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Sequence analysis of the Lactobacillus plantarum bacteriophage AJL-1B
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Abstract

The complete genomic sequence of a Lactobacillus plantarum virulent phageAJL-1 was determined. The phage possesses a linear, double-

stranded, DNA genome consisting of 36,677 bp with a G+C content of 39.36%. A total of 52 possible open reading frames (ORFs) were

identified. According to N-terminal amino acid sequencing and bioinformatic analyses, proven or putative functions were assigned to 21 ORFs

(41%), including 5 structural protein genes. The AJL-1 genome shows functionally related genes clustered together in a genome structure

composed of modules for DNA replication, DNA packaging, head and tail morphogenesis, and lysis. This type of modular genomic

organization was similar to several other phages infecting lactic acid bacteria. The structural gene maps revealed that the order of the head and

tail genes is highly conserved among the genomes of several Siphoviridae phages, allowing the assignment of probable functions to certain

uncharacterized ORFs from phage AJL-1 and other Siphoviridae phages.
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1. Introduction

Lactic acid bacteria (LAB) are used as starter cultures in

the production of various fermented foods. Bacteriophage

(phage) infection of LAB has been a major problem in the

dairy industry, causing slow fermentation or complete

starter failure and, thus, economic losses. Due to their

economical importance, dairy phages (mainly Lactococcus

lactis or Streptococcus thermophilus phages isolated from

dairy industry or products) became the most thoroughly

studied phage group in the database (Brüssow, 2001).

Lactobacillus phages received much less attention, prob-

ably because they are less of a practical problem in the

fermentation industries (Altermann et al., 1999).

Currently, over 20 LAB phage genome sequences are

available in databases. Most of these sequences are from

lactococcal or streptococcal phages. A few are from

Lactobacillus phages, including Lactobacillus plantarum
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phage fgle (Kodaira et al., 1997), Lactobacillus gasseri

phage fadh (Altermann et al., 1999), Lactobacillus

delbrueckii ssp. lactis phage LL-H (Mikkonen et al.,

1994), and Lactobacillus casei phage A2 (Proux et al.,

2002). These available phage sequences have provided

significant information on the biology of the individual

phages. Many new insights have been revealed from the

detailed and comparative analysis of these sequences in

areas of phage evolution, genetic diversity, horizontal/

vertical gene transfer, module similarity, and lytic/lyso-

genic cycles (Brbndsted et al., 2001; Brüssow and Desiere,

2001; Desiere et al., 1999; Desiere et al., 2000; Lucchini et

al., 1999; Mahanivong et al., 2001). Compared with other

organisms, the total number of phage sequences in the

database is small. More phage genome sequences from a

diverse array of phages and comparative sequence analysis

are needed to elaborate upon a sequence-based theory and

to improve our understanding of these viruses and their

interaction with their hosts.

In the United States, commercial vegetable fermenta-

tions are usually natural fermentations without addition of

starter cultures (Fleming et al., 1995). With the increasing

interest in reducing waste brine disposal, low-salt fermen-

tation is currently being developed. This will require

greater control of the non-lactic flora and is likely to

involve the use of starter cultures. L. plantarum BI7 and

its derivative, MU45 (deficient in malolactate fermenting

ability), have been evaluated as starter cultures for

controlled cucumber fermentations and as biocontrol

microorganisms for minimally processed vegetable prod-

ucts in the USDA-ARS Food Fermentation Laboratory.

Since vegetable fermentation systems are not sterile, the

starter cultures may be susceptible to infection by phages

naturally present in these environments. A virulent

bacteriophage, AJL-1 (active against both L. plantarum

BI7 and MU45), was recently isolated from a commercial

cucumber fermentation. Some of its biological properties

were described previously (Lu et al., 2003). The phage has

an isometric head, a long non-contractile tail, and belongs

to morphotype B1 within the Siphoviridae family. Tail

fibers were not observed. Phage AJL-1 has a linear,

double-stranded, DNA genome of 36.7 kb. SDS–PAGE

revealed the presence of six structural proteins. Using L.

plantarum MU45 as a host, the phage AJL-1 had an

average burst size of 22 and a latent period of 35 min.

Little is known about the genetic content, organization, or

functions of genes in AJL-1. A better understanding of the

genetics and biological properties of the Lactobacillus

phage AJL-1 is fundamental to the understanding of

phage–host interactions and possibly to the development

of phage-control strategies for controlled vegetable fer-

mentations and biocontrol systems using L. plantarum BI7

or MU45.

