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In vivo studies of jaw-muscle behavior have been integral factors in the
development of our current understanding of the primate masticatory
apparatus. However, even though it has been shown that food textures
and mechanical properties influence jaw-muscle activity during mastica-
tion, very little effort has been made to quantify the relationship between
the elicited masticatory responses of the subject and the mechanical
properties of the foods that are eaten. Recent work on human mastication
highlights the importance of two mechanical properties–toughness and
elastic modulus (i.e., stiffness)–for food breakdown during mastication.
Here we provide data on the toughness and elastic modulus of the
majority of foods used in experimental studies of the nonhuman primate
masticatory apparatus. Food toughness ranges from approximately
56.97 Jm�2 (apple pulp) to 4355.45 Jm�2 (prune pit). The elastic modulus
of the experimental foods ranges from 0.07 MPa for gummy bears to
346 MPa for popcorn kernels. These data can help researchers studying
primate mastication select among several potential foods with broadly
similar mechanical properties. Moreover, they provide a framework for
understanding how jaw-muscle activity varies with food mechanical
properties in these studies. Am. J. Primatol. 67:329–346, 2005. r 2005
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INTRODUCTION

In vivo studies of mastication in various mammals, including primates,
have employed several techniques (e.g., electromyography, bone strain, and
cineradiography) to describe the biomechanics of the masticatory apparatus.
In such studies, investigators provide subjects with foods that differ in
their structural and mechanical properties in order to elicit a range of functional
responses from the jaw muscles. Research has shown that the mechanical
and textural properties of different foods influence the magnitude and duration
of jaw-muscle activity [Ahlgren, 1966; Crompton, 1989; Horio & Kawamura,
1989; Hylander & Johnson, 1994; Hylander et al., 2000; Oron & Crompton,
1985; Ottenhoff et al., 1996; Mioche et al., 1999; M�ller, 1966;
Plesh et al., 1986]. Furthermore, changes in the amount and velocity of
transverse and vertical jaw movements offer indirect evidence for an associa-
tion between neuromuscular control of mammalian jaw muscles and
food textures [Agrawal et al., 2000; Ahlgren, 1966; Fish & Mendel, 1982;
Hiiemae & Kay, 1973; Horio & Kawamura, 1989; Hylander et al.,
1987; Lucas et al., 1986; Oron & Crompton, 1985; Takada et al., 1994; Thexton
et al., 1980].

Jaw-muscle activity during mastication is regulated by the periodontal
mechanoreceptors [Anderson et al., 1970; Lavigne et al., 1987]. These mechan-
oreceptors sense changes in food consistency during mastication through changes
in the direction, amplitude, and rate of tooth loading. This information is
transmitted to the central nervous system, where muscle activity is adjusted for
further comminution of food [Lund, 1991; Ottenhoff et al., 1992; Trulsson et al.,
1992; Trulsson & Johansson, 1994, 1996; van der Bilt et al., 1995; Yang & Turker,
1999, 2001]. This neural feedback modulates EMG activity within 20 msec of
mechanoreceptor stimulation, suggesting that muscle activity can be altered
within a given chew cycle [van der Bilt et al., 1995].

