Effects of Simulated Rainfall on Disease Development and Weed Control of the Bioherbicidal Fungi Alternaria cassiae and Colletotrichum truncatum

C. Douglas Boyette, Charles T. Bryson, Robert E. Hoagland, and Mark A. Weaver*

* USDA-ARS, Southern Weed Science Research Unit, Stoneville, MS 38776.

Many studies demonstrate that the time between foliar pesticide application and rainfall is critical for rainfastness, absorption, and/or efficacy of many herbicides (Bryson 1988; Carroll et al. 1993; Feng et al. 2000; Koger et al. 2007; Gannon and Yelverton 2008), insecticides (Willis et al. 1992; McDowell et al. 1985; Nemec and Adkisson 1969), and fungicides (Troiano and Butterfield 1984; Vincent et al. 2007; Xu et al. 2008). In addition, it has been shown that various fungal pathogens of crop plants are potentially subject to splashing during simulated rainfall, which can serve as a mechanism for fungal dispersal, inciting epiphytotic conditions in some instances (Nahimperra et al. 1997; Paul et al. 2004; Stensvand and Elklemo 2005; Ahimera et al. 2004). Conversely, research related to the effects of rainfall on bioherbicide efficacy is not well documented, and is generally based on conjecture and anecdotal evidence, with little empirical proof. Previously it has been shown that the bioherbicidal fungi Alternaria cassiae Jurair & Khan and Colletotrichum truncatum (Schw.) Andrews and Moore are effective bioherbicides of the problematic weeds sicklepod and hemp sesbania, respectively, when applied in an augmentative or inundative manner under favorable environmental conditions (Walker 1982; Walker and Boyette 1986; Boyette 1991; Boyette et al. 1993; Boyette 1994; Boyette et al. 2007). Heretofore, no studies have been conducted examining rainfall interactions on the efficacy of these pathogens following application to their weed hosts. Furthermore, few studies have addressed rainfall effects on other biological control agents following inundative application. The objective of this research was to evaluate the effects of simulated rainfall and interaction of a rainfall event at different lengths of time after foliar spray inoculations on disease progression and weed control of Alternaria cassiae and Colletotrichum truncatum.
control of sicklepod and hemp sesbania with their respective pathogens.

Materials and Methods

Isolation, Culture, and Inoculum Production. Single-spore strains of *Alternaria cassiae* [NRRL (Northern Regional Research Laboratory) 12553] and *C. truncatum* (NRRL 18434) were used in all experiments. Each isolate was preserved in screw-capped tubes containing sterilized soil (Bakerspigel 1953). Cultures of each isolate were then grown for 5 to 7 d on potato dextrose agar (PDA; Difco Laboratories, Detroit, MI) in 10-cm plastic Petri dishes that were incubated on open-mesh wire shelves of an incubator (Model I-35LLVL, Percival Scientific, Perry, IA) at 25 C under cool, white fluorescent lighting (12-h photoperiod). *Alternaria cassiae* sporulated prolifically, yielding approximately 10 g of spores at approximately 1.0 × 10^6 spores g^-1 after 3 d. *Colletotrichum truncatum* also sporulated rapidly, and spores were rinsed from PDA plates routinely yielding 1.5 to 2.0 × 10^5 spores ml^-1 after 7 d.

Inoculum Production. Spores of *A. cassiae* were produced by a dual-step method, as described by Walker (1982), and Walker and Riley (1982). Briefly, actively growing shaken cultures of *A. cassiae* were used to inoculate a liquid medium consisting of soy flour (15 g L^-1), corn meal (15 g L^-1), CaCO_3 (5 g L^-1), and distilled water. The fungus was grown for 24 h at 25 C in a 14-L fermenter (Model 10-E, New Brunswick Scientific Co., Inc., Edison, NJ), harvested, homogenized for 20 s in a blender (Vortex Genie, Scientific Industries, Inc., Bohemia, New York), and poured into 41 by 27 by 5.5-cm aluminum-foil–lined plastic trays in a chamber, and exposed for 10 min, at 24-h intervals, to ultraviolet light provided by 275-W sunlamps (Sylvania Manufacturing, Maple Grove, MN). Approximately 72 h after harvest of the mycelium, the resulting *A. cassiae* spores were harvested with a hand-held vacuum cleaner (Dust Buster, The Black & Decker Corporation, Towson, MD), transferred to glass vials, and stored at 4 C. Hemacytometer (Improved Nubauer Hemacytometer, Thermo Fisher Scientific, Waltham, MA) counts revealed that spore yields were approximately 1 × 10^6 spores g^-1.