The objectives of this study were to determine and

analyze the complete genome sequence of the L. plantarum

phage AJL-1, to identify the structural genes (including the
major head and tail protein genes), and to explore the

genomic organization of the phage.
2. Materials and methods

2.1. Bacterial strain, phage, and media

L. plantarum MU45 was grown in MRS broth (Difco

Laboratories, Detroit, MI) at 30 8C. Phage AJL-1 was

propagated on L. plantarum MU45 in MRS medium

supplemented with 10 mM CaCl2 at 30 8C (Lu et al., 2003).

2.2. Purification of UJL-1 and isolation of phage DNA

Phage AJL-1 particles were concentrated from 1 L of

phage lysate by PEG precipitation and then resuspended in

6 mL of 10 mM Tris–HCl buffer (pH 7.4). The phage

suspension was intentionally vortexed (Daigger Vortex-

Genie 2, A. Daigger and Company, Inc., Vernon Hills, IL) at

the highest speed for 2 min in an attempt to generate

defected phages. The mixture of intact and defected phage

particles was separated and purified by CsCl density

gradient centrifugation at 600,000�g for 6 h at 15 8C
(Sorvall micro-ultra-centrifuge with rotor S100AT6, RC-

M150 GX, Sorvall, Newtown, CT). Two visible bands,

consisting of intact and defective phages, respectively, were

collected separately, and dialyzed against 3 L of 10 mM

Tris–HCl buffer (pH 7.4). Phage DNA was isolated as

described by Lu et al. (2003).

2.3. Electron microscopy

CsCl-purified phage samples were negatively stained

with 2% (w/v) aqueous uranyl acetate (pH 4.0) on a

carbon-coated grid and examined by transmission electron

microscopy (JEOL JEM-100S, Japan Electronics and

Optics Laboratory, Tokyo, Japan) at an accelerating

voltage of 80 kV. Electron micrographs were taken at a

magnification of 50,000� and printed at 85,000� (V.

Knowlton, Center for Electron Microscopy, NC State

University, Raleigh, NC).

2.4. Sequence and analysis of UJL-1 DNA

DNA sequencing was carried out at the Department of

Energy Joint Genome Institute (JGI) sequencing facility

(Walnut Creek, CA) and Davis Sequencing (Davis, CA)

using shotgun cloning and primer walking sequencing

strategies. Sequence annotation was performed using the

Global Annotation of Multiplexed On-site Blasted DNA

Sequences software package (Altermann and Klaenhammer,

2003). Briefly, five ORFs were manually determined based

on several criteria (see Results and discussion). Based on

these ORFs, a training model was built using build-icm

provided in the glimmer package to identify the remaining
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ORFs in the AJL-1 genome. The identified ORFs were

analyzed with BlastP using the non-redundant database

from NCBI (May 2004). These results were used to

establish the automated computer annotation and to generate

the flatfile databases. Sequence alignments were performed

using Clone Manager 6, Plasmid Map Enhancer v. 3

(Scientific Educational Software, Durham, NC), ClustalX

(Thompson et al., 1997), and ClustalW (Thompson et al.,

1994). The Molecular BioComputing Suite (Muller et al.,

2001) was used to calculate the molecular mass and

isoelectric point of predicted proteins of AJL-1 and other

LAB phages currently available in databases. Transmem-

brane domains were predicted by the TMHMM program

(http://www.cbs.dtu.dk/services/TMHMM-2.0; Sonnham-

mer et al., 1998). The complete genomic sequence of the

L. plantarum phage AJL-1 was deposited in the GenBank

database under the accession number AY236756.

2.5. Restriction enzyme analyses

The phage DNA was digested with restriction endonu-

cleases (PstI, NheI, and NruI) according to the supplier’s

recommendations (Promega, Madison, WI). The DNA

fragments were separated by agarose (1%) gel electro-

phoresis and visualized under UV-light (300 nm).
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2.6. Analysis of structural proteins

SDS–PAGE was performed as described by Lu et al.

(2003). CsCl-purified phages in SDS–PAGE sample

buffer were heated in a boiling water bath for 10 min

and then applied to a NuPAGE precast gradient minigel

(4–12% Bis–Tris, Invitrogen Corporation, Carlsbad, CA).

After electrophoresis, the SDS–PAGE separated proteins

were transferred by electroblotting onto a polyvinylidene

difluoride (PVDF) membrane (0.2 Am pore size) in a

transfer buffer containing 12 mM Tris base, 96 mM

glycine, and 10% methanol (v/v) according to the

protocol provided by Invitrogen. After transfer, the

PVDF membrane was stained with 1% Amido Black.

