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Abstract: Combining data into a centralized, searchable, and linked platform will provide a data
exploration platform to agricultural stakeholders and researchers for better agricultural decision
making, thus fully utilizing existing data and preventing redundant research. Such a data repository
requires readiness to share data, knowledge, and skillsets and working with Big Data infrastructures.
With the adoption of new technologies and increased data collection, agricultural workforces need
to update their knowledge, skills, and abilities. The partnerships for data innovation (PDI) effort
integrates agricultural data by efficiently capturing them from field, lab, and greenhouse studies using
a variety of sensors, tools, and apps and provides a quick visualization and summary of statistics for
real-time decision making. This paper aims to evaluate and provide examples of case studies currently
using PDI and use its long-term continental US database (18 locations and 24 years) to test the cover
crop and grazing effects on soil organic carbon (SOC) storage. The results show that legume and rye
(Secale cereale L.) cover crops increased SOC storage by 36% and 50%, respectively, compared with oat
(Avena sativa L.) and rye mixtures and low and high grazing intensities improving the upper SOC by
69–72% compared with a medium grazing intensity. This was likely due to legumes providing a more
favorable substrate for SOC formation and high grazing intensity systems having continuous manure
deposition. Overall, PDI can be used to democratize data regionally and nationally and therefore can
address large-scale research questions aimed at addressing agricultural grand challenges.

Keywords: temporal; spatial; remote sensing; precision agriculture; Big Data

1. Introduction

Research now produces larger volumes of data, owing to progress in “omics”, preci-
sion agriculture, and on-farm sensor advancements, which has resulted in a concurrent
need for an advanced capacity to collect, process, and store these data. This has also re-
sulted in more complex and integrated analyses, including multi-location, multi-discipline
collaborations [1]. “Big Data”, while not formally quantified, is generally described by the
“volume, velocity, and variety of data collected being big and complex enough to make
them difficult to process, manage, and handle using conventional analytical tools and
techniques” [1,2]. Creating a database and storage system for integrating and housing
diverse data sources in real time, along with well-defined metadata information (data
quality), is an important step for fully utilizing Big Data for agricultural decision support
tools [3–7]. Such a tool has been the focus of the Agricultural Collaborative Research
Outcome System (AgCROS), which is an ongoing effort by the United States Department
of Agriculture (USDA) Agricultural Research Service (ARS) for a federated data repository
that links diverse and disparate databases that are currently available [1]. Such a database
is important for understanding key yield gap factors and will be crucial to meeting global
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food demands [8]. In the subsequent sections, the authors will elaborate on an innova-
tive framework for linking and sharing diverse agricultural Big Data, as well as describe
applications and technological advancements for standardizing, integrating, and automat-
ing agricultural systems research. Therefore, the objectives of this manuscript are to (1)
introduce agricultural researchers to the USDA PDI, which aims to provide a solution to
how agricultural data are organized, accessed, and standardized for high-performance
computing through highlighting three spatially focused case studies and (2) illustrate how
PDI can be used to collect, process, and analyze long-term, multi-year, and complex Big
Data in a systematic, quantitative review of cover crop and grazing effects on soil carbon
storage.

Core Ideas

• Data silos affect inferences and decision making;
• Standardized Big Data platforms, analytics, and accessibility is demonstrated;
• Cover crop and grazing effects on soil carbon were evaluated;
• Across 18 sites, legume and rye cover crops and low or high grazing intensities had

the greatest soil carbon storage;
• PDI may prevent research redundancies and address grand challenges facing agricul-

ture.

1.1. Introducing PDI and Its Framework

PDI is a USDA-ARS data management effort that leverages the power of strategic pub-
lic and private partnerships (Figure 1). Innovation (improving the way to collect, exercise
quality assurance and quality control for, process, analyze, store, and distribute data), stan-
dardization (ensuring data are of the highest quality for maximum usefulness and impact),
automation (decreasing the number of times handling samples or interacting with data),
and integration (expanding the power of data and opportunities for scientific collaboration)
are the goals set by PDI to solve the current grand challenges facing agriculture (Figure 2).
Through this public and private partnership, PDI aims to create customized solutions to
reduce the time researchers spend on data management so that they can spend more time
on their science to accelerate agricultural research.