Because *C. truncatum* sporulates sparingly in submerged liquid culture (Jackson and Schlisler 1992), a solid-substrate production technique was utilized to mass-produce this fungus. The cultures were grown for 5 to 7 d on PDA in 10-cm plastic Petri dishes that were incubated as described above. *Colletotrichum truncatum* spores were separated from the mycelium by filtering through double-layered cheesecloth (Softwipe Cheesecloth, American Fiber and Finishing, Inc., Albermarle, NC). The spore densities of each fungus were determined with the use of hemacytometers, and dilutions were made with distilled water to provide the desired inoculum concentrations (1.0 × 10^6 spores ml^-1 for *A. cassiae*, and 1.0 × 10^5 spores ml^-1 for *C. truncatum*).

Greenhouse Experiments. Sicklepod plants and hemp sesbania were grown from seed (Azlin Seed Co., Leland, MS 38756) in a commercial potting mix (jiffy-mix, Jiffy Products of America, Inc., Batavia, IL) contained in peat strips (Jiffy Products). Each strip contained 12 plants of either sicklepod or hemp sesbania. The potting mix was supplemented with a controlled-release (14:14:14, NPK) fertilizer (Osmocote, Grace Sierra Horticultural Products, Milpitas, CA). The plants were placed in subirrigated trays that were mounted on greenhouse benches. Greenhouse temperatures ranged from 25 to 30 C with 40 to 90% relative humidity (RH). The photoperiod was 12 h with 1,650 μmol m^-2 s^-1 photosynthetically active radiation as measured at midday with a light meter (LI-COR, Inc., Lincoln, NE).

When seedlings of each species were in the cotyledon to first true-leaf growth stage, they were inoculated with fully charged, hand-held aerosol sprayers (Sprayool Power Pack, Aerovac Industries, Inc., Gardnersville, NV), containing aqueous preparations of their respective pathogens (*A. cassiae* or *C. truncatum*) each suspended in 0.02% (v/v) Polysorbate 80 nonoxynol surfactant (ICI Americas Inc., Enon, VA). Spray delivery rates were approximately 200 L ha^-1 from a hand-held aerosol sprayer (Boyette et al. 2007). The plants were then subjected to rainfall with the use of a rainfall simulator, based on a design as described by Meyer and Harmon (1979), which reproduced water droplet size, velocity, and kinetic energy analogous to natural rainfall. The pH of the water was 7.8 and the water and air temperatures were 19 and 25 C, respectively. Following rainfall treatments of 10 min or 20 min to deliver 1.27 or 2.54 cm of rainfall, at intervals of either 0, 1, 2, 3, or 4 h between bioherbicide applications and rainfall events, groups of seedlings were placed in unlighted dew chambers [Dew Chamber, Model I-35-D, Percival Scientific Mfg., Boone, IA; 28 C, 100% relative humidity (RH)] for 12 h. Plants were then placed on greenhouse benches and monitored for disease development over an 8-d period and weed control. Disease severity was evaluated visually on a scale from 0 to 1 (where 0 = no disease, 0.2 = 20% disease, 0.4 = 40% disease, 0.6 = 60% disease, 0.8 = 80% disease, and 1.0 = complete plant death) to estimate disease progression (Sandrin et al. 2003). Weed control, plant height, and biomass reductions were determined after 21 days. Weeds were visually rated on a scale of 0 to 100, where 85 to 100 (severe injury or mortality) equaled control. Surviving plants were excised at the soil line, oven dried for 48 h at 85 C, and weighed, and the percent biomass reduction was calculated.

Experimental Design. The experiments were arranged in a split-plot design, with intervals between bioherbicide applications and rainfall events as the main plot, and rainfall amounts as the subplot. Each plant species and its corresponding pathogen were treated separately, but within hours of each other. Treatments were replicated four times, for a total of 48 individual plants. The experiments were repeated over time, and data were averaged following Bartlett’s test for homogeneity of variance (Steel et al. 1997), and analyzed with the use of ANOVA. Some of the data did not follow a normal distribution pattern, and were converted by arc-sin transformation for analyses. When significant differences were detected by the F test, means were separated with Fisher’s protected LSD test at the 0.05 level of probability. Disease- progression data were analyzed.
with the use of standard error of the mean (SEM) and best-fit regression analysis. All data were analyzed with the use of SAS (Version 9.1, SAS Institute, Inc., Cary, NC) statistical software.

