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Abstract:
and antiproliferative properties. The objective of this study was to chemically optimize a process for extracting proteins

Proteins isolated from sweet potatoes (Ipomoea batatas) have been shown to possess antidiabetic, antioxidant,

from sweet potato peel. The extraction procedure involved mixing peel with saline solvent to dissolve proteins and then
precipitating with CaCl,. Quadratic and segmented models were used to determine the optimum NaCl concentration
and peel to solvent ratio to maximize protein solubility while minimizing solvent usage. A segmented model was also
used to optimize the concentration of CaCl, used for precipitation. The highest yield was obtained by mixing blanched
peelings with 59.7 mL of 0.025 mM NaCl per g peel and then precipitating with 6.8 mM CaCl,. The results of this
study show that potentially valuable proteins can be extracted from peel generated during processing of sweet potatoes

and industrial costs can be minimized by using these optimum conditions.

Keywords: extraction, model, optimization, protein, sweet potato

Practical Application:
potato processing.

Potentially valuable proteins can be extracted from sweet potato peel, a waste product of sweet

Introduction

Sweet potato (Ipomoea batatas) proteins possess many properties
beneficial to human health. Caiapo Potato powder, a protein ex-
tract from a white-skinned sweet potato cultivar, lowered fasting
blood glucose levels and increased insulin sensitivity in type II di-
abetics (Ludvik and others 2003, 2004, 2008; Kusano and others
2005). A 22 kDa acidic glycoprotein (Kusano and others 2001)
and a 126.8 kDa arabinogalactan-protein (Ozaki and others 2010)
have been proposed as the active components of Caiapo Potato
powder. Sweet potato trypsin inhibitor proteins (TIP) possess an-
tioxidant properties against several reactive oxidizing species (Hou
and others 2001; Huang and others 2007b). Feeding sweet potato
TIP to mice increased serum superoxide dismutase, catalase, and
glutathione peroxidase activity (Huang and others 2008). Sweet
potato TIP also showed antiproliferative properties, inhibiting the
growth of NB4 promyeolcytic leukemia cells (Huang and others
2007a). In addition to these nutritional benefits, sweet potato pro-
teins have high water solubility and stabilize emulsions over a wide
pH range (Mu and others 2009).

Various solvents have been used to extract proteins from root
and tuber crops. Homogenization with 0.02 M sodium phosphate
buffer containing 0.3 M NaCl maximized extraction of alpha-
amylase inhibitory proteins from taro sweet potatoes (Rekha and
others 1997, 1999). Shivaraj and others (1979) used distilled wa-
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ter to extract alpha-amylase inhibitory proteins from sweet pota-
toes, and Purcell and others (1978) and Walter and Catignani
(1981) also started their protein extractions by blending with water.
Kusano and others (2001) and Ozaki and others (2010) also began
their process to isolate the protein responsible for the antidiabetic
properties of sweet potatoes by mixing with distilled water. Few
researchers have compared solvents. Previous research in our labo-
ratory (Peters 2007) found greater protein yield when sweet potato
proteins were extracted in a 3 M NaCl and 50 mM NaHPO,
buffer than extraction in distilled water. Subsequently we have
determined the phosphate is not essential for the highest protein
yield.

Various techniques can precipitate the extracted sweet potato
proteins from solution. Purcell and others (1978) employed both
heat treatment and 0.5% CaCl, while Walter and Catignani (1981)
used heat treatment and 0.1% CaCl, to precipitate sweet potato
proteins. Peters (2007) found equivalent efficiency of precipitation
of sweet potato proteins from solution with CaCl, and ammonium
sulfate but did not determine optimum CaCl, concentration to
precipitate the maximum amount of protein. Other techniques
available to precipitate proteins include heat denaturation and iso-
electric precipitation with acids, but both of these are likely to
destroy bioactive functions of protein.