As a USDA grand challenge vision of connecting research from the lab to the field,
PDI is developing a suite of tools for data accessibility, analytics, and visualization. In the
core of the structural organization of the PDI is the AgCROS, which serves as a one-stop
shop to upload, download, and explore agricultural research data (Figure 1). The AgCROS
is a structured query language (SQL) database housed on a Microsoft Azure cloud platform
and directly interfaces with Esri’s ArcGIS Enterprise for the viewing and retrieval of data
via a user-friendly dashboard. The AgCROS connects with several local and national
databases, including USDA Ag Data commons. Research data collected through USDA-
ARS regional labs are also standardized and integrated in a format that can be housed within
the AgCROS. Data collection from field, lab, and greenhouse experiments for upcoming
years will be streamlined and directly fed into the AgCROS. A data entry template (DET)
that standardizes a “data dictionary” for each agricultural industry can be developed to
capture and process research data. Traditionally, much of the data collected by agriculture
researchers were pen and paper-based, a practice vulnerable to errors during data collection
and entry. By developing electronic data capturing systems with a standardized DET, data
errors are expected to be minimized, while the speed and efficiency are expected to increase.
Through a partnership with Microsoft’s “FarmBeats”, the future of data collection can also
be automated and streamlined using on-farm sensor networks.
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1.2. Decision Support Informatics Platform

In the past and current research environment, much of the agricultural research data
and analysis output collected across large geographic areas and over multiple years has
been located within desktops and file cabinets. Consolidation and aggregation of such
data and visualization in real time can aid research focused on complex climate–soil–plant
interactions by extrapolation of past research results for improved sustainable production,
mitigation of climate stress, and natural resource management [9,10]. The AgCROS is
connected with dashboards (Figure 1) to help users quickly interrogate and visualize data
to find answers to their questions. Features such as “Find Expert” and “Ask Expert” allow
users to gather expert opinions on a research question. A list of researcher and industry
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experts on the topic area is prepared and entered in the database to direct the question
toward an appropriate expertise. Experts on the topic area can be searched by name,
expertise, and institution for the specific question a user may have. Currently, researchers at
the USDA-ARS, research collaborators, stakeholders, customers, and USDA administration
can use the database through the dashboard to speed up their decision-making process.
With the tools that are linked and updated within the research data environment, PDI allows
new ways for scientists to interact with their data in a living, working data environment.
It is a “network of networks” where researchers can interact virtually across locations
and disciplines, thus increasing the impact for scientists, collaborators, customers, and
stakeholders [11]. In the next section, case studies currently using PDI will be evaluated.
The value of PDI will be demonstrated through a systematic analysis of long-term cover
crop and grazing effects on soil carbon storage throughout the continental US.

1.3. Big Data Parternships and How It Is Improving Connectivity

Miscrosoft’s “FarmBeats” is a cloud-based platform with geographical information
system (GIS) software and is an end-to-end Internet of Things (IoT) system that enables
seamless data collection for agriculture [12]. FarmBeats solves rural farming community
Internet connectivity issues by using TV’ white space. Data collected within the farm using
sensors, drones, satellites, and tractors are directed to cloud-based artificial intelligence
models to obtain detailed farm and crop conditions in real time. The USDA-ARS is eval-
uating FarmBeats as pilot project on cover crop studies. A network of sensors placed on
experimental sites collects data such as the soil temperature, soil moisture, soil pH, air
temperature, precipitation, and wind speed, as well as sensors mounted on tractors and
drones that collect crop height, biomass, greenness, and plant health data. Collected data
are fed to cloud-based FarmBeats. Combining sensor data with imagery from drones and
satellites help to create a derived, fused dataset to cover the entire farm.