Visible protein bands were excised, and their N-terminal

amino acid (10 or 11 residuals) sequences were

determined by Andrew Brauer (ProSeq, Inc., Boxford,

MA), using an Applied Biosystems 494 Protein

Sequencer. Based on the N-terminal amino acid sequence

of each protein, the corresponding open reading frame

was identified in the AJL-1 genome. A broad range

protein marker (Mark 12, Invitrogen) and pre-stained,

multicolor, molecular mass markers (Invitrogen) were

used to estimate the molecular weights of the phage

structural proteins.
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3. Results and discussion

3.1. Complete nucleotide sequence and genomic

organization of UJL-1

The complete nucleotide sequence of AJL-1 was

determined by combining shotgun cloning with a primer

walking sequencing strategy. Phage AJL-1 has a linear,

double-stranded, DNA genome consisting of 36,677 bp with

a G+C content of 39.36%, which is lower than that (43.1%)

of L. plantarum phage fgle (Kodaira et al., 1997), but

slightly higher than that (35.3%) of L. gasseri phage fadh

(Altermann et al., 1999). The G+C content of the phage host

(L. plantarum MU45) was not determined. Bioinformatic

analysis of the AJL-1 genome revealed 52 possible ORFs

based on several criteria: (i) the ORF begins with either an

ATG, GTG, or TTG, and ends with either TGA, TAG, or

TAA; (ii) the ORF contains at least 30 codons; (iii) the

codon usage of the AJL-1 OFRs was determined by the

training model (data not shown); and (iv) with a few

exceptions, the ORF is preceded by an identifiable
Table 1

Selected ORFs and genetic features of the Lactobacillus plantarum phage MJL-1

Predicted p

Putative RBSb and start codon

ORFh Start Endd 3V-AUCUUUCCUCCACUAGGUC. . .e Size

[aa]

Ma

[kD

134 722 1123 ccAGAAgGGAaGcGtaaataatg 134 14

224 2242 2913 TtGAAAGGtGaTGtTtttaaatg 224 24

637 2858 4768 TAaAAAGcAatcaATtaAaaatg 637 72

153a 5014 5472 ActcAAGGAGGaaATtaAaaatg 153 17

467 5728 7128 ttattgtagggAGAAAtagtatg 467 53

198 9550 10143 ttAaattAGGAGGaatcgtAatg 198 22

97 10716 11006 TttatAGGAGaaaATaaAaaatg 97 11

153b 13757 14215 gggAattAGGAGtgGcgaCtatg 153 17

148 15075 15518 tggtAGGAGGTGtataaGccttg 148 17

440 15484 16803 tgatagtcAAGtAGtcGtgaatg 440 51

506 16817 18334 aggActAtAGGAGGcttagCatg 506 57

184 19210 19761 gtcggGAtAGGAGGAttaCCatg 184 20

286 19784 20641 AAaAAAcGAGGTttaaaAttatg 286 30

64b 20722 20913 gcgAtactcGTaATattaccgtg 64 6

113 20985 21323 tacgaAAAGGAaGTGATtaaatg 113 12

125 21600 21974 GAAAGtgacggtgttaatctgtg 125 14

199 22340 22936 caAtttAAGGAGGatAaaacatg 199 21

1133 23689 27087 atcAcGGAGGTGAataatatatg 1133 112

441 27125 28447 gaattAAAGcctGccAgtgtatg 441 49

749 30671 32917 aTAtAAAGGtGGTaATgtAGatg 749 82

398 35167 36360 accagcAAcGGAGGaatagtatg 398 43

a See the text for details.
b The sequence shown includes the immediate upstream 20 nucleotides of the pu

the 3V end of the 16S rRNA is shown in uppercase letters.
c Database searches based on homologies of deduced amino acid sequences we
d The end position does not include the stop codon.
e The nucleotides complementary to the 3V end of the 16S rRNA of L. delbruc
f Molecular weights were calculated with Molecular Biocomputing Suite (Mull
g Isoelectric points were calculated with Molecular Biocomputing Suite.
h ORFs were designated according to the number of amino acids of the corresp
ribosomal binding site (RBS). The ORFs were named

according to the number of amino acids (aa) in the deduced

proteins. All ORFs were oriented in the same direction (Fig.

1). Of the 52 ORFs, 6 are initiated with the start codon TTG,

5 with GTG, and 41 with ATG. A potential RBS,

complementary with the 3V ends of 16S rRNAs of various

bacteria, can be identified upstream of most of the 52 ORFs.