In humans, researchers have performed controlled studies to describe how
jaw muscle activity changes with food material properties and textures [e.g.,
Agrawal & Lucas, 2002; Agrawal et al., 1997, 1998; Lucas et al., 2002; Lucas, 2004;
Mioche & Peyron, 1995; Mioche et al., 1999; Plesh et al., 1986; Takada et al.,
1994]. However, for most of these studies the mechanical-properties of these foods
unknown and thus are not comparable across experiments. To date there has
been no quantitative assessment of the link between jaw-muscle activity and food
texture in nonhuman primates, although several researchers have identified the
need to clarify this relationship [e.g., Agrawal et al., 1997, 1998, 2000; Lucas et al.,
2002; Strait & Vincent, 1998; Wang & Stohler, 1990]. This is an important gap in
our understanding of primate masticatory mechanics because jaw-muscle activity
is thought to have an important role in the evolution of primate masticatory form
[Hylander, 1979, 1984, 1985; Hylander et al., 1987, 1998, 2000, 2004, in press;
Hylander & Johnson, 1994; Lieberman & Crompton, 2000; Ravosa & Hogue,
2004; Ravosa et al., 2000; Vinyard & Ravosa, 1998; Vinyard et al., 2001, 2005, in
press]. Specifically, the jaw muscles exert external loads on the mandible during
mastication, and these loads cause internal stresses and strains in the jaws during
chewing and biting. Furthermore, numerous comparative studies have relied on
studies of jaw-muscle activity and bone strain to gain insight into mandibular
loading in order to generate biomechanical hypotheses regarding the influence of
diet on primate mandibular form [e.g., Bouvier, 1986a, b; Daegling, 1992; Ravosa,
1991, 1996a, 2000; Taylor, 2002; Williams et al., 2002; Wright, 2001, 2005;
Vinyard et al., 2003].
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As a first step toward understanding the relationship between primate
masticatory function and food properties, we present data on the toughness and
elastic modulus of foods consumed by nonhuman primate species in experimental
studies of the masticatory apparatus. These data are important for a number of
reasons. First, experimentalists are often faced with the dilemma of identifying a
broad range of foods of various mechanical properties that a nonhuman primate
will chew in the laboratory. Because food material properties have not been
measured on experimental foods, it is unknown which foods may be appropriate
substitutes for each other during mastication experiments.

Second, several field studies of primate diets have shown that food choice
may be related to food texture, and that this may account for morphological
differences in the masticatory apparatus between closely-related and/or sympatric
species [Dominy & Lucas, 2004; Elgart-Berry, 2004; Happel, 1988; Kinzey &
Norconk, 1990, 1993; Lucas et al., 2000; Overdorff & Strait, 1998; Strait, 1993;
Vinyard et al., 2004; Wright, 2001, 2004, 2005; Yamashita, 1996, 1998, 2002].
Thus, the current data are also informative for assessing the appropriateness of
food choice in the laboratory setting to address evolutionary adaptive explana-
tions for primate jaw forms. These explanations assume that we understand the
link between jaw-muscle function and ecologically-relevant foods. While we can
accurately describe jaw-muscle function in the laboratory, these data may have
limited evolutionary relevance because we do not know whether we are eliciting
jaw-muscle activity patterns (particularly with respect to magnitude of recruit-
ment) that are characteristic of primates consuming a natural diet. As field
studies that focus on the mechanical properties of primate diets become more
common, we can determine which foods used in laboratory studies are more likely
to elicit ‘‘natural’’ masticatory responses in the experimental laboratory setting.
Matching the material properties of laboratory foods with foods processed in the
wild will allow researchers to interpret in vivo experimental research in a broader
evolutionary context that moves beyond the current functional context.
Specifically, it will allow researchers to interpret in vivo experimental results
on chewing behaviors in the context of the environmentally-dictated selection
pressures that conspecifics may experience.

Finally, much of what we know about mammalian jaw-muscle function comes
from electromyographic data collected from several nonhuman primate species
chewing a variety of foods [e.g., Hylander et al., 1987, 1992, 2000, 2002, 2003,
2004, in press; Hylander & Johnson, 1989, 1993, 1994; Luschei & Goodwin, 1974;
McNamara, 1973; Miller et al., 1982; Wall et al., 1999; Ross & Hylander, 2000;
Vinyard et al., 2001]. While we know that neuromuscular activity varies
qualitatively with foods, these data can help us to quantitatively describe how
jaw-muscle activity changes with food mechanical properties. Improving our
knowledge regarding this relationship will help both laboratory and field
primatologists to better understand how variation in the mechanical properties
of primate diets relates to variation in the masticatory apparatus and patterns of
dietary niche partitioning.