The Federal Communication Commission (FCC), along with the data and mapping
working group, identified a gap in agricultural locations for possible broadband access. As
an effort to expand broadband capacity in rural America, PDI, in collaboration with ESRI
using ArcGIS, developed a dashboard to visualize current internet speeds overlaid with
the USDA National Agricultural Statistics Service (NASS) crop data layer. This dashboard
allows for visualization of internet connectivity speeds and the total acreage for each crop
to identify locations with the needs of expanding broadband capacity.

1.4. Utilization of TV White Space

Television white space is the unused frequency block between active TV channels
in the very high and ultrahigh frequency spectrum bands [13]. This unused TV white
space spectrum became accessible after the FCC allowed unlicensed radio transmitters to
operate in white spaces. White space helps provide connectivity in rural areas by utilizing
a frequency that is able to penetrate larger obstacles such as trees, mountainous terrain, and
buildings and can provide signals to farm equipment over 10 km. The FCC set minimum
data transmission speeds of 25 megabits per second (Mbps) for download and 3 Mbps
for upload for broadband services. By using TV white space, broadband communication
in rural areas is expanding its precision for agricultural use and optimizing inputs in
real time. Furthermore, as agriculture equipment becomes more sophisticated, challenges
surrounding the “right to repair” have elevated to the state level. There are 17 states that are
considering legislation to grant farmers the “right to repair” their equipment, which include
Hawaii, Illinois, Iowa, Kansas, Mississippi, Minnesota, Missouri, North Carolina, Nebraska,
New Hampshire, New Jersey, New York, Oklahoma, Tennessee, Virginia, Vermont, and
Washington.

1.5. Case Studies

With GIS integration and utilization being the integrator, the following are three case
studies that use AgCROS to advance how information is stored and delivered to end users.
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The case studies are focused on different questions that utilize spatial and temporal datasets
to integrate and visualize data relationships. Overall, these case studies standardize data
collection and are readily available to the research community and illustrate how PDI can
be used to capture, store, and use Big Data and ultimately result in more efficient and
sustainable agricultural systems.

1.5.1. Case Study 1: Data Automation for the Cattle Tick Fever Eradication Program

The ticks Rhipicephalus (Boophilus) annulatus and R. (B.) microplus are obligate parasites
and affect animal productivity directly, as well as serving as vectors for the cattle fever
caused by protozoal parasites Babesia bigemina and Babesia bovis [14]. Cattle fever was
eradicated in the US in 1943 by eliminating these vectors. However, these vectors still
exist in Mexico and recolonize north of the Rio Grande [15]. A permanent quarantine
zone along the border serves as a buffer area for monitoring and eradication. However,
these eradication practices are constantly challenged by the alternate host such as nilgai
(Boselaphus tragocamelus) and white-tailed deer (Odocoileus virginianus). The cattle tick
eradication program GIS initiative started in early 2000s. The USDA Animal and Plant
Health Inspection Service (APHIS) veterinary services and USDA-ARS Knipling-Bushland
US livestock insects research laboratory in Kerrville, Texas partnered to spatially understand
better the extent of cattle fever tick outbreaks. A web mapping application was developed
for this purpose to reduce traditional manual data collection error, as well as speed up data
collection. “Survey123” application automates field data collection and data upload to the
cloud. The app generates field polygon boundaries as the survey crew walks around the
fence line and logs the tick fever disease events. The cattle monitoring data are linked with
radio frequency identification ear tags, and each sample is QR coded. The app is instantly
updated on the dashboard. This automation effort is estimated to reduce labor costs by
40%.

