
Advances in Internet of Things, 2021, 11, 42-58
https://www.scirp.org/journal/ait

ISSN Online: 2161-6825
ISSN Print: 2161-6817

DOI: 10.4236/ait.2021.111004 Jan. 28, 2021 42 Advances in Internet of Things

Python Software Integrates with
Microcontrollers and Electronic Hardware to
Ease Development for Open-Source Research
and Scientific Applications

Daniel K. Fisher1*, Reginald S. Fletcher2, Saseendran S. Anapalli1

1United States Department of Agriculture, Agricultural Research Service, Sustainable Water Management Research Unit,
Stoneville, Mississippi, USA
2United States Department of Agriculture, Agricultural Research Service, Crop Production Systems Research Unit, Stoneville,
Mississippi, USA

Abstract
Many options exist for developing and implementing monitoring systems
for research and scientific applications. Commercially, available systems
and devices, however, are usually built using proprietary tools and pro-
gramming instructions, and often offer limited flexibility for end users. The use
of open-source hardware and software has been embraced by the research and
scientific communities and can be used to target unique data and information
requirements. Development based on the Arduino microcontroller project
has resulted in many successful applications, and the Arduino hardware and
software environment continues to expand and become more powerful but
can be intimidating for users with limited electronics or programming expe-
rience. The open-source Python language has gained in popularity and is be-
ing taught in schools and universities as an introduction to computer pro-
gramming and software development due to its simple structure, ease of use,
and large standard library of functions. A project called CircuitPython was
developed to extend the use of Python to programming hardware devices
such as programmable microcontrollers and maintains much of the original
Python language and features, with additional support for accessing and con-
trolling microcontroller hardware. The objective of the work reported here is to
discuss the CircuitPython programming language and demonstrate its use in
the development of research and scientific applications. Several open-source
sensing and monitoring systems developed using open-source hardware and
the open-source CircuitPython programming language are presented and de-
scribed.

How to cite this paper: Fisher, D.K.,
Fletcher, R.S. and Anapalli, S.S. (2021)
Python Software Integrates with Microcon-
trollers and Electronic Hardware to Ease
Development for Open-Source Research
and Scientific Applications. Advances in
Internet of Things, 11, 42-58.
https://doi.org/10.4236/ait.2021.111004

Received: September 25, 2020
Accepted: January 25, 2021
Published: January 28, 2021

Copyright © 2021 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/ait
https://doi.org/10.4236/ait.2021.111004
https://www.scirp.org/
https://doi.org/10.4236/ait.2021.111004
http://creativecommons.org/licenses/by/4.0/

D. K. Fisher et al.

DOI: 10.4236/ait.2021.111004 43 Advances in Internet of Things

Keywords
CircuitPython, Python, Arduino, Agriculture, Monitoring System, Sensors

1. Introduction

Numerous options exist for developing and implementing sensing and moni-
toring systems for research and scientific applications. Many electronic equip-
ment manufacturers and vendors offer instruments, instrument systems, and
complete monitoring systems for a variety of applications. These systems and
devices, however, are usually available in limited configurations designed by the
vendor, are built using proprietary tools and programming instructions, and of-
ten offer limited flexibility for end users.

The use of open-source hardware and software has been embraced by the re-
search and scientific communities as a means of developing bespoke sensing and
monitoring systems to target unique data and information requirements and
achieve specific research goals [1] [2] [3]. The open-source Arduino project
(https://arduino.cc) consists of a hardware component, a microcontroller devel-
opment circuit board, and a software component, an Integrated Development
Environment (IDE). The Arduino has proven to be a popular and powerful de-
velopment tool for researchers and scientists, as well as hobbyists, artists, and
other makers. Electronic devices and instrumentation have been developed in
many different disciplines, such as agriculture [4] [5] [6] [7] [8], irrigation and
water management [9] [10] [11] [12], robotics [13] [14] [15], scientific and en-
vironmental studies [16] [17] [18] [19], and multipurpose laboratory and field
data collection [20] [21] [22] [23] [24].