Sweet potato peel generated during the processing of sweet
potatoes into puree currently has little market value, but is a good
source for protein extraction. The objective of this research was
to chemically optimize the process for extracting proteins from
sweet potato peel. Proteins were dissolved by mixing peel with
saline solvent and then precipitated with CaCl,. Response surface
methodology was a less effective optimization technique than a lin-
ear segmented model of the solvent to peel ratio data. A quadratic
model was used to determine the optimum NaCl concentration
to maximize protein solubility. A linear segmented model was also
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used to optimize the concentration of CaCl, used for precipi-
tation. After the optimum conditions for extraction were deter-
mined, sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) was used to visualize the proteins present in the
extract and compare the extract to Caiapo Potato powder.

Materials and Methods

Chemicals and materials

Sodium chloride and calcium chloride were obtained from
Sigma-Aldrich (St. Louis, Mo., U.S.A.). Sweet potato peel was
obtained from a local processing plant (Yamco, LLC, Snow Hill,
N.C., US.A.). Peel was from a mixture of orange-fleshed cultivars
including Beauregard, Jewel, and Covington. Peel was obtained
from 2 different points along the processing line, the initial peel-
ing of the sweet potatoes before any further processing, called
“primary peelings” and a secondary peeling after blanching of the
sweet potatoes, called “secondary peelings.” Upon receipt, the
primary and secondary peelings were freeze dried and stored at
—20 °C. Caiapo Potato powder was obtained from Fuji-Sangyo
Co., Ltd. (Kagawa, Japan).

Protein extraction

Proteins were extracted by mixing primary peelings or sec-
ondary peelings with saline solvent, centrifuging the mixture at
1000 x g for 5 min, and then vacuum filtering the supernatant
through Whatman 4 filter paper. Proteins were precipitated from
the supernatant by adding calcium chloride, vortexing for 10 s,
incubating for 15 min at either 25, 65, or 95 °C, and then cen-
trifuging at 1000 x ¢ for 10 min to obtain a protein pellet. The
quantity of protein precipitated was calculated by subtracting pro-
tein in the supernatant after precipitation from protein in the
supernatant before precipitation.

Protein and calcium analysis

Protein in liquid samples was determined using Bradford assay
(Thermo Fisher Scientific, Rockford, Ill., U.S.A.). Protein in solid
samples was determined using the Kjeldahl method with 6.25 as
the conversion factor. Calcium in the precipitate was measured
by atomic absorption and the iodine-binding method was used to
determine if starch was present in the precipitate.

Determining optimum conditions for protein extraction

The results on protein extraction as affected by concentration of
NaCl were fit to a linear segmented model using SAS 2011 (SAS,
Cary, N.C,, US.A.). The Eq. (1) was

if x<§@6

if x>0

y =m*x + by and

1
y = m2*0 + b @
where y = protein extracted (mg), m = slope, x = solvent (mL),
b = y-intercept, and 6 = join point. The values obtained for
protein extracted and join point were then fit to a quadratic model
using SAS 2011 (SAS). The Eq. (2) was
y =B+ By "x + B )
where y = protein extracted (mg) per g peel (dry weight) or
join point and x = log NaCl (M). The NaCl concentration for
maximum protein extraction was determined from the model with
y = protein extracted (mg) per g peel (dry weight) and then join
point at this NaCl concentration was determined from the model
with y = join point.
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Determining optimum conditions for protein precipitation
The percentage protein precipitated based on the initial protein
in solution at each level of CaCl, addition was fit to a linear

segmented model with SAS 2011 (SAS). The Eq. (3) was

if x<§@6

if x>0

Y:ml*x—i—bl and

o 3)

y = m3 0 + bz
where y = protein precipitated (%), m = slope, x = CaCl, (mM),
b = y-intercept, and 6 = join point. Optimum level of CaCl,
addition was the join point since further addition beyond the join
point would not increase % protein precipitated.

Gel electrophoresis

Reducing SDS-PAGE was performed to compare the peel pro-
tein extract to Caiapo Potato powder. Samples and BenchMark
prestained protein ladder (Invitrogen, Carlsbad, Calif., U.S.A.)
were run on a 15% Tris-HCI Ready Gel (Bio-Rad Laboratories,
Hercules, Calif., U.S.A.) at a constant voltage of 200 V. One gel
was stained with Imperial protein stain (Thermo Fisher Scientific,
Rockford, Ill., U.S.A.) to view the total protein banding pattern
and one gel was stained with Glycoprotein Staining Kit (Thermo
Fisher Scientific) to view the glycoprotein banding pattern.