1.5.2. Case Study 2: Battling Citrus Greening in Florida Citrus Groves

The Citrus Research and Field Trials (CRAFT) Foundation brings together experts
from the Florida citrus industry and Florida citrus growers to minimize the effect of citrus
greening disease, also known as “Huanglongbing” or “HLB” [16]. This disease affects
nearly all commercial citrus species and cultivars [17]. The symptoms change the chemical
characteristics and sensory attributes of the fruit and can be detected anywhere on the
plant from roots to leaves [18,19]. Currently, HLB is found in all citrus growing counties in
Florida and in California, Georgia, Louisiana, South Carolina, and Texas [20,21]. A 72.2%
reduction (7.98–2.22 billion tons) of oranges for processing during 2007–2018 in the US was
due to citrus greening [17].

Management practices and techniques that reduce HLB infestation require intensive
field trials and testing. PDI and CRAFT partnered to streamline the field research and
delivery of recommended control practices. An online public application system was
created in ArcGIS Survey123 with a complete form-centric solution for creating, sharing,
and analyzing data. Survey123 can be used to collect data via web or mobile devices, even
when disconnected from the Internet. Citrus growers submit their current and planned
management activities using Survey123 forms, which are reviewed by the technical working
group. A dashboard interface connected with Survey123 forms helps researchers visualize
and interpret the submitted data, along with the application to participate in the research
effort. Once applications are approved, the experimental design is determined, and trees
are planted. Growers enter their management data specific to each experimental plot,
which include planting dates, fertilizer applications, irrigation schedules and amounts,
pesticide applications, soil amendments, biostimulants, Asian Psyllid control methods, soil
and water quality reports, harvest yields, and cost analyses.
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Unmanned aerial vehicle imagery of the experimental sites are collected by research
partners during the project period and provide time series of normalized difference red
edge index (NDRE) and normalized difference vegetation index (NDVI) data:

NDRE = (NIR − RedEdge)/(NIR + RedEdge) (1)

NDVI = (NIR − Red)/(NIR + Red) (2)

where NIR, RedEdge and Red are near infrared, red edge, and red band of the reflectance
data, respectively.

These two indices (NDRE and NDVI) are used to assess plant health remotely. Each
individual tree is marked by GPS to link the time series of plant health as well as plant
nutritional and diagnostic test results collected by the Florida Department of Agriculture
Consumer Services. Growth metrics such as the canopy area and volume are also tracked
throughout the entire length of the project. All the measurements, lab results, and plant
health imagery are linked spatially to the original grove and available to growers and
researchers. PDI and CRAFT have worked toward an integrated, streamlined data collection
and management solution to provide Florida citrus growers and researchers extensive
information on best management practices (BMPs) to guide future citrus production. Future
research will be able to access all the data and continue the challenge of finding BMPs to
best serve the citrus industry.

1.5.3. Case Study 3: Smart States Focus on Precision Agriculture Technologies and
High-Speed Broadband for Rural Areas

Agricultural research has shown that reducing waste, increasing productivity, and
ensuring sustainability while doubling agricultural products by 2050 will be required to
feed the growing population. Precision agriculture is a data-driven farming technique that
reduces unnecessary inputs and increases productivity by allowing variable rate applica-
tions in response to crop needs through GPS location, sensor networks, and drones [22]. In
addition to saving input costs, this technology is being considered to boost crop yield by
3–18% through targeted fertilizing, planting, spraying, and irrigation. However, the chal-
lenge to implementing data-driven agriculture in rural America is the lack of high-speed
Internet connectivity. According to a USDA report, 29% of US farms have no access to the
Internet [23]. PDI is integrating multiple data sources to expand broadband connectivity to
rural farms to increase precision agricultural tool usage.

2. Methods
Data Aggregation and Accessibility via AgCROS

Currently, data can be explored by identifying research projects or networks involved
or by choosing the specific topics or locations in AgCROS, as this provides map-based data
query, visualization, and download services. In efforts to illustrate AgCROS functionality,
we explored how management such as cover crops or grazing intensity affects total soil
organic carbon (SOC) storage based on data housed within AgCROS.

