratory energy expendi-
tures from whence it came we must subtract it from E, and deal only with E,
when further considering rates of energy incorporation into dry matter.
That is, E, isaccounted as part of R, rather than as part of E,. Leaving E, as
a part of E,, for accounting purposes, would require that we know the
efficiency of incorporation of respiratory energy into dry matter. Al-
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Table 9.3. Assumed composition and energy content for typical vegetative tissues

Tissue energy

Combustion value content
Component Fraction kJ g™ (k] [g DWT™})
Protein » 0.19 22.18 4.21
Lipids 0.03 38.92 1.17
Minerals 0.05
Carbohydrates 0.73 17.16 12.53
Total 1.00 (E) 17.91

though the latter approach to the problem is just as viable, we choose the
former as being more convenient at this time.

Carrying out the calculation indicated by equation (9.13) gives us an
energy value of 16.01 k] [g DW]™? for the building blocks (E,). It is of
interest to note that this value is within 2% of the energy value for glucose
and within 2% of the average energy value for plant dry matter cited by
Gates (1980). This fact may or may not be strictly fortuitous, but in any
case this was the number used to calculate A/E, in Table 9.1.

Direct PAR. Finally, we shall compare the energy required for the
establishment and functioning of a root system to the total amount of
radiant energy, in the form of direct PAR, available to (incident on) the
plant. For simplicity we shall consider only the direct radiation and leave as
an exercise for the reader the more refined calculations.

Measurements of the projected canopy area provide us with a good
measure of the leaf area exposed to direct radiation. Figure 9.3 is a plot of
the relationship between the shadow area of the canopy and the total
projected leaf area for a small population of plants covering the range of
sizes of interest to us. The linear correlation is quite good, especially for
plants larger than 0.1 m?, so that the area exposed to direct radiation at
any time can be calculated by combining the equation for Figure 9.3 and
equation (9.8) to yield

ma

1 + be™

where A, is the shadow area (leaf area exposed to direct radiation), kand m
are the intercept and slope, respectively, in Figure 9.3, and a and b are as
before.

The daily average integral of the light intensity for the relevant green-

Ap=*k+ (9.14)
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Figure 9.3. Measured canopy shadow area as a function of total projected leaf
area used to calculate the direct radiation. Ap=k+mA; k=4.603 X 1078;
m=3.319 X 1071; 4, is given by equation (9.8).

house growth conditions was 12.4 * 1.5 mol m™2; about 20% of the out-
door summertime maximum for this location. Using the conversion factor
of 4.6 yumol m™2 s~ of PAR = 1 watt m~2?(Biggs and Hansen 1979) yields
an average daily energy incident on the leaves of 2.7 MJ m™2. The total
energy incident on the plant in the form of direct PAR in MJ day™! is the
product of this figure and the leaf area exposed to direct radiation:

dE;

—' = Ap(2.7 MJ m2 day™) (9.15)

Efficiency of energy use. The efficiency with which direct radia-
tion is used to form a root system can be defined as the ratio of the rate of
energy incident on the leaves (dE;/d?) to the rate of total energy usage by
the root system (dE;/dt). In this sense, Ey is the total of the energy of the
building blocks used to make the system (E,), the growth energy required
to assemble those blocks into roots (R,), and the energy necessary to main-
tain the existing system (R,,). We can therefore write for the daily rate of
energy use

dE; _dM . _dM
Iop = +RE+ 16
dt E, dt + Ry dt R.M (9.16)
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Figure 9.4. Proportions of the energy content and growth and maintenance
energy expenditures as functions of plant age as calculated from equation
(9.16). B: E, (dM/d1). G: R, (dM/d?). M: R, M.

Rearrangement and substitution of equation (9.10) for M and equation
(9.11) for dM/dt gives the total daily rate of energy consumption by the
root system as

dEy _ _ pdabne™ +
dt 41+ be2 |

where R, and R,, are the growth and maintenance respiratory coefficients
given in Table 9.2.

The three components of equation (9.16) were calculated and plotted in
Figure 9.4. The first term, dE,/dt, is the rate of incorporation of new
material into the roots and is the product of the rate of dry-matter increase
and the average energy content of that dry matter (Table 9.1). Term two is
the energy required to assemble the dry matter into root tissue and con-

(9.17)

_ Ry(1 +be)
RK bn ent ]
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Figure 9.5. Partitioning of total respiratory energy use between growth (G)
and maintenance (M).

tains the growth respiratory coefficient and the rate of increase of dry
matter. Finally, the third term is the energy required to maintain the
existing system and is the product of the maintenance respiratory coeffi-
cient and the quantity of dry matter present at any time.

As expected, the energies of the building blocks and the growth compo-
nent decline as the plant approaches maturity. Maintenance energy, how-
ever, continues to increase, approaching a plateau of about 2.5 kJ day™!.
As a proportion of the total energy use by the roots, maintenance goes
from about 10% during early growth to about 50% at day 50.

The calculated growth and maintenance components are broken out for
comparison with each other in Figure 9.5.

Now we can form the efficiency ratio (dE;/dE,) simply by dividing
equation (9.17) by equation (9.15). Figure 9.6 is a plot of both the compo-
nents and the efficiency, which is seen to range from about 0.5% to a little
over 3%, with an arithmetic mean of 2.2 + 0.8%.