Results and Discussion

Protein extraction

The method chosen to optimize the extraction process involved
fitting data to linear segmented and quadratic models despite the
recent popularity of the response surface method to optimize pro-
tein extraction processes (Quanhong and Caili 2005; Kanu and
others 2007; Eromosele and others 2008; Guan and Yao 2008;
Peri¢in and others 2008; Arifin and others 2009; Nurdiyana and
Mazlina 2009). The response surface method is often chosen for
optimization experiments because of the ability to obtain a vast
amount of information from a small number of experiments and
the ability to determine how the interaction of variables affects
the response. However, a major limitation of the response surface
method is that the data must be fit to a second order polynomial
(Bas and Boyact 2007). In this research, the fit limitation out-
weighed the advantages of using the response surface method. A
second order polynomial fit for NaCl concentration compared to
protein extracted could be obtained by log transformation; how-
ever, solvent to solute ratio could not be adequately fit to a second
order polynomial. At a certain point, protein extracted remained
constant despite continued addition of solvent, and determina-
tion of this point was important because it represented the most
efficient solvent to solute ratio, that is, protein extraction was
maximized while solvent usage, and thus cost, was minimized.

The results for proteins extracted over different solvent to peel
ratios were fit to a linear segmented model for each of the NaCl
concentrations tested. Figure 1 and 2 show the models fit to the
data obtained for primary and secondary peelings mixed with
0.001, 0.01, 0.1, and 1 mM NaCl, respectively. A point was seen
for each solvent in which increasing solvent volume no longer
increased protein extracted. This point was termed the join point
because it is the point where the 2 lines of the segmented model
cross. The join point in this research represents the optimum ratio
of solvent to peel and addition of solvent beyond this point does
not increase yield but adds to cost.

In order to determine the true optimum NaCl concentration,
a quadratic model was fit to protein extracted compared to log
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[NaCl]. A salting in and salting out eftect was observed for both
peel and blanched peel mixed with saline solvent. Figure 3 shows
the quadratic model fit to log [NaCl] compared to protein ex-
tracted for primary peelings and Figure 4 shows the quadratic
model fit to log [NaCl] compared to protein for secondary peel-

ings. The optimum NaCl concentration was log [NaCl] = —4.7
34
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for primary peelings and log [NaCl] = —4.6 for secondary peel-
ings. A quadratic model was also fit to join point compared to log
[NaCl] in order to find the minimum solvent required to extract
maximum protein. Figure 3 and 4 show the quadratic models fit
to log [NaCl] compared to join point for primary and secondary
peelings, respectively. Once the optimum NaCl concentration had
been determined, this value was substituted into the join point
quadratic equation. The predicted join point for primary peelings
at log [NaCl] = —4.7 was 63.0 mL solvent per g peel (dry weight)
and the predicted join point for secondary peelings at log [NaCl] =
—4.6 was 59.7 mL solvent per g blanched peel (dry weight).
A trial was run using the optimum conditions predicted by the
models, 63.0 mL of 0.02 mM NaCl per g primary peelings and
59.7 mL of 0.025 mM NaCl per g secondary peelings. The pre-
dicted protein extracted from primary peelings was 2.30 mg per
g peel (dry weight) and the experimental protein extracted was
2.36 £ 0.26 mg per g peel (dry weight). The predicted protein
extracted from secondary peelings was 4.37 mg per g peel (dry
weight) and the experimental protein extracted was 4.35 £ 0.06
mg per g peel (dry weight).