In most of the sites listed in Table 1, the core consensus

sequence (AGGAGG) of RBS from the L. delbruckii ssp.

lactis phage LL-H (Mikkonen et al., 1994) is highly

conserved. An in silico restriction site analysis of the

nucleotide sequence agreed well with the experimentally

determined restriction pattern (data not shown).

The deduced amino acid sequences of all the ORFs

were compared with the non-redundant database provided

by NCBI using gapped BlastP, and subsequently analyzed

using hmmer2.2g and the Pfam databases for global and

local alignment models. A total of 29 (56%) ORFs showed

homologies with previously characterized genes in data-

bases. In most cases, homologies were found to phages

infecting gram-positive bacteria, primarily LAB (Table 1).
a

roduct

Database search resultsc

ssf

a]

pIg Predicted function Organism matched

.9 9.5 endonuclease (ORF48) Lactobacillus casei phage A2

.5 5.8 Helicase (NTP-binding) L. plantarum phage fgle

.2 5.5 DNA primase /helicase S. pyogenes phage 315.6

.3 4.8 Replicase Beet yellows virus

.1 8.6 Helicase L. casei phage A2

.6 9.2 HNH homing

endonuclease

Lactococcus lactis phage bIL170

.1 4.8 DNA binding S. thermophilus phage Sfi18

.6 9.5 Endonuclease L. casei phage A2

.0 8.1 Terminase, small subunit Bacillus subtilis PBSX prophage

.0 8.4 Terminase, large subunit S. pyogenes M1GAS

.7 4.6 Minor head protein

Portal protein

S. thermophilus phage Sfi11

.1 4.7 Scaffold protein S. thermophilus phage Sfi11

.4 4.6 Major head protein Lc. lactis phage ul36

.0 3.6 Minor head protein Yersinia pestis CO92 phage

.7 4.6 DNA packaging Lc. lactis phage TP901-1

.1 9.1 Head to tail joining Lc. lactis phage TP901-1

.6 4.2 Major tail protein B. subtilis phage SPP1

.1 9.6 Tape measure protein Lc. lactis phage TP901-1

.7 5.4 Minor tail protein L. casei phage A2

.4 4.8 Minor tail protein

Host specificity

Lc. lactis phage bIL170

.6 9.7 Lysin O. oenos phage 10MC

tative start codon. The nucleotide that is complementary to the one found at

re performed with gapped BlastP algorithm.

kii (3V-AUCUUUCCUCCACUAGGUC. . .; Mikkonen et al., 1994).

er et al., 2001).

onding coded proteins.
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Fig. 2. Restriction analysis of AJL-1 DNA. The phage DNA was digested

with PstI, NheI, or NruI. Lanes M1 and M2: 1 kb and 100 bp DNA ladders;

1 and 2 indicated that the digests were unheated and heated prior to

electrophoresis, respectively.
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Eight ORFs displayed homologies to unknown functions in

the databases. Only those ORFs for which a putative

function could be attributed are discussed below.

3.2. Genes involved in DNA replication

The predicted protein product of ORF134 shows

similarity to the putative endodeoxyribonuclease from L.

casei phage A2 (Table 1; Fig. 1). Downstream of

ORF134 is ORF224 whose derived protein product is

homologous to the DNA helicase or NTP-binding protein

from L. plantarum phage fgle (Kodaira et al., 1997),

suggesting that the putative gene products (gp) might be

involved in DNA synthesis. The derived protein products

of ORF637 and ORF153a exhibit sequence similarities

(identified by PSI-Blast searching) to a putative DNA

primase from Streptococcus pyogenes phage 315.6 and to

a replicase from beet yellows virus, respectively, suggest-

ing that these two proteins may be required for DNA

replication. The predicted gene product from ORF467

exhibits high similarity with the putative helicase from L.

casei phage A2 (Proux et al., 2002), suggesting that the

protein is probably involved in DNA synthesis.

3.3. Genes involved in phage DNA packaging

ORF440 resembles the gene encoding the putative large

terminase subunit found in the S. pyogenes prophage M1

GAS (Table 1; Ferretti et al., 2001) and in Lactobacillus

johnsonii prophage Lj771 (Desiere et al., 2000). The product

derived from ORF148 exhibited homology to the small

terminase subunit from Bacillus subtilis prophage (Krogh et

al., 1996). These results suggested that the two proteins

(gpORF440 and gpORF148) are likely to be involved in

phage DNA packaging. In tailed phages, the small terminase

subunit is responsible for specific DNAbinding, and the large

terminase subunit mediates the cleavage of phage DNA into

genome units and prohead binding. Generally, the DNA-

interaction sites (pac or cos) of the terminases are located

within or close to the structural genes (Black, 1989). This is

also true in AJL-1 (Fig. 1). After restriction of AJL-1 DNA

with different restriction enzymes, heating the restricted

DNA to 65 8C prior to electrophoresis did not alter the

banding pattern (Fig. 2), suggesting that AJL-1 DNA has no

cos site. Therefore, AJL-1 is likely to utilize the pac

mechanism of DNA packaging.