Results and Discussion

Greenhouse Experiments. Disease severity and weed control between the two pathogens varied greatly in response to timing between bioherbicide application and simulated rainfall events prior to placement in the dew chamber. Overall, little differences were associated with rainfall amount or timing of the rainfall event for sicklepod control with *A. cassiae* (Figure 1). The best treatment (100% control of sicklepod) was achieved with no rainfall followed by an immediate dew application. However, even in the worst treatment (2.54 cm rainfall followed by a 4-h delay before a dew application), substantial control (85% was attained (Figure 1). Disease progression was slower when sicklepod plants received either 1.27 or 2.54 cm rainfall, regardless of timing relative to bioherbicide application (Figures 2A–C). Disease progression was also delayed when there was a 2- or 4-h delay between the bioherbicide application and rainfall event, requiring 8 days to achieve maximum sicklepod disease progression (Figures 2B and 2C).

The results with *C. truncatum* upon disease progression and control of hemp sesbania were strikingly different. With *C. truncatum*, hemp sesbania mortality was not significantly different when plants received 0, 1.27, or 2.54 cm of rainfall, followed by an immediate dew application (Figure 3). Regardless of rainfall amount, mortality of hemp sesbania was greatly reduced (60%) when the dew application was delayed even at 1 h following inoculation (Figure 3). Weed mortality resulting after a 4-h delay in dew treatment, regardless of rainfall, was not significantly different than that

Figure 1. Effect of simulated rainfall amount and time following inoculation with *Alternaria cassiae* spores before rainfall treatments on sicklepod control. Weed control values in each column with the same letter are not significantly different according to FLSD05.

Figure 2. Disease progression of *Alternaria cassiae* infecting sicklepod based upon disease rating (0–1, where 1.0 = plant mortality) over time. Spray application rates were approximately 200 L ha⁻¹. Equations describing relationships of the treatments are: (0 rain/0 delay): $Y = -2.13 + 50.98X + 1.82X^2 - 6.33X^3; R^2 = 0.99$; (1.27 cm rain/0 delay): $Y = -0.36 + 34.30X - 1.63X^2 - 0.75X^3; R^2 = 0.99$; (2.54 cm rain/0 delay): $Y = 0.19 + 18.74X + 8.25X^2 - 3.24X^3; R^2 = 0.99$; (0 cm rain/2-h delay): $Y = 1.17 + 53.82X - 11.67X^2 + 1.03X^3; R^2 = 0.99$; (1.27 cm rain/2-h delay): $Y = 0.380 + 33.64X - 2.88X^2 + 0.77X^3; R^2 = 0.98$; (2.54 cm rain/2-h delay): $Y = -0.41 + 17.20X^2 + 8.46X^3; R^2 = 0.99$; (0 cm rain/4-h delay): $Y = -0.15 + 33.15X - 9.32X^2 + 1.80X^3; R^2 = 0.99$; (1.27 cm rain/4-h delay): $Y = 0.17 + 27.71X - 8.76X^2 + 2.23X^3; R^2 = 0.99$; (2.54 cm rain/4-h delay): $Y = 0.55 + 11.68X + 0.04X^2 + 0.12X^3; R^2 = 0.99$. Error bars represent ± 1 SEM.
in the untreated controls (Figure 3; control data not plotted). Only 3 d were required to achieve 100% hemp sesbania mortality with no rainfall and an immediate dew treatment. However, 5 d were required to achieve maximum mortality (95%) and disease when plants received either 1.27 or 2.54 cm rainfall followed by an immediate dew treatment (Figure 4A). With no rainfall, a delay of 2 h in dew treatment, maximum mortality (40%) of hemp sesbania required 5 d, with only slight differences between either 1.27 or 2.54 cm of rainfall (Figure 4B). A 4-h delay in dew application (Figure 4C) at all rainfall levels did not result in mortality or disease significantly different than untreated controls (control data not plotted). Reduction in dry weight of both sicklepod and hemp sesbania were almost identical to mortality (data not presented).