Mechanical Properties and Fracture Mechanics: A Brief Overview

Recently, Agrawal et al. [1997, 1998, 2000] and Lucas et al. [2002] drew on
the theory of fracture mechanics to elucidate the relationship between food
breakdown and jaw-muscle activity in humans. In order to discuss the relevance
of their work, we first provide a brief overview of fracture mechanics and
terminology as it relates to mastication.
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The fracture of solid particles is determined by two properties: the
elastic (or Young’s) modulus (E), and toughness (R) [Ashby, 1992]. The elastic
modulus describes the rigidity of an object through the ratio of stress
(force/unit area over which it acts) to corresponding strain (increase in
length/original length) along the linear portion of the stress-strain curve
(i.e., E=stress/strain) (Fig. 1). In lay terms, this value estimates a material’s
stiffness in either tension or compression, and the higher the modulus the
stiffer the material. However, materials can also deform before they form
cracks, and therefore the elastic modulus only partially describes the resistance to
the initiation of fracture [Ashby, 1992]. Toughness is defined as the energy
consumed in growing a crack of a given area, and is measured (in joules per meter
squared (Jm�2)) as the area under the force-displacement curve produced in
growing this crack divided by the crack area [Ashby, 1992; Vincent, 1992; Lucas,
2004] (Fig. 2).

During mastication, fragmentation of food between the teeth is largely
dependent on either the food’s toughness or a combination of its toughness
and stiffness, expressed as fragmentation indices [Agrawal et al., 1997;
Lucas et al., 2002]. When food is more or less two-dimensional (e.g.,
leaves), toughness (R) is probably the most relevant factor that dictates
fragmentation [Lucas & Teaford, 1994; Lucas et al., 2000, 2002]. Some food
tissues can withstand high strains, or displacements, before crack propaga-
tion and subsequent failure begins. Breakdown of such items is
displacement-limited. When the size and number of fragments are dictated

Fig. 1. Hypothetical stress-strain curve showing how the elastic modulus is determined. Elastic
deformation occurs prior to the yield point. Once the yield point is reached, all deformation is plastic
(i.e., the material does not return to its original dimensions). The elastic modulus, or stiffness, is
measured as stress/strain along the linear elastic region of the curve.
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by the displacement available during occlusion, fragmentation is best
described by the index (R/E)0.5, i.e., (toughness/elasticity)0.5. Foods that exhibit
limited strains at high stresses prior to the start of crack formation are
stress-limited. The fragmentation index given by (ER)0.5 applies when the
largest stresses applied to the food dictate fragmentation [Agrawal et al., 1997;
Lucas et al., 2002].

Agrawal et al. [1997] showed that the rate of food breakdown between the
teeth is inversely related to the fragmentation index given by (R/E)0.5 for
displacement-limited foods. They further showed that in humans there is a
significant inverse relationship between this fragmentation index and 1) the peak
magnitude of the integrated surface EMG from the anterior temporalis, 2) the
mediolateral deviations of the jaw, and 3) the closing angle of the jaw during
mastication [Agrawal et al., 1998, 2000]. This finding is similar to that reported in
other studies [e.g., van der Bilt et al., 1995], and suggests that mechanoreceptors
send sensory feedback on the rate of food breakdown to the central nervous
system in order to modulate jaw-muscle activity during individual power strokes
[Agrawal et al., 1998].

MATERIALS AND METHODS

We calculated the toughness and elastic modulus of several food items given
to nonhuman primates in experimental studies. The foods included apple pulp
(red delicious), apple skin (red delicious), almond, carrot, cherry pit, cricket

Fig. 2. Force-displacement graph for a raisin sample measured using the scissors test on a portable
mechanical-properties tester. Toughness is equivalent to the area under the force-deformation
curve divided by the area of new crack growth. It is an indication of the amount of work per unit
area (Joules per square meter) done on the material during fracture.
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cuticle, apricot (dehydrated and dried1), gummy bear (fresh and dried), raisin
(fresh and dried), prune, monkey chow, pear skin, popcorn kernel, prune pit, and
sweetgum leaf. We measured toughness using a scissors test on a portable
mechanical-properties tester attached to a laptop computer running LabView 6.0
[Darvell et al., 1996; Lucas et al., 2001].

For all toughness tests, the samples were cut to an appropriate size and shape
with scalpels or a microtome, and then measured. Apple skin was isolated from
the parenchyma (pulp) before it was cut, and the toughness of both tissues was
measured separately. In the case of cherry pits and prune pits, only the seed shells
were tested. We isolated the seed shells from the pit by removing individual slices
(approximately 0.5 mm thick) using a microtome. The cuts for the scissors test
were made transversely through the shell from the outer to the inner surface. For
sweetgum leaves, cuts were made on isolated sections from the leaf tips without
including the major vein in each section. However, cuts were made across
multiple secondary veins. To determine the toughness of fresh crickets, we
carefully dissected the prothorax cuticle from the remainder of the viscera. We
tested only cricket cuticle because the remaining insect tissues (i.e., the viscera)
tended toward extreme plastic flow during cutting. This prohibited us from
calculating the cut surface area, which is a requirement for measuring toughness
in our apparatus. Importantly, the cuticle, which consists largely of chitin, is the
toughest structure that a primate would have to break down when chewing an
insect of this type.

The elastic modulus of the different foods was measured under either tension
and compression. Because tensile and compressive loading may not yield the same
values for the elastic modulus, the mode of loading was determined based on the
physical characteristics of the specimens and on the likely means that an animal
would induce failure (i.e., compression or tension) to the food during chewing.
Apricot, gummy bear, raisin, apple skin, pear skin, and prune samples were
measured under tension on the portable mechanical-properties tester at cross-
head speeds of 15–35 mm/min. For all remaining foods, the elastic modulus was
estimated from the load-extension curves produced by compressing the foods in
an Instront universal testing machine (model 1122; Instron Inc., Canton, MA) in
the Rheology Laboratory of the Department of Food Science at North Carolina
State University. This second tester was used because several of the remaining
items (e.g., prune pit, cherry pit, monkey chow, and popcorn kernel) could
potentially have overloaded the load cells on the portable tester, or because the
clamps used to hold the specimens in the portable tester compressed the food
items before the tensile load (apple pulp, carrot, or almond) was applied. Foods
were compressed at a crosshead speed of 10–50 mm/min. Prior to testing, the
apple pulp and carrot pieces were cut into uniform shapes and measured. Because
the prune pits, cherry pit, almonds, and popcorn kernels could not be cut into a
uniform shape, estimates of the elastic modulus required additional calculations,
taking into account the convexity of the food surfaces that contacted the plates of
the universal testing machine. This was done following the formula for the elastic
modulus (E) given by Mohsenin [1986]:

E ¼
0:531Fð1� �2Þ

D3=2

1

R1
þ

1

R01

� �1=2

1Food items described as ‘‘dried’’ were allowed to air-dry for 3 or more weeks before they were
measured in this study. All other foods were tested on fresh or ‘‘out of the package’’ samples. For
example, dehydrated apricots were dehydrated by the manufacturer.
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where F is the force, m is Poisson’s ratio, D is the deformation, and R1 and R01 are
estimates of the radii of curvatures for the food surfaces contacting the plates of
the universal tester. R1 and R01 were determined directly from the specimens
[Mohsenin, 1986]. Poisson’s ratio, which describes the compressibility of the
material perpendicular to an applied stress, was estimated here to be 0.25 for all
foods tested. This estimate is based on the fact that the limited estimates of
Poisson’s ratio for relevant biological materials (e.g., apple flesh and corn stalk)
fall within the 0.21–0.32 range [Wainwright et al., 1982]. The elastic modulus for
cricket cuticle could not be determined because it was difficult to isolate pieces
that were long enough for accurate measurements.

We made as many as 19 estimates of both toughness and elastic modulus for
each food item. For each food, we eliminated the largest and smallest
measurements because these were often extreme values that could be off by an
order of magnitude or more due to measurement error [Leonowicz et al., 2005].
The means and standard deviations (SDs) of the toughness and elastic modulus
for each of the food items were calculated based on the remaining cases. We
performed statistical comparisons of all of the foods using a one-way ANOVA
(a=0.05). We identified significant pairwise differences among food items using
the a posteriori Tukey’s honestly significant difference (HSD) procedure [Sokal &
Rohlf, 1995]. We calculated the fragmentation indices (R/E)0.5 or (ER)0.5

described above for each food using the mean of the elastic modulus and
toughness for that food. Because we could not measure both the elastic modulus
and toughness on the same specimen, we present only the single displacement-
limited index and stress-limited index value based on food means.

RESULTS

Food toughness ranged from approximately 56.97 Jm�2 for apple pulp to
4,355.45 Jm�2 for prune pit (Table I, Fig. 3A). While the ANOVA demonstrated
significant differences (F=141.84; Po0.001), several of these foods did not differ
significantly in toughness based on Tukey’s HSD test (Table I). There was some
tendency for tougher foods to be statistically different from one another. Drying
the foods had a varying impact on food toughness. For example, dried apricots
were not significantly tougher than dehydrated apricots taken immediately from
the package, whereas the toughness of gummy bear approximately doubled when
the samples were dried. Two fruit pits were tested, and it was found that prune
pit was almost twice as tough as cherry pit (Table I).

The elastic moduli of the experimental foods ranged from 0.07 MPa for
gummy bears to 346 MPa for popcorn kernels (Table II, Fig. 3B). While the
ANOVA again demonstrated significant differences in the elastic moduli
(F=35.94; Po0.001), the Tukey test identified only three statistically significant
groupings. Surprisingly, most foods fell into a single group with low elastic
moduli. Prune pits and cherry pits, constitute a single group with moderate
stiffness (189.50 MPa and 190.08 MPa, respectively). Popcorn kernels are
significantly stiffer than any other food item. Prolonged drying of the gummy
bear, raisin, and dehydrated apricot samples tended to approximately double
their stiffness.

The fragmentation indices for the experimental foods identified several
displacement-limited and stress-limited foods (Fig. 4). For example, gummy
bears, raisins, and apricots (including fresh, dehydrated, and dried forms) have
the highest displacement limited indices due to their high toughness and low
stiffness values. However, they have relatively low stress-limited indices
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compared to many of the other foods. As expected, cherry pits, popcorn kernels,
prune pits, and to a lesser extent monkey chow had high stress-limited indices.
Because the fragmentation indices presented in Fig. 4 represent single data
points determined from the average toughness and average modulus for each food
type, we have no measure of sample variance for these indices, and therefore
could not undertake a statistical analysis of these data.

DISCUSSION

Comparisons With Other Published Values

This study presents the most comprehensive data set on the mechanical
properties of foods relevant to work on nonhuman primate jaw-muscle function.
Agrawal et al.’s [1997, 1998] recent studies on human masticatory function and
food mechanical properties provide similar data for some of the same foods. For
those foods, in most cases our mechanical-properties data are not markedly
different from those of Agrawal et al. [1997, 1998]. For example, they found that
the elastic modulus of almond and carrot is 21.57 MPa (SD=4.00) and 4.57 MPa
(SD=0.56), respectively. These results are similar to our values of 20.44 MPa
(SD=10.63) and 6.77 MPa (SD=0.80), respectively (Table II). The toughness
values for the same foods differed slightly between the two studies. Our value for
almond (308.62 Jm�2, SD=34.85) was slightly higher than the 245.8 Jm�2

(SD=40.2) reported by Agrawal et al. [1997, 1998]. We found the toughness of
carrot to be 343.93 Jm�2 (SD=48.49) compared to their value of 440.0 Jm�2

(SD=47.5).

TABLE I. Descriptive Statistics for the Toughness of the Test Foodsn

nFoods are presented in ascending order of their mean toughness.
aThe lines to the left of the food categories represent groups of foods that do not differ significantly based on
Tukey’s HSD test. Foods not connected by lines are significantly different from each other at Po0.05.
bSD, standard deviation.
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Our estimate of 663 Jm�2 for apple skin toughness is higher than the
published estimates, which range from 100 to 450 Jm�2 for different varieties
[Vincent, 1990, 1991]. This disparity may be due to differences in the way the skin
was isolated from the parenchyma, or pulp. According to Vincent [1991], isolating
the skin of the apple inevitably leaves layers of parenchyma cells, which can
retard the growth of cracks in the skin. This would increase the work required to
fracture the skin. The toughness of cherry (2504.08 Jm�2; SD=630.33) and prune
(4355.45 Jm�2; SD=711.92) pits does not markedly differ from the toughness of
Mezzettia parviflora seed shells consumed by orangutans. These seed shells range
in toughness from 1,204 to 3,113 Jm�2 when measured transversely along their
toughest region [Lucas, 1989; Lucas et al., 1991].

Food Mechanical Properties and Primate Mastication Studies

Experimental studies of jaw-muscle function in nonhuman primates
are lacking in foods that are stiff but not tough, as well as foods that are
tough but not stiff. To some extent, monkey chow fits the ‘‘stiff but not tough’’
texture profile, although there are several stiffer experimental foods.
Sweetgum leaves satisfy the ‘‘tough but not stiff’’ profile. The leaves are tough
because of the composite nature of the cell wall, which contains cellulose
microfibrils embedded in hemicellulose and sometimes lignin [Lucas et al., 1995,
2000; Vincent, 1990]. Although the leaves are consumed by numerous
primate species, they have only recently been included in experimental studies

TABLE II. Descriptive Statistics for the Elastic Modulus of the Test Foodsn

nFoods are presented in ascending order of their mean elastic modulus.
aThe lines to the left of the food categories represent groups of foods that do not differ significantly based on
Tukey’s HSD test. Foods not connected by lines are significantly different from each other at Po0.05.
bSD, standard deviation.
(t), elastic modulus measured in tension on a portable tester.
(c), elastic modulus measured in compression on a universal testing machine.
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of primate mastication (Hylander et al., unpublished data). The use of leaves in
experimental studies is important because in addition to their mechanical
properties, their two-dimensional shape may also influence masticatory physiol-
ogy [Lucas et al., 2002]. Apple skin, which traditionally has been used as a two-
dimensional tough item in such studies [Hylander & Johnson, 1994], is
surprisingly similar to sweetgum leaf in toughness and stiffness, and thus
arguably serves as a suitable alternative.

The results of this study have several implications for laboratory
researchers conducting in vivo research on mammalian mastication. Given
that many of the food items do not differ significantly in either toughness
or stiffness, the data presented here suggest that experimentalists can
select among several potential foods with broadly similar mechanical
properties in their work. Thus, investigators may have more freedom in the
future to choose foods that are readily consumed by their primate subjects
without significant concern for the differential effects that textural
properties may have on jaw-muscle activity. For example, if a subject eats
dried raisin but not dehydrated apricot, it is unlikely that significant
additional information regarding the relationship between food properties and
jaw-muscle activity will be lost, given that these foods are very similar in
toughness and stiffness.

The similarity in toughness and stiffness of many of the food items
suggests that we may be sampling jaw-muscle activity over only a limited
range of mechanical properties for some of the species, particularly those
that will not masticate any of the fruit pits or popcorn kernels. One outcome
of this finding is that comparing jaw-muscle activity between statistically
similar foods may be less relevant than was previously thought. For example,
apple skin is well within the range of toughness of some foods that are
typically classified as ‘‘hard and/or tough’’ in electromyographic and bone
strain studies, such as gummy bear and apricot (both dehydrated and dried).
Whereas macaques and baboons in these studies readily masticated apple skin
and popcorn kernels, owl monkeys masticated only apricot, gummy bear, or
prune. Since apple skin, apricot, gummy bear, and prune do not differ
significantly in toughness, the extent to which jaw-muscle activity differences
across these foods in owl monkeys relates to differences in toughness remains
unclear. In summary, the data presented here provide information that will allow
researchers to better contrast jaw-muscle activity patterns with food material
properties.

One limitation of this study is that our estimates of toughness and the elastic
modulus are representative of foods before they were ingested. We do not consider
the effects that saliva and continued processing have on the mechanical
properties. It is possible that saliva significantly softens many of the foods tested
here, and thus alters their mechanical properties. This would certainly be the case
for foods such as monkey chow, dried gummy bear, and dried fruits. Furthermore,
we did not control for the effect that multiple simultaneous fractures would have
on the food mechanical properties. These properties are likely dynamic
throughout the power stroke of mastication. For example, flaws and cracks can
occur in the food due to the initial puncture-crushing between occluding teeth,
which could ultimately influence how the food material fails during the rest of the
power stroke. While some researchers are moving in this direction to understand
how materials fail during mastication in humans [e.g., Agrawal et al., 1997; van
der Glas et al., 1992], this approach is extremely difficult to replicate in
nonhuman primates.

340 / Williams et al.

Am. J. Primatol. DOI 10.1002/ajp



Finally, it remains to be seen how these foods compare with foods that
conspecific primates consume in the wild. This will be the true test of whether
experimental studies are eliciting the natural range of primate masticatory
behaviors. There appears to be a broad correspondence of the properties
we measured with the properties of similar biological materials recently
published by Lucas [2004] (Fig. 5). Moreover, recent field studies provide
examples of how the experimental foods compare with foods that are known to
be consumed by wild primates [e.g., Dominy & Lucas, 2004; Teaford et al.,
in press; Wright, 2005; Yamashita, 2003]. Yamashita [2003] measured the
toughness of numerous foods consumed by sifaka and ring-tailed lemurs to
determine whether food procurement and ingestion were influenced by toughness
and the physical properties of foods. The average toughness of leaves consumed
by both species was approximately 300–450 Jm�2, with the toughest foods
often exceeding 800 Jm�2. Likewise, Teaford et al. [in press] found that mantled
howler monkeys consume leaves that range in average toughness from 250 to
900 Jm�2. Thus, at least in terms of toughness, many of the foods used in
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experimental studies may be appropriate for animals (e.g., sifaka and howler
monkeys) that feed primarily on leaves and fruits. On the other hand,
Dominy and Lucas [2003] found that the average toughness of leaves consumed
by Cercopithecus ascanius, Colobus guereza, Pan troglodytes, and Piliocolobus
badius was significantly lower than that of adjacent leaves that were not
consumed. The average toughness of the consumed leaves was about 600 Jm�2,
whereas the average toughness of the unconsumed leaves was only about
900 Jm�2. Thus, for some primate species, the toughest foods used in the
laboratory-based studies may be tougher on average than the foods rejected
by these species in the wild. In such cases, currently used laboratory foods may
not be appropriate for addressing adaptive hypotheses regarding masticatory
form and function.

The goal of this study was to quantify two of the mechanical properties of
foods used in experimental studies of primate mastication. The current data
represent the first step toward quantifying the relationship between food
mechanical properties and jaw-muscle function in primates. The results show
that the foods span a broad range of toughness and stiffness values. This range
broadly overlaps the existing mechanical properties of foods consumed by
primates in their natural environments. As research on primate feeding
ecology becomes increasingly more focused on primate food choices, it would be
logical to incorporate mechanical-properties data in studies because these
properties can be an important limiting factor to food use. Until recently,
experimental and comparative studies of primate masticatory form have not
had access to quantitative measures of food texture and have had to rely on
qualitative and relative estimates, or simply used broad dietary categories
as a basis for comparison [e.g., Daegling, 1992; Daegling & McGraw, 2001;
Hylander, 1979, 1985; Ravosa, 1991, 1996a, b; Taylor, 2002]. Clearly, combining
both kinds of studies will aid us in determining the effect of food mechanical
properties on jaw-muscle activity during mastication, and can ultimately
contribute to a more thorough understanding of the evolution of the primate
masticatory apparatus.
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