The protein specified by ORF97 exhibits high similarity

with the putative DNA binding protein from S. thermophi-

lus phage Sfi18 (Table 1). The position of ORF97 is near

terminase genes (Fig. 1). These features suggested that

gpORF97 may also be involved in DNA packaging. The

gene product of ORF198 shares homology (33% overall

identity) with the HNH homing endonuclease of L. lactis

phage bIL170 (Crutz-Le Coq et al., 2002). HNH homing

endonucleases confer mobility to their own genes or to host

intervening sequences, either an intron or intein, by
catalyzing a highly specific, double-strand break in a

cognate allele lacking the intervening sequence (Chevalier

and Stoddard, 2001). These endonucleases can be found as

free-standing ORFs between genes or encoded within

introns or inteins. The function of HNH homing endonu-

cleases in the phage cycle and/or the reason for their

maintenance in such compact phage genomes is intriguing

(Crutz-Le Coq et al., 2002). However, based on the position

of ORF198 in the genome (close to terminase genes), it is

likely that the HNH homing endonuclease is involved in

DNA packaging. Similarly, the protein specified by

ORF153b, showing high similarity with the putative

endodeoxyribonuclease from L. casei phage A2, is likely

to be involved in DNA packaging.

3.4. Experimentally determined structural proteins of UJL-1

During purification of phage AJL-1, several bands

appeared in the CsCl density gradients. Samples from two

phage-containing bands were individually analyzed by

electron microscopy and SDS–PAGE. The electron micro-

graph (Fig. 3A) shows that the main band contained intact

phage particles (Fig. 3A2) and the lower band contained

only phage heads (tail-less phage particles, Fig. 3A1). The

morphology (with an average length of about 182 nm) of the

intact phage particles was consistent with the initial

description of AJL-1 in our previous study (Lu et al., 2003).

SDS–PAGE of the phage head sample revealed the

presence of three head proteins, whereas SDS–PAGE of the
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intact phage sample showed six structural proteins, includ-

ing the three head proteins (Fig. 3B), suggesting that the

three proteins absent in the phage head sample were tail

proteins. In order to identify the corresponding ORFs in

AJL-1 DNA, the six protein bands from the intact phage

sample were transferred to a PVDF membrane, and the N-

terminal sequences were determined (Fig. 3B).

The three head proteins present in both intact and defective

phage samples have molecular weights (MW) of 34 kDa, 45

kDa, and 61 kDa, respectively, as estimated by SDS–PAGE

(Fig. 3B). The 61-kDa protein appeared to be a minor head

protein as it was much less abundant than the other two head

proteins (Fig. 3B). The first 11 amino acids (MDYDL-

TEHKQA) of this protein (61 kDa) exactly matched amino

acids 1 to 11 of AJL-1 gpORF506 with predicted molecular

mass of 57.7 kDa. This minor head protein showed very

strong similarity to the putative portal protein of S.

thermophilus phage Sfi11 (Table 1). The 34-kDa and 45-

kDa proteins appear to be major head proteins according to

their abundance shown in Fig. 3B. They shared identical N-

terminal sequence (ATTNNDLPVR), which perfectly

matched the residues 2 to 11 of the AJL-1 gpORF286. The

34-kDa protein observed on the SDS–PAGE corresponded to

the predicted molecular mass of gpORF35 (30.4 kDa).

However, the observed 45-kDa protein had a much higher

MW than the predicted value (30.4 kDa) of gpORF286. A

2D-gel electrophoresis prior to N-terminal sequencing may

be needed to determine the attribution of this protein. The first

methionine residue was absent in the two major head
,

proteins, which was in accordance with the rule that the N-

terminal methionine is generally processed when the second

amino acid residue is alanine (Ben-Bassat et al., 1987).