Datasets from AgCROS were downloaded in bulk using the tab “Download All
(joined)”. Downloaded data contained USDA-ARS research data from several experimental
locations (58 total) and years (1983–2017) combined into one excel file (n = 58). The metadata
included management information and measured variables, which were organized into
33 tabs with a common identifier in the form of an experiment unit ID and treatment ID.
A subset of data from a consistent depth (0–6 cm) that contained cover crop (legumes
(combined), oat (Avena sativa L.) or rye (Secale cereale L.), and ryegrass (Lolium perenne L.))
and grazing intensity treatments (high, medium, and low) were analyzed (Figure 3) in R
software [24]. Grazing intensity studies extracted from PDI consisted of (1) low grazing
pressure (put-and-take system to maintain a target of roughly 300 g m−2 of available forage),
(2) medium grazing pressure (put-and-take to maintain a target of roughly 225 g m−2 of
available forage), and (3) high grazing pressure (target of 150 g m−2 of available forage). A
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subset of PDI-derived data was utilized in the final analyses based on a consistent sampling
depth and fixed effect treatments (cover crop species and grazing regimes), totaling 18
experimental sites and 24 experimental years (1998–2012). A Pearson correlation coefficient
between the SOC and other soil variables (Table 1) was evaluated and considered significant
at an alpha level of 0.05.
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Table 1. Correlation coefficients between total soil carbon (gC kg−1) and soil parameters (0–5 cm
depth) throughout the continental US from 18 experimental sites and 24 years.

Variables Pearson Correlation
Coefficient (r)

Number of
Observations (n)

pH 0.25 * 1275
Total soil N (g N kg−1) 0.86 * 2553
Inorganic C (g C kg−1) −0.39 * 759
Organic C (g C kg−1) 0.81 * 571
Mineral C (g C kg−1) 0.81 * 571

CEC (cmol kg−1) 0.6 * 728
Electric Conductivity (siemens m−1) −0.61 * 268

NH4-N (mg N kg−1) 0.49 * 589
NO3-N (mg N kg−1) 0.27 * 589

P (mg P kg−1) 0.09 * 1130
POM (g C kg−1) −0.35 * 112

Microbial Biomass C (mg C kg−1) 0.14 60
Sand %) −0.21 * 100
Silt (%) 0.56 * 82

Clay (%) −0.4 * 82
Bulk Density (g cm−3) −0.49 * 622

Note: * p < 0.05; Not significant = p > 0.05.

3. Results and Discussion
Database Query and Analysis: Spatial and Temporal SOC Trends

Across all AgCROS experimental locations and years, the total SOC was strongly
positively correlated with the total soil N (r = 0.56, n = 1275) and mineral carbon (r = 0.81;
Table 1). The soil carbon was also positively correlated with the soil cation exchange
capacity (r = 0.60), while it was negatively correlated with the electrical conductivity (EC)
of the soil (r = −0.61). The silt content was positively correlated (r = 0.56, n = 100), while
the bulk density was negatively correlated (r = −0.49, n = 622), with the SOC (Table 1).
These results were expected, given the previously established linkage between the SOC
and silt, CEC, and N content [25] and the inverse relationship with the bulk density [26], as
high-CEC clay minerals can hold more aromatic C compounds than simpler (1:1), low-CEC
clay minerals [27]. The SOC results may also be related to the mean annual temperature
across these sites, as climate is known to impact soil mineralogy, CEC, and pH.

Overall, the cover crop effects on the soil carbon illustrated that rye (26.38 g C kg−1,
n = 217) and legume (23.96 g C kg−1, n = 30) cover crops resulted in greater SOC storage
spatially and temporally (Figure 3A), while ryegrass (21.8 g C kg−1, n = 40) and the oat and
rye mix (17.57 g C kg−1, n = 144) resulted in a lower SOC content. This result is congruent
with [28], who found that enhanced SOC storage favors legume and rye cover cropping.
This result is likely owing to the more favorable (labile) substrate of legumes, greater
microbial and photosynthetic biomass C, and subsequent substrate in the rye relative to
the ryegrass and the oat and rye mix.