Sicklepod exhibits a thigmotrophic response (folding of leaves), even after slight disturbance, such as that from the spray inoculation process (Walker 1982). Because the A. cassiae spore germination and infection process begins within a few minutes following inoculation (van Dyke and Trigiano 1987), it is possible that the fungal spores were trapped by the folded leaves, with the folded leaves serving as a protectant from rainfall wash off. Although this response also occurred with hemp sesbania leaves, the folding was not as extreme as with sicklepod, and it could have had less of an effect in protecting the C. truncatum spores.

Colletotrichum truncatum spores are highly susceptible to dehydration (Jackson and Schisler 1992; Egley and Boyette 1995); thus delaying the rainfall and dew application could have resulted in the greatly reduced weed control efficacy. Because C. truncatum spores are hydrophilic whereas A. cassiae spores are hydrophobic (Weaver et al. 2007), it is possible that the C. truncatum spores also are more prone to wash off than A. cassiae spores. Although no attempts were made to

Figure 3. Effect of simulated rainfall amount and time following inoculation with Colletotrichum truncatum spores before rainfall treatments on hemp sesbania control. Weed control values in each column with the same letter are not significantly different according to FLSD.

Figure 4. Disease progression of Colletotrichum truncatum infecting hemp sesbania based upon disease rating (0–1, where 1.0 = plant mortality) over time. Spray application rates were approximately 200 L ha⁻¹. Equations describing relationships of the treatments are: (0 rain/0 delay) \[Y = 0.59 + 65.32 - 9.15X + 2.32X^2 + 0.89X^3; R^2 = 0.99; \] (1.27 cm rain/0 delay) \[Y = 0.36 + 34.29X - 1.63X^2 + 0.76X^3; R^2 = 0.99; \] (2.54 cm rain/0 delay) \[Y = 0.19 + 18.74X + 8.25X^2 + 3.24X^3; R^2 = 0.99; \] (0 cm rain/2-h delay) \[Y = 0.40 + 6.72X + 1.08X^2 + 0.16X^3; R^2 = 0.99; \] (1.27 cm rain/2-h delay) \[Y = 1.82 + 7.82X + 0.47X^2 - 0.11X^3; R^2 = 0.97; \] (2.54 cm rain/2-h delay) \[Y = 0.71 + 3.68X - 0.83X^2 + 0.06X^3; R^2 = 0.92; \] (0 cm rain/4-h delay) \[Y = 0.12 + 2.94X - 0.5X^2 + 0.03X^3; R^2 = 0.99; \] (1.27 cm rain/4-h delay) \[Y = -0.64 + 1.87X - 0.12X^2; R^2 = 0.99; \] (2.54 cm rain/4-h delay) \[Y = 0.46 + 2.94X - 0.53X^2 + 0.03X^3; R^2 = 0.95. \] Error bars represent ± 1 SEM.
determine and compare spore numbers present on plants receiving rainfall as compared to plants receiving no rainfall, microscopic examination did reveal the presence of *A. cassiniae* and *C. truncatum* spores on their respective weed hosts after rainfall treatments. Previous research here and elsewhere has examined the effect of different crop oils (Auld 1993; Boyette 1994; Egle and Boyette 1995; Mintz et al. 1992; Sandrin et al. 2003) and other humectants, such as pyllium (Charudattan et al. 1995), upon free-moisture requirements of bioherbicides as they relate to weed control efficacy. It is possible that these adjuvants may also aid in adhesion of the fungal spores to weed tissues (Egle and Boyette 1995), thus reducing potential wash off.

Our results demonstrate that rainfall and the timing of a dew period can affect disease progression and overall weed control efficacy of these bioherbicides. However, interactions of rain and dew with biological agents are very complex and are dependent on the hydrophobic/hydrophilic character of the spores or propagules, the weed surface topography, thigmotropic/nastic movements of target plants, the physical/chemical nature of formulation ingredients, and other factors. Therefore, the potential effects of rainfall on a given biological agent cannot be accurately predicted, and specific studies are needed to assess a given agent and target combination. Future research will be conducted to determine if certain adjuvants will prevent desiccation and/or wash-off of *C. truncatum* as well as other *Colletotrichum* spp. that we have previously evaluated as bioherbicides.

Literature Cited

Received September 24, 2010, and approved August 24, 2011.