Development using the Arduino project has resulted in many successful ap-
plications, and the Arduino hardware and software environment continues to
expand, include additional features, and become more powerful [25]. The origi-
nal hardware, based on an 8-bit microcontroller, with limited features and a slow
processing speed, has been augmented with much faster, feature-rich, and more
powerful 32-bit microcontrollers. The software programming environment un-
dergoes continuous upgrades to offer additional features and support for new
hardware. A few issues regarding the Arduino IDE have contributed to the suc-
cess of the Arduino project, but also to some intimidation for users, especially
those new to microcontrollers and computer programming. The IDE supports
programming based on the C/C++ computer language, which allows powerful
and fast-executing programs to be written and deployed. For more than simple
programs, however, a fair amount of in-depth knowledge of the language is re-
quired. In addition, the Arduino IDE must be downloaded (https://arduino.cc)
and installed on a computer, configured by installing additional utilities to sup-
port specific microcontroller hardware, and various hardware drivers often must
also be installed and special cables used to interface and interact with the mi-

https://doi.org/10.4236/ait.2021.111004
https://arduino.cc/
https://arduino.cc/

D. K. Fisher et al.

DOI: 10.4236/ait.2021.111004 44 Advances in Internet of Things

crocontroller.
Much progress in computer software development has been made due to the

C/C++ languages, but other programming languages exist and have been gaining
in popularity. The open-source Python language (https://python.org) has gained
many users and is being taught in schools and universities as an introduction to
computer programming and software development due to its simple structure,
ease of use, and large standard library of functions. A project called MicroPy-
thon (https://microcpython.org) was developed to extend the use of Python to
programming and controlling hardware devices such as programmable micro-
controllers. MicroPython maintains much of the original Python language and
features, with additional support for accessing and controlling microcontroller
hardware.

CircuitPython (https://circuitpython.org) is an open-source programming
language derived from MicroPython and was developed by Adafruit Industries
(https://adafruit.com) to be easier to learn and use. Different from MicroPython,
CircuitPython was developed to support a limited and specific subset of micro-
controllers, specifically the 32-bit ARM Cortex M0 SAMD21 and ARM Cortex M4
SAMD51 microcontrollers (Microchip Technology; https://www.microchip.com)
and the 32-bit nRF52840 ARM Cortex M4 microcontroller (Nordic Semicon-
ductor; https://www.nordicsemi.com). While the number of supported micro-
controllers is limited, unique development boards from a variety of manufactur-
ers based on these microcontrollers and compatible with CircuitPython number
approximately 150 (https://circuitpython.org/downloads).

The objective of the work reported here is to discuss the CircuitPython pro-
gramming language and demonstrate its use in the development of research and
scientific applications. Several open-source sensing and monitoring systems de-
veloped using open-source hardware and the open-source CircuitPython pro-
gramming language are presented and described.

2. Methods and Materials
2.1. Software

CircuitPython is based on the open-source Python 3 programming language and
has been ported to run on several specific microcontrollers. CircuitPython is a
Python compiler that is loaded onto the microcontroller hardware and runs and
interprets Python code. The compiler includes core, standard Python 3 libraries
and modules that allow access to mathematical functions, text and string mani-
pulation and parsing, internet protocols, and file and operating-system interac-
tion. Additional modules offer access to the microcontroller hardware to interact
with and manage various hardware features, such as input/output pins, analog
and digital signal processing, analog-to-digital converters, serial ports, and digi-
tal (I2C, SPI) communications protocols. Supplemental libraries and modules
are available to support interfacing the microcontroller with external peripher-
als, such as sensors, displays, real-time clock/calendars, data storage devices,

https://doi.org/10.4236/ait.2021.111004
https://python.org/
https://microcpython.org/
https://circuitpython.org/
https://adafruit.com/
https://www.microchip.com/
https://www.nordicsemi.com/
https://circuitpython.org/downloads

D. K. Fisher et al.

DOI: 10.4236/ait.2021.111004 45 Advances in Internet of Things

GPS receivers, cameras, motors, and Bluetooth, wifi, and other wireless devices
(https://circuitpython.org/libraries).