Both the high and low grazing intensities resulted in comparable but significantly
different SOC levels (59.2 and 52.8 g C kg−1, respectively). The medium grazing intensity
had a significantly lower SOC content (16.3 g C kg−1, p < 0.05) compared with both the high
and low grazing intensities (Figure 3B). This result was likely owing to higher deposits
of animal excreta under high grazing pressure, which are high in nutrients and can help
build SOM and support beneficial soil microorganisms [29]. Further, low-intensity grazed
systems introduce hay to supplement the animal diet, which further adds carbohydrate
sources for C assimilators [30]. The low grazing treatment left substantial forage residue
in the field, which served as a substrate for microbial communities and could build SOC
following minor trampling by cattle [29,31]. However, the medium grazing treatment did
not greatly increase SOC sequestration, most likely due to reduced levels of field crop
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residue and animal excreta relative to the low and high grazing treatments, thus resulting
in 70% less SOC storage overall compared with high- and low-intensity grazing.

These results provide examples of how AgCROS allows for combing databases from
research conducted in diverse biophysical environments and can be useful in deriving
insights from agricultural Big Data, improving agricultural system efficiency, and enhancing
environmental outcomes. For example, the authors of [9] identified, via AgCROS, 30–40%
N2O emission reductions when integrating fertilizer manure BMPs in the US. AgCROS
is currently in the development and growth phase, with some examples of available
datasets being Long-Term Agroecosystem Research (LTAR), the Greenhouse Gas Reduction
through Agricultural Carbon Enhancement Network (GRACEnet), the Nutrient Uptake
and Outcome Network (NUOnet), Resilient Economic Agricultural Practices (REAP), and
the Conservation Effects Assessment Project (CEAP). With the growth and expansion of
this data repository, researchers will be able to conduct local-, regional-, and national-scale
agricultural analyses [9,10].

4. Conclusions

Combining data into a queryable and linked repository such as AgCROS will require
researchers’ willingness to share data, knowledge, and skills to work with the Big Data
infrastructure, as well as efforts to make the necessary changes to data already collected.
In addition, data infrastructure, including database managers, computer scientists, and
statisticians on projects, will be needed to help overcome technical barriers.

The PDI effort integrates agricultural data through real-time storage and accessibility
for enhanced in-field agricultural management decisions, improved efficiency gains, and
enhanced environmental outcomes. In efforts to illustrate PDI applications and its current
use, three case studies were described in the manuscript, all of which used spatial informa-
tion as an integrator for their use in cloud-based applications, which span cattle tick fever,
citrus greening, and high-speed broadband for precision agriculture in rural areas.

This paper also evaluated factors affecting SOC storage such as cover cropping, grazing
intensity, and linkages with soil properties using PDI to develop management strategies
for optimizing C sequestration. The results indicate that SOC is strongly and positively
correlated with total soil N and the cation exchange capacity, while it is negatively correlated
with the EC and bulk density. Ryegrass and an oat and rye mix for cover crops had lower
SOC storage compared with legume and rye cover crops. In addition, high and low
grazing intensities yielded greater SOC sequestration than medium intensive grazing,
likely owing to lower animal excreta and residue combinations. Such information can
be useful for addressing large-scale research questions aimed at sustainably intensifying
systems. Overall, PDI is likely to streamline all phases of research and prevent research
redundancies through advancing agricultural management decisions and data analytics
for addressing grand challenges facing agronomy.
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GPS = global positioning system; USDA = United States Department of Agriculture; ARS =
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REAP = Resilient Economic Agricultural Practices; CEAP = Conservation Effects Assessment Project;
SQL = structured query language; DET = Data Entry Template; GIS = geographical information
system; IoT = Internet of Things; NASS = National Agricultural Statistics Service; CRAFT = Citrus
Research and Field Trials; BMPs = best management practices; Mbps = megabits per second.
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