Cost of conductance

The final point we are now able to address is the question of the
energy cost per unit of total root-system conductance. Because the differ-
ential conductance (Fiscus 1983) varies with the flow rate, we shall exam-
ine only the average hydraulic conductance coefficient (Lg). Ly is the
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Figure 9.6. Rates of direct-radiation input (dE;/df) and total energy usage by
the root system (dE;/dt) and the ratio of the two (efficiency).

product of the hydraulic conductance (L,) and the root surface area. The
units of L, are m® s™! MPa™!, and the curve in Figure 9.7 was constructed
from previous data (Fiscus and Markhart 1979).

The conductance of the root system changes with time, but at any
particular time its value is related to the energy expended to build and
maintain the system up until that time. For this reason we have chosen the
integral of the daily rate of energy usage (dE;/dt)as the appropriate figure
to compare with Lg. The integral can be formed from equation (9.17) and
is

__ pda nty .
ET—4(1+bem) [E,,+Rg+R,,,(1+be )
(t - M) ] +C (K] ' (9.18)

where C, the integration constant, is —87.93 k]. For curiosity’s sake, the
direct-radiation integral can be formed from equation (9.15),

E,=2,700 [k + ma(t - M)] +C  (k]) (9.19)

where C is —22.8 M]J.

The ratios of equations (9.18) and (9.19) to L, were formed and plotted
in Figure 9.8 as functions of plant age. Both functions are seen to cycle,
starting out high, because the early conductance is so low, reaching a
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Figure 9.8. Cumulative energy input per unit of conductance. Energy is given
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Even if we include the aboveground portions, which in this case constitute
the other three-fourths of the plant dry matter (fractional dry weight of
roots:stems:leaves = 0.222:0.226:0.552), the total efficiency, as de-
fined earlier, will still average only about 9%. If we accept the assumption
that leaves not receiving direct radiation produce adequate photosynthate
to meet the demands of maintenance respiration (Tanner and Sinclair
1983), then the efficiency of use of direct radiation will fall even more.
Our assumptions about root composition may be erroneous, but it seems
unlikely that the values will be too far wrong. Direct comparisons are
difficult, but previously published compositions of leaf material (Penning
de Vries 1975b) give us cause for optimism. The composition given is 256%
nitrogenous compounds, 66.5% carbohydrates, 2.5% lipids, and 6% for
minerals and lignin. The respective estimates for the root composition
givenin Table 9.3 are 19%, 73%, 3%, and 5% for minerals. Later Kjeldahl
analysis on plants grown under similar conditions showed 3.04%, 2.50%,
and 3.96% Kjeldahl N in the roots, stems, and leaves, respectively. These
values work out to 19%, 15.6%, and 24.8% protein. The 19% value for
roots is exactly what we estimated, and the 24.8% for the leaves is very
close to the value given by Penning de Vries. We think that the nearly 6.5%
difference between his value for leaf carbohydrate and our estimate for
root carbohydrate is very nearly balanced by the almost 6% difference
between the root and leaf percentage protein compositions shown by



Belowground costs: hydraulic conductance 295

75

°Q

© 501

x

;?‘ EB /LR
£

o

©

o

2

3 25- Eg/LR

Em/LR
O T ¥ ¥ L] T
0 10 20 30 40 50

Age (Days)

Figure 9.9. Cumulative energy input per unit of conductance broken down
into construction materials (Ep), growth energy (E¢), and maintenance energy
(Ey)- Means and standard deviations are Ep/Ly = 4.76 X 108 & 1.84 X 108;
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Kjeldahl analysis. We therefore believe that our estimates of composition,
no matter how crudely derived, are reasonable.

Our assumption about the value of R,, may also prove erroneous, but it
and the resulting value of R, determined from experiment are not out of
line with those of other workers (Evans 1975). It is more likely, however,
that our assumption of their constancy will prove false.

Water and nutrient absorption and transport are inextricable. How-
ever, one might just as easily choose to view the root system as though its
main function were nutrient uptake and everything else merely a conse-
quence of that function. The energy actually expended to extract nu-
trients from the soil is included in R,, (Penning de Vries 1975a) and consti-
tutes about 15% of R,, in the case of our plants. Therefore, nutrient uptake
constitutes only 1-2% of the total energy used by the root system until
growth begins to decline (Figure 9.4). Of course, the apparatus of extrac-
tion must exist, and so all the growth-related expenditures should be
included in the cost of extracting nutrients from the soil.
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Table 9.4. Average integrals from Figures 9.8 and 9.9 given in various units®

Units Er/Ln Es/Lg Ec/Ln Ep/La

k] MPa s m™3 8.5 X 108 4.76 X 108 2.64 X 108 1.08 X 108
mg glucose MPa s cm™3 5.42 X 10* 3.03 X 10* 1.68 X 10* 6.88 X 10®
g DW MPascm™ 53.1 29.7 16.5 6.7

@ Values used for conversions were 15.69 k] g™! glucose and 16.01 k] g™! DW.

Considering the quantities of plant growth regulators formed in the
roots, the energy expenditures specifically involved in those activities are
probably negligible.

The function of anchorage is a much more slippery proposition to ana-
lyze. In some respects, anchorage might be viewed as a secondary benefit
deriving from the plant’s water- and nutrient-extracting activities. Sec-
ondary growth necessary for support and anchorage of larger plants may
simply be the consequence of generating a water supply system adequate to
meet the needs of the foliage. However, the existence of the additional
root functions of support, nutrient uptake, and hormone secretion means
that our estimate of the direct cost of the hydraulic conductance may be an
upper limit for the actual cost, because the costs of the other functions have
been included.

In short, no matter how we choose to view the root system functionally,
the cost of building and maintaining it will be the same.
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