Processing of the initiation methionine during protein

maturation has been observed in many phages and occurs

via the host methionine aminopeptidase activity (Lowther

and Mathews, 2000; Mahanivong et al., 2001). The product

deduced from ORF286 exhibits a noticeable sequence

similarity (37% or 43% overall identity) with the exper-

imentally determined major head protein of L. lactis phage

ul36 (Table 1) or with the hypothetical protein (gpORF36) of

Streptococcus pneumoniae phage MM1 (Fig. 4). This

bioinformatic link suggested that gpORF36 of S. pneumoniae

phage MM1 may also be a major head protein.

The three tail proteins which were only present in the

intact phage sample had observed MW of 28 kDa, 50 kDa,

or 76 kDa, respectively (Fig. 3). The observed 28-kDa

protein appears to be a major tail protein according to its

abundance shown in SDS–PAGE (Fig. 3). The first 10

amino acids of the protein were VAVNNGNKFV. This

sequence was identical to residues 2 to 11 (except residue 8)

of the AJL-1 ORF199. Residue 8 of ORF199 was V instead

of N. The discrepancy may reflect an error in the N-terminal

sequencing because re-sequencing ORF199 gave the same

nucleotide sequence. The N-terminal methionine is not

present in the mature 28-kDa protein. The predicted MW

(21.5 kDa) of gpORF199 is lower than the observed (28

kDa). The major tail protein displayed a strong homology to

gpORF21 of B. subtilis phage SPP1 (Table 1).



                40                  60                  80                 100       
JL-1  MATTNNDLPVRVYSKEFLQLLSTVYQAQSVFTPTFG-ALQALDGVPNNATAFSVKTNDMAVVVGEYSTDAN-TAFGTGTSNSSRFGEMKEVIYADTDVPY    98 
Ul36  -------MAIKYFTKQYAGMLPDLFAKKSAFLRAFGGVLQVKDGVTENDTFMELKVSDTDVVIQAYSTDAN-VGFGSGTGNTSRFGQRKEVKSVNKQVSY    92 
MM1   -MPSNQNNAVRRYEKQYAGILETVFGVRAAFSNALA-PIQILDGVQENSKAFSVKTNNTPVVIGEYKTGENDGGFGDNSGAQSRFGGVTEVKYENTDVNY    98 

                                             

               140                 160                 180                 200       
JL-1  TAGWAIHEGLDQMTVNNDLDAAVADRLNLQAQAKTRLFNVAMGEALATAGTDLGAVDD-----VNALFESAVEKYTDL--EVIAPVRAYVTASVYNAIID   191 
Ul36  DAPLAINEGIDDFTVNDIKDQVVAERLALHGVAWAQHVDKLLGKLLSDSASETLTVKLD-EDSVTKLFSDAHKKFVNNNVSIAVPWVAYVNADIYDLLID   191 
MM1   DYTLTIHEGLDRYTVNNDLNAAVADRLKLQSEAQTRTVNKRIGKYLSDTATKTEALADFTDDKVKALFNKLSAFYTNN--EVTAPITVYLRSEFYNAIVD   196 

                                             
                                             

               240                 260                 280                          
JL-1  LANVTTAKNSAVNIDTNGMLSFRGIAITKVPTQYMG-GKAVIFAPDNVARVFTGINIARTIQAIDFAGVELQGAGKYGTFILDDNKKAIFTATPKA---   286 
Ul36  SKLATTAKNSSANVDEQTLYKFKGFILSELPDEKFQLNEGAYFAADNVGVAGVGIQVTRAMDSEDFAGTALQAAAKYGKYLPEKNKKAILKATVTK---   287 
MM1   MASVTSAKGATISLDENGLPKYKGFTLEETPAQYFETGVIAIFSPNGIIIPFVGISTARVIEAENFDGVNCKLLLRVVLTLLMTIRKQFTKLQELLYRR   295 
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Fig. 4. Multiple sequence alignment of the major head proteins from Lactobacillus plantarum phage AJL-1 and Lactococcus lactis phage ul36 with ORF36 of

Streptococcus pneumoniae phage MM1. Residue numbers of the proteins are given on the right. Perfectly conserved residues are highlighted in black boxes.

Residues that are conserved in 2 of the aligned sequences are shaded in gray. Numbers refer to the amino acid position.
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The N-terminal peptide sequence (MDLLIEKDGKR) of

the 50-kDa protein revealed on the SDS–PAGE matched

amino acid positions position 12 to 22 of the predicted

gpORF441, suggesting that the 11 amino acids may actually

not belong to this protein, or the protein was proteolytically

processed during maturation. Processing of the gpORF441

(49.7 kDa) at position 12 predicts a protein with MW of

48.5 kDa, slightly lower than the observed (50 kDa). Similar

proteolytic cleavage of N-terminal amino acids during

phage morphogenesis has also been observed in other

LAB phages such as L. lactis phage BK5-T (Mahanivong et

al., 2001), S. thermophilus phages (Desiere et al., 1998), and

L. gasseri fadh (Altermann et al., 1999). The 50-kDa

protein is probably a minor tail protein because it was much

less abundant than the other two tail proteins (Fig. 3B). The

result from the database search showed that this minor tail

protein exhibits a weak sequence similarity with a tail

component protein from L. casei phage A2 (Table 1).