CircuitPython is installed on a microcontroller development board via a boot-
loader utility unique to each microcontroller board. The bootloader is downloaded
in the form of a USB Flashing Format (uf2) file for the specific microcontroller
from the CircuitPython repository (https://circuitpython.org/downloads). The
microcontroller board is connected to a host computer with a standard micro-
USB cable. The microcontroller is put into a bootloading mode by pressing a
button on the microcontroller development board, and the board appears on the
host computer as a removable flash drive. The user then copies the uf2 file to the
board’s flash drive via the micro USB cable, the file structure is created, and the
CircuitPython compiler and core libraries are copied to the drive.

Writing a microcontroller program in CircuitPython is similar to writing a
program in Python: the program is written as a text file using any text editor,
and the file is saved with a “.py” extension. Text editors used by the Python
community, such as Mu (https://codewith.mu) and Atom (https://atom.io),
support several versions of Python, including CircuitPython, and offer real-time
interaction for writing and testing code, debugging, and plotting. When a pro-
gram is written, the file is named and it, and supporting libraries, are saved to
the board’s flash drive. Multiple program files and libraries may be stored on the
flash drive. Whenever the microcontroller is powered on, the CircuitPython
compiler searches for a file named “code.py” and, if found, immediately runs
that file. The user can run any of multiple stored programs by simply changing
the program’s filename to code.py.

Testing and modifying programs in CircuitPython are different than when
using the Arduino IDE. Using the Arduino IDE, the user makes code changes,
then must recompile the program and upload the recompiled program to the
microcontroller. In CircuitPython, the user enters code or makes changes to the
code.py program file using the text editor, then only needs to save the modified
file. The microcontroller detects the presence of the modified file, automatically
resets itself and restarts, and begins execution of the new code.py file. This al-
lows for user interaction with the microcontroller and its programming without
the need for a specific programming environment, like the Arduino IDE: the us-
er can modify CircuitPython with any text editor on almost any computer, tab-
let, or even smartphone.

2.2. Hardware

CircuitPython is suitable for programming to interface and control a variety of
electronic hardware, including microcontrollers, sensors, and communications
and other peripheral devices. While many and varied microcontrollers are
available from a variety of manufacturers, CircuitPython is targeted and opti-
mized to run on Microchip Technology 32-bit ARM Cortex M0 SAMD21 and
ARM Cortex M4 SAMD51 microcontrollers and the Nordic Semiconductor

https://doi.org/10.4236/ait.2021.111004
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://codewith.mu/
https://atom.io/

D. K. Fisher et al.

DOI: 10.4236/ait.2021.111004 46 Advances in Internet of Things

32-bit nRF52840 ARM Cortex M4 microcontroller. The main differences be-
tween the microcontrollers are in processing speed and memory size: the
ATSAMD21 operates at 48 MHz, with 256 KB of flash and 32 KB of RAM; the
ATSAMD51 operates at 120 MHz, with 512 KB flash and 192 KB RAM; and the
nRF52840 operates at 64 MHz, with 1 MB flash and 256 KB of RAM. The
nRF52840 microcontroller also different in that it has a built-in Bluetooth Low
Energy 2.4 GHz radio which the user can access and program.

Microcontroller development boards consist of a microcontroller and aux-
iliary electronic components mounted on a circuit board that breaks out the
multiple input/output pins of the microcontroller, making the pins and built-in
features conveniently accessible to the user. Built-in features include: multi-
channel analog-to-digital converters for measuring analog voltages; multiple
digital communications ports, including serial, I2C, and SPI, for interfacing dig-
ital sensors and peripheral devices; timers and clocks for event interval and pulse
measurement and timekeeping; pulsewidth modulation for controlling motors
and lights; and USB support for interfacing with a host computer. On boards ex-
plicitly designed for use with CircuitPython, a flash memory chip is incorpo-
rated to store the Python interpreter and programming and library files, result-
ing in a self-contained programming and run-time device.