Protein precipitation

Optimizing concentration of CaCl, for protein precipitation
also used a linear segmented model. The join point represents the
concentration above which additional CaCl, would no longer in-
crease yield but would increase cost. The effect of temperature on
peel protein precipitation was also investigated because some pulp
proteins were found by Purcell and others (1978) to precipitate at
65 °C while other proteins precipitated at 95 °C. Incubation of
primary peelings solution at 95 °C greatly reduced the concen-
tration of CaCl, required for maximum precipitation of protein.
The join point at 95 °C was 9.3 mM CaCl, where as the join
point at 65 °C was 27.6 mM CaCl, and at 25 °C was 32.7 mM
CaCl, (Figure 5). Incubation temperature of secondary peelings
solution, however, did not significantly affect concentration of
CaCl, required for maximum precipitation of protein. The join
point when the model was fit to points from all temperatures was
6.8 mM CaCl, (Figure 6).

Purcell and others (1978) heated sweet potato protein solution
to 65 °C and then added 0.5% CaCl, to precipitate the chromo-

plast proteins. After removing this fraction, the researchers heated
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tein extraction from primary peelings using quadratic models.

Figure 4-Optimizing NaCl concentration and solvent to peel ratio for pro-
tein extraction from secondary peelings using quadratic models.
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the solution to 95 °C to coagulate and precipitate the remain-
ing proteins. In contrast to these findings, we did not observe an
increase in total proteins precipitated when the protein solution
was incubated at 95 °C. We did, however, observe a drastic de-
crease in the amount of CaCl, required for maximum precipitation
of proteins from the peel solution when temperature was increased
to 95 °C.

The absence of a reduction in the amount of CaCl, required
for maximum precipitation from secondary peelings solution with
incubation at 95 °C was most likely due to heat sensitive proteins
having already been denatured during blanching and being able to
more readily interact with the added ions even at low temperatures.
When primary peelings solution was heated to 95 °C, the amount
of CaCl, required for maximum precipitation (9.3 mM) began to
approach the amount required for maximum precipitation from
blanched peel solution at any temperature (6.8 mM), indicating
that denaturation of proteins was likely responsible for the change.

Makki and others (1986) applied the procedure of Purcell and
others (1978) to sweet potato peel and found that protein concen-
trates from sweet potato peel were lower in purity than protein
concentrates from sweet potato flesh. One cultivar, Abees, yielded
products containing 33.5% protein from peel compared to 76.5%
protein from flesh. Another cultivar, Giza 69, yielded a product
containing 53.3% protein from peel compared to 80.9% protein
from flesh. We observed that CaCl, addition beyond the point
of maximum protein precipitation led to dilution of the protein
by precipitation of nonprotein material, presumably soluble fiber,
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which could explain the low protein concentration in peel extracts
compared to flesh extracts.

For primary peelings, the optimum conditions for protein pre-
cipitation resulted in 14.4% of the protein in the starting material
being recovered in the extract, which consisted of 4.8% protein,
calculated from % nitrogen with a conversion factor of 6.25. In
the case of secondary peelings, the optimum conditions for pro-
tein precipitation resulted in 32.0% of the protein in the starting
material being recovered in the extract, which consisted of 41.3%
protein, calculated from % nitrogen with a conversion factor of
6.25. The higher purity of the blanched peel extract may be due
to either the lower amount of CaCl, added for protein precipita-
tion or the difference in composition between the blanched peel
and the raw peel. The degree to which CaCl, caused precipita-
tion of nonprotein material, presumably soluble fiber, was more
affected by higher CaCl, concentrations than was precipitation of
additional protein. Secondary peelings contained more pulp than
the primary peelings which likely contributed to higher extracted
protein purity. The nonprotein component in the precipitated
material recovered in this study is presumed to be soluble fiber
because it was low in ash and reducing sugars (data not shown).

Protein in the starting material and the final product was es-
timated by nitrogen analysis with a conversion factor of 6.25. It
is likely that protein was overestimated in the starting material
due to the presence of nonprotein nitrogen (NPN). Up to 30%
of the nitrogen in some cultivars of sweet potatoes may be NPN
(Purcell and others 1978). At 107 d of storage, NPN in Jewel
cultivar was composed mostly of amino acids; asparagine made up
61%, aspartic acid 11%, glutamic acid 4%, serine 4%, and threo-
nine 3% (Purcell and others 1980). It is unlikely that these small
peptides or free amino acids would be precipitated with CaCl,
and thus would not be present in the final product. This would
cause protein recovery to appear lower than the true value.