N-terminal sequence analysis of another tail protein (76

kDa, observed from SDS–PAGE) revealed the sequence

AIRTYDILLDS, which is identical to amino acids 2–12 of

the protein (82.4 kDa) derived from ORF749. Again, the N-
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Fig. 5. Prediction of the transmembrane domain and posterior probabilities in the p

the transmembrane domain; solid and dotted lines indicate protein regions located

putative holin protein is represented by the two horizontal lines, featuring the sam
terminal methionine was absent in the mature protein. This

protein, apart from its function as a tail protein, may be also

responsible for host specificity because it shows homology

with putative anti-receptors from several dairy phages

(Brbndsted et al., 2001; Desiere et al., 1999; Lucchini et

al., 1999), as well as with ORF112 of L. lactis phage

bIL170 (Crutz-Le Coq et al., 2002), which was possibly

involved in host range determination.

3.5. Genes involved in host lysis

The predicted protein from ORF398 shares a strong

sequence similarity (57% overall identity) with the lysin of

Oenococcus (previously Leuconostoc) oenos phage 10MC

(Table 1) and lysin from several other phages (data not

shown). In addition, ORF147, which is located immediately

upstream of the lysin gene, exhibits a strong similarity with

the gene (also immediately upstream of lysin gene) from

Oenococcus oenos phage 10MC. The product of ORF147 is

predicted to contain a transmembrane domain (Fig. 5).

These features are characteristics of the E S holin (Grün-

dling et al., 2000a,b) and other phage holins (Wang et al.,
1201000 80
d Position 

utative holin of AJL-1 using the TMHMM program. Vertical bars represent

in the cytoplasma or the periplasma, respectively. Overall architecture of the

e pattern/location scheme.
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2000), implying that ORF147 is very likely to be the holin

gene of AJL-1.

3.6. Other UJL-1 genes with putative functions

Generally, the genes located between the major head and

major tail genes are involved in formation and connection of

the head and tail structures and in DNA packaging

(Brbndsted et al., 2001). In this region of the AJL-1

genome (Fig. 1), ORF125 and ORF113, respectively,

showed homology to head–tail joining and DNA packaging

proteins from L. lactis phage TP901-1 (Table 1), suggesting

that ORF125 and ORF113 products may be involved in

phage assembly.

ORF1133 is the longest ORF in the AJL-1 genome. The

predicted product of this ORF showed strong sequence

similarity to the tail tape measure protein of L. lactis phage

TP901-1, suggesting that the protein may be responsible for

determining phage tail length. In phage lambda, the tail tape
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measure protein is used as a template for tail polymerization

and remains inside the tail tube (Katsura and Hendrix, 1984).

3.7. DNA packaging and structural gene map of UJL-1

A gene map of AJL-1, displaying the predicted

structural module, is aligned with corresponding genome

sections of five other Siphoviridae LAB phages (Fig. 6),

including two Lactobacillus phages (fgle, and fadh), two

lactococcal phages (TP901-1, ul36), and one streptococcal

phage (Sfi21). The alignment demonstrated that these

phages share a highly conserved structural gene order,

supporting the notion that the structural gene order is

highly conserved among Siphoviridae phages (Lucchini et

al., 1998, 1999). In addition, the size (in aa or kDa) and

isoelectric point (pI) value of structural proteins with the

same function appear to be relatively conserved. These

physical properties can be useful for extrapolating and

predicting gene functions within the structural module for
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closely or distantly related phages even showing little or

no regions of sequence homology. The alignment of the

AJL-1 structural gene map with other LAB phages (Fig. 6)