While many manufacturers offer microcontroller development boards, discussion
here is limited to boards produced by Adafruit Industries (https://adafruit.com)
and Sparkfun Electronics (https://sparkfun.com), with which the authors are
familiar and have experience developing in both Arduino and CircuitPython
programming environments. Microcontroller boards, as well as sensors and pe-
ripheral components from these manufacturers, are well documented and sup-
ported by their respective manufacturers, and are available in many parts of the
world via online electronics retailers. The discussion is applicable to devices
from other manufacturers, but the user would need to identify and install the
appropriate uf2 bootloader file and specific libraries for the exact hardware used.

The original Arduino development board had a specific form factor (size of
the board, spacing of input/output pins, and arrangement of specific pins and
features) that allowed for interchangeability of boards from different manufac-
turers, and for the development of plug-in boards, called shields. While that
form factor is still in use and supported by many manufacturers, the Feather se-
ries of development boards (Adafruit Industries) introduced a new physical
form factor, different from the original Arduino microcontroller board. The new
form factor has been adopted by several other manufacturers.

A wide range of sensors and peripheral device are available, from Adafruit
Industries, Sparkfun Electronics, and many other manufacturers, that interface
easily with microcontrollers and are supported by CircuitPython libraries. Simi-
lar to Arduino shields, peripheral plug-in boards for Feather boards, called
wings, allow, for example, external sensors, clock/calendars, GPS receivers, wifi,
Bluetooth, cellular, and other wireless modules, and SDcard storage devices, to

https://doi.org/10.4236/ait.2021.111004
https://adafruit.com/
https://sparkfun.com/

D. K. Fisher et al.

DOI: 10.4236/ait.2021.111004 47 Advances in Internet of Things

plug directly into the microcontroller board and share pins. No external circui-
try is required by the user to develop powerful sensing and monitoring systems.

3. Example Applications

Electronic monitoring systems have been developed to support research related
mainly to agricultural and water-management efforts by researchers with the
United States Department of Agriculture’s Agricultural Research Service at the
Jamie Whitten Delta States Research Center, Stoneville, Misissippi USA. Several
of these systems are described in the following sections. In the spirit of open-
source collaboration and sharing of information, all hardware and software de-
tails, including CircuitPython code, are freely available by contacting the au-
thors.

3.1. Desktop Weather Station

A simple “weather station” was developed to access and display a time-series of
weather data using internet-based services. The desktop weather station is a vir-
tual weather station that connects to the internet over a wifi network and ac-
cesses weather data from an internet service. Weather data are downloaded and
displayed on a data-hosting website.

A number of internet-based services provide current and historical weather
data and weather forecasts, often at no cost to the user. Services such as Open-
Weather (https://openweathermap.org), Meteostat (https://meteostat.net), wea-
therstack (https://weatherstack.com), and AccuWeather (https://accuweather.com)
allow users access to weather data via a simple Application Programming Inter-
face (API). The API consists of a URL (essentially a website address) containing
information such as specific geographic location, units of measure, time period,
and user account number embedded in the URL. Upon sending the URL, weather
data and descriptive information are returned, in a specific JSON-formatted re-
sponse, and the user parses the response to retrieve individual data values.

For this project, the OpenWeather service (https://openweathermap.org) was
selected based on its simple API and ease in parsing the formatted data response.
Upon registering on the OpenWeather website, a user account is created, and a
unique user API key is assigned. The API allows the user to specify geographic
location by city name, postal code, or latitude and longitude coordinates, and
units as metric or imperial. To access data, the user assembles and sends a URL
consisting of OpenWeather’s base URL, geographic location, measurement units,
and user API key, as shown in the following example:
http://api.openweathermap.org/data/2.5/weather?zip=38776&units=imperial&A
PPID=user_api_key.

A variety of internet-based data-hosting services are available that allow users
to transfer data from remote locations and store, view, and share data via a web
browser. The ThingSpeak platform (https://thingspeak.com) offers no-cost, li-
mited-use access, and users can select and customize output formats for dis-

https://doi.org/10.4236/ait.2021.111004
https://openweathermap.org/
https://meteostat.net/
https://weatherstack.com/
https://accuweather.com/
https://openweathermap.org/
http://api.openweathermap.org/data/2.5/weather?zip=38776&units=imperial&APPID=user_api_key
http://api.openweathermap.org/data/2.5/weather?zip=38776&units=imperial&APPID=user_api_key
https://thingspeak.com/

D. K. Fisher et al.

DOI: 10.4236/ait.2021.111004 48 Advances in Internet of Things

playing their data in graphical and text formats. Interaction with ThingSpeak is
similar to interaction with the OpenWeather website in that an API defines the
format of a URL, which the user assembles and sends to the website. To use the
ThingSpeak service, the user registers on the ThingSpeak website, an account is
created, and a unique user API key and data channel number (webpage address)
are assigned. The user configures the data channel/webpage by defining the
number of data values to be uploaded and the graphical format of the data dis-
plays. Data are uploaded to the website in a manner similar to that for down-
loading OpenWeather data, by assembling a URL including the ThingSpeak base
URL, user API key, and data values. The data can then be viewed via a web
browser by specifying the channel number on the ThingSpeak website.

The Desktop Weather Station hardware consists of a Feather M4 Express mi-
crocontroller development board (Adafruit Industries) and an AirLift Fea-
therWing ESP32 WiFi Co-Processor board (Adafruit Industries). The two
boards are designed with the same physical form-factor to mate directly and
share pins, with no external circuitry required. The two boards, shown in Figure
1, plug together using male header pins soldered to one board and female head-
ers soldered to the other. The assembled boards share electrical power via a mi-
croUSB cable and power supply. Cost of the hardware components totaled
US$ 42.

The Desktop Weather Station microcontroller was programmed in the Cir-
cuitPython programming language. The CircuitPython uf2 bootlader file for the
Feather M4 Express board was downloaded from the CircuitPython repository
(https://circuitpython.org) and loaded onto the microcontroller board. Circuit-
Python libraries were also downloaded (https://circuitpython.org/libraries), and
specific modules needed for the project were stored on the flash drive on the
board. Programming was accomplished using the open-source Mu code editor.

The program begins by importing libraries needed to set up digital communi-
cations between microcontroller and Airlift ESP32 and configure wifi functions.
Specific pins which interconnect the microcontroller and the ESP32, and cre-
dentials required for logging on to the user’s wifi network (network name, login,
and password), accessing the OpenWeatherMap website (user API key), and
uploading data to the ThingSpeak website (user API key), are defined. Wifi services

Figure 1. Desktop weather station hardware components.

https://doi.org/10.4236/ait.2021.111004
https://circuitpython.org/
https://circuitpython.org/libraries

D. K. Fisher et al.

DOI: 10.4236/ait.2021.111004 49 Advances in Internet of Things

are then enabled and the Airlift ESP32 connects to the user’s wifi network, pro-
viding access to internet sites and services.

Weather data are downloaded from the OpenWeatherMap website by assem-
bling a URL as described above and sending the URL via the internet. The re-
sponse is received as a JSON-formatted string, which appears to CircuitPython
as a Python dictionary containing key-word and data-value pairs. The response
is parsed to extract measurements of air temperature, relative humidity, wind
speed, atmospheric pressure, precipitation, and cloud cover. The program will
make up to three attempts to retrieve data, in case an error occurs and an in-
complete or no response is received.

The weather data are then uploaded to the ThingSpeak website by assembling
a URL containing the weather data values. An example of a ThingSpeak URL for
uploading two data values would be of the form
https://api.thingspeak.com/update?api_key=user_API_key&field1=12.3&field2=
4.56. A sample of weather data downloaded from OpenWeatherMap for the
Stoneville, Mississippi USA location during a seven-day period in August 2020
and uploaded to ThingSpeak is shown in Figure 2.

Figure 2. Time-series of weather data downloaded from OpenWeather and displayed on
the ThingSpeak website.

https://doi.org/10.4236/ait.2021.111004
https://api.thingspeak.com/update?api_key=user_API_key&field1=12.3&field2=4.56&field3=789
https://api.thingspeak.com/update?api_key=user_API_key&field1=12.3&field2=4.56&field3=789

D. K. Fisher et al.

DOI: 10.4236/ait.2021.111004 50 Advances in Internet of Things

3.2. Cellular Weather Station

The Cellular Weather Station, different from the virtual Desktop Weather Sta-
tion, is a physical device deployed in the field to monitor actual weather condi-
tions. The device consists of a microcontroller development board, weather sen-
sors, cellular modem, and rechargeable battery power. The microcontroller was
programmed in CircuitPython to periodically take measurements of atmospher-
ic temperature, humidity, and pressure, and light level. Data are transmitted to
the internet-based ThingSpeakdata-hosting website via the cellular communica-
tions network.

The circuit is based on an ItsyBitsy M4 Express microcontroller development
board (Adafruit Industries) and a SIM7000 LTE CaT-M1/NB-IoT + GPS cellular
shield (Botletics; https://botletics.com). The ItsyBitsy circuit board has a differ-
ent physical format from that of the Feather microcontroller board but is based on
the same Cortex M4 microcontroller. The SIM7000 cellular shield features a SIM-
Com 7000 LTE Cat-M1 cellular module (SIMCom; https://www.simcom.com),
which interfaces with the microcontroller over a standard two-wire serial port.
The SIM7000 module operates on the recently commissioned LTE Cat-M1 cel-
lular network (https://www.3gpp.org), which is built on the existing 4G network.
The LTE Cat-M1 network is designed for low-frequency, small-packet data
transfer, sometimes referred to as Internet of Things, applications. To enable
cellular data transfer, cellular network service is enabled via a data plan pur-
chased from Hologram (https://hologram.io).

Two sensor breakout boards, each containing a solid-state sensor and aux-
iliary electronic circuitry, interface with the microcontroller to provide mea-
surements of several weather parameters. The BME280 Temperature, Humidity,
and Pressure breakout board (Adafruit Industries) measures air temperature, rela-
tive humidity, and atmospheric pressure using a BME280 Temperature, Humidity,
and Pressure sensor (Bosch Sensortronics; https://www.bosch-sensortec.com).
The TSL2591 Digital Light Sensor (Adafruit Industries) measures light level us-
ing a TSL2591 Light to Digital Converter (ams; https://ams.com). The two sen-
sors interface with the microcontroller via I2C (Inter Integrated Circuit), a
two-wire digital communications protocol: both sensors connect to the micro-
controller’s I2C port and the microcontroller communicates with and controls
each sensor using the sensor’s unique I2C address.

To enable long-term, battery-powered operation, microcontrollers and ac-
companying circuitry are often placed in a low-power sleep mode, waking pe-
riodically to perform circuit functions, then returning to sleep. CircuitPython,
however, is currently not able to provide this feature. Instead, a hardware solu-
tion is incorporated into the circuit to reduce power consumption and enable
operation under battery power. The TPL5110 Low-Power Timer (Sparkfun
Electronics; https://sparkfun.com) is installed between the microcontroller and
the 2500-mAh Lithium Ion Polymer Battery (Adafruit Industries). The low-
power timer regulates electrical power from the battery to the microcontroller

https://doi.org/10.4236/ait.2021.111004
https://botletics.com/
https://www.simcom.com/
https://www.3gpp.org/
https://hologram.io/
https://www.bosch-sensortec.com/
https://ams.com/
https://sparkfun.com/

D. K. Fisher et al.

DOI: 10.4236/ait.2021.111004 51 Advances in Internet of Things

and sensor circuit. At periodic intervals, the TPL5110 energizes and switches
battery power on to the microcontroller and circuit. The CircuitPython program
begins execution, reading sensors and transmitting data via the cellular network.
At the end of program execution, the microcontroller sends a signal to the
TPL5110, which completely turns off battery power to the circuit. The interval at
which power is turned on and off, ranging from milliseconds to 2 hours, is de-
termined easily by the user by configuring a set of switches installed on the
TPL5110 circuit board. A schematic of the electrical circuit is shown in Figure 3.

The electrical circuit was then used to fabricate a circuit board. Female head-
ers were located and soldered to an Arduino ProtoShield (Sparkfun Electronics),
which has the same form-factor as that of the Botletics cellular module. Male
header pins were soldered to the microcontroller board and each of the sensor
and low-power timer boards. A functioning circuit board, shown in Figure 4,
resulted by plugging all the components together. To install the circuit in the
field, the assembled circuit was placed inside a protective electronics enclosure
(Adafruit Industries), which was then inserted into a Solar Raditation Shield
(AcuRite, https://www.acurite.com) to protect from direct exposure to sunlight.
Total cost of the Cellular Weather Station components was approximately
US$ 160. The monthly charge for the hologram.io cellular data plan was US$ 0.60.

Figure 3. Electrical schematic of the cellular weather station.

https://doi.org/10.4236/ait.2021.111004
https://www.acurite.com/

D. K. Fisher et al.

DOI: 10.4236/ait.2021.111004 52 Advances in Internet of Things

Figure 4. Cellular Weather Station hardware components.

The microcontroller was programmed in a manner similar to that described

for the Desktop Weather Station described above. The CircuitPython uf2 file for
the ItsyBitsy M4 Express board was loaded onto the microcontroller board, spe-
cific modules needed for communicating via the I2C protocol and reading the
BME280 and TSL2591 sensors were downloaded and copied to the flash drive.
Programming was accomplished using the open-source Mu code editor.

The program begins by importing libraries needed to set up serial and I2C
communications and enable the BME280 and TSL2591 sensors. Specific pins
which interconnect the microcontroller and cellular shield and TPL5110 are de-
fined, and serial and I2C communications protocols and sensors are configured
and started.

The two sensors interface with the microcontroller using the same two I2C
pins, and each sensor is read in turn. The microcontroller first reads the BME280
sensor by sending its unique I2C address to specify that individual sensor, then
sends a series of commands to retrieve sensor measurements of air temperature,
humidity, and pressure. The microcontroller then reads the TSL2591 similarly,
sending its I2C address and commands to retrieve a light level measurement.

To send data to the ThingSpeak website, the cellular module is powered on,
and a connection between the microcontroller and cellular module is established
via a two-wire serial port. Control of the cellular module is accomplished via
standard Hayes AT commands, which were developed for computer modems in
the early 1980s and still in use today by many serial devices. Commands are sent
for the module to register on the cellular network, specify the access point for
the hologram.io cellular service, and enable data and internet services. Sensor
data are sent by assembling a URL as previously described for the Desktop
Weather Station, and the URL is sent. Data and internet services are then ter-
minated, and the module is detached from the cellular network and powered
down. The circuit is then put into a low-power state by sending a signal to the
TPL5110 low-power timer. The TPL5110 disconnects the battery from the cir-
cuit, and no battery power is used by the circuit until the next measurement

https://doi.org/10.4236/ait.2021.111004

D. K. Fisher et al.

DOI: 10.4236/ait.2021.111004 53 Advances in Internet of Things

interval.
A sample of weather sensor data from the Cellular Weather Station is shown

in Figure 5. The data were collected from the same location and time period as
downloaded by the Desktop Weather Station, shown in Figure 2.

3.3. Cellular Soil-Moisture Monitor

Soil-moisture sensors are commonly used to monitor the soil-water status in the
root zone of agricultural crops. Knowledge of soil-moisture status is used to
evaluate water use by the crops and to offer guidance for water management and
determining the proper timing of irrigation water application. A monitoring
system was developed previously [25] to read and transmit soil-moisture sensor
measurements and was designed to allow remote access of sensor data via the
cellular communications network. The existing monitoring system, consisting of
a microcontroller-based circuit, soil-moisture sensors, and a cellular modem,
was modified for operation under CircuitPython programming.

The new monitoring system is very similar in design and operation to the
Cellular Weather Station described above. Both systems are based on the Itsy-
Bitsy M4 Express microcontroller development board (Adafruit Industries),

Figure 5. Time series of weather data collected with the cellular weather station.

https://doi.org/10.4236/ait.2021.111004

D. K. Fisher et al.

DOI: 10.4236/ait.2021.111004 54 Advances in Internet of Things

SIM7000 LTE CaT-M1/NB-IoT + GPS cellular shield (Botletics), and TPL5110
Low-Power Time (Sparkfun Electronics) and rechargeable battery