Secondary peelings appear to be a better starting material for
protein extraction and concentration. In comparing secondary to
primary peelings, more protein was present (8.2% compared with
6.4% protein), more protein could be recovered (32.0% com-
pared with 14.4%), and the extract was more concentrated (41.3%
compared with 4.8% protein). The proteins extracted from sec-
ondary peelings may be of less use, however, due to possible loss of
the desirable nutraceutical properties from heat treatment. Kusano
and others (2000) reported that boiling in water inactivated the
antidiabetic component of white-skinned sweet potato extract.
Other activities of sweet potato proteins have also been reported
to be heat labile. Trypsin inhibitors and amylase inhibitors in sweet
potatoes can be inactivated by heat treatment, with the degree of
inactivation varying based on time, temperature, and type of heat
treatment (Obidairo and Akpochafo 1984; Rekha and Padmaja
2002; Kiran and Padmaja 2003; Sasi Kiran and Padmaja 2003). For
the same reason, even though heating the peel solution decreased
the amount of CaCl, required for maximum protein precipitation,
doing this may be undesirable because nutraceutical activities may
be lost.

Comparison of Caiapo Potato powder and peel extract with
gel electrophoresis

SDS-PAGE showed major protein bands present in Caiapo
Potato powder at 22 and 58 kDa. These bands were also present
in the peel extract; however, the intensity of the 58 kDa band was
reduced in the peel extract compared to Caiapo Potato powder
(Figure 7). Despite the absence of any apparent protein bands
above 58 kDa with total protein staining, a high molecular weight
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glycoprotein was found in both the extract and Caiapo Potato
powder after glycoprotein staining. A 22 kDa glycoprotein was
also present in both the peel extract and Caiapo Potato powder
(Figure 8).

The proteins extracted appear to be similar, at least in molecular
weight, to proteins known to have unique nutritional benefits.
Glycoprotein staining (Figure 8) revealed that the 22 kDa protein
of both the extract and Caiapo Potato powder contained sugar,
indicating that the active antidiabetic component of Caiapo Potato
powder isolated by Kusano and others (2001) may also be present
in the extract. A higher molecular weight glycoprotein was also
seen in both the extract and Caiapo Potato powder, which may
correspond to the active antidiabetic component isolated by Ozaki
and others (2010). The protein was not detected by the Imperial
protein stain; however, a very intensely colored band was seen with
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Figure 7-Comparison of Caiapo Potato powder and peel extract protein
banding patterns. SDS-PAGE of protein ladder (lane 1), Caiapo Potato
powder (lane 2), and peel extract (lane 3). Gel was stained with Imperial
protein stain.
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Figure 8-Comparison of Caiapo Potato powder and peel extract glycopro-
tein banding patterns. SDS-PAGE of protein ladder (lane 1), Caiapo Potato
powder (lane 2), peel extract (lane 3), horseradish peroxidase positive con-
trol (lane 4), and soybean trypsin inhibitor negative control (lane 5). Gel
was stained with glycoprotein staining kit.

glycoprotein staining, which would fit with a product containing
95% sugar and 5% protein, the composition reported by Ozaki
and others (2010).

Conclusion

Primary industrial peeling of sweet potatoes yields a material
from which concentrating the protein is difficult due to coprecip-
itation of nonprotein material. Much better protein concentration
results can be attained using material from the secondary peeling
after blanching. The optimum conditions for extracting and pre-
cipitating protein from the sweet potato peel were presented. Using
the optimum conditions, 32.0% of the protein present in blanched
peel was recovered in the extract, which consisted of 41.3% pro-
tein. Gel electrophoresis and glycoprotein staining suggests that
the antidiabetic proteins in Caiapo Potato powder, an extract of a
white-skinned sweet potato cultivar, may also be present in extracts
from orange-fleshed sweet potatoes.
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