predicts that the experimentally determined minor head

protein (gpORF506) of AJL-1 may be also a portal protein

because the gene location (immediately downstream of

large subunit terminase). In addition, the size (506 aa) and

pI value (4.6) of the gene product were very similar to a

portal protein from Sfi21, TP901-1, ul36, and fgle. This

prediction was supported by the database search result

(Table 1) as discussed above. Portal proteins are generally

responsible for forming the entrance to the head during

DNA packaging and determining the amount of DNA to

be packaged (Dube et al., 1993). Similarly, we predict that

uncharacterized ORF397 of fadh is probably a portal

protein as well. The derived protein from ORF184 shows

limited sequence similarity with the putative protein from

S. thermophilus phage Sfi11 (Table 1). However, the size

(184 aa) of the protein, its pI value (4.7) and its relative

position in the gene map were very similar to putative

scaffold proteins of several LAB phages, including ul36,

TP901-1, fgle (Fig. 6), and Sfi11 (Table 1). These features

supported the prediction that gpORF184 might have a

scaffolding function. In the fadh genome, the function of

ORF159b is unknown, but its physical properties (the

location in the gene map, and the size and pI value of the

gene product) are similar to putative head–tail joining

protein gene from phages AJL-1, Sfi21, and TP901-1 (Fig.

6). Thus, ORF159b of fadh may encode a head–tail

joining protein. As mentioned earlier, the derived product

from ORF36 of S. pneumoniae phage MM1 (NCBI

accession no. NC003050) shared a striking sequence

similarity (Fig. 4) with the major head protein from

AJL-1 and ul36. The structural gene map of phage MM1

(data not shown) reveals that immediate upstream of

ORF36 is a gene encoding a putative scaffold protein.

Downstream of ORF36 are several small (77–130 aa)

protein genes, including two small putative minor capsid

protein genes (114–123aa). Furthermore, the deduced

protein of ORF36 consists of 295 aa and has pI value of

5.7. These features are very similar to those of the major

head protein from AJL-1, TP901-1, ul36, and fgle (Fig.

6), strongly supporting our prediction that ORF36 of phage

MM1 may encode a major head protein.

3.8. Functional modules and genomic organization in UJL-1

In many phages the genes encoding related biological

functions are clustered. Analysis of the proven and putative

gene functions and the locations of individual ORFs from

phage AJL-1 reveal that the phage genome is highly

modular, with functionally related genes clustered together.

Thus, the following functional modules are proposed and

indicated in Fig. 1: DNA replication, transcription regu-

lation, DNA packaging, head morphogenesis, head–tail

joining, tail morphogenesis, and cell lysis.
The DNA replication module (Fig. 1) consists of genes

encoding a putative endodeoxyribonuclease, two putative

helicases, a putative primase, a putative replicase, and a few

other ORFs between or nearby these genes. The packaging

module contains ORFs encoding putative HNH homing

endonuclease, DNA binding protein, endonuclease, termi-

nase subunits, and several other proteins in this region (Fig.

1). The head morphogenesis module includes ORFs encod-

ing the experimentally determined minor head protein (also

a putative portal protein), a putative scaffold protein, the

experimentally identified major head protein, and a putative

minor head protein, and gpORF273 (Fig. 1). The head–tail

joining module starts with ORF113 encoding a DNA

packaging protein, followed by ORF94 and the gene

encoding the head–tail joining protein, and ends with

ORF117. The tail morphogenesis module includes genes

encoding three experimentally identified tail proteins (one

major and two minor tail proteins) including the putative

tape measure protein and anti-receptor (Fig. 1). The cell

lysis module consists of a putative lysin gene and ORF147

which is suspected to be a holin gene. Besides these

modules, a regulation module was also assigned in Fig. 1,

based upon extrapolations from other Siphoviridae phages

(Brøndsted et al., 2001; Brüssow, 2001; Brüssow and

Desiere, 2001; Stanley et al., 1997). Further analysis and

experimental evidence are needed to confirm these modules.

Notably, genes involved in packaging of the genome into

the phage head are immediately followed by structural

modules. Head genes are clustered together and precede the

tail genes, which are also clustered together. These genes are

followed by a gene cluster required for lysis of the host.

Although a few ORFs have not been assigned to any

functional module due to lack of information regarding the

biological functions of the encoded genes, the overall

organization of functional modules within AJL-1 revealed a

striking correlation with those observed in many other

Siphoviridae LAB phages, such as the virulent phage ul36

(Labrie and Moineau, 2002), and temperate phages TP901-1

(Brbndsted et al., 2001), fgle (Kodaira et al., 1997), fadh

(Altermann et al., 1999), and O1205 (Brüssow and Desiere,

2001). No remnants of a lysogeny module were found in the

AJL-1 genome.

Further studies on gene structure, transcription, and

functions in phage AJL-1 are needed for better under-

standing the biology of the phage and potentially assist the

development of phage-control strategies in vegetable

fermentations relying on L. plantarum starter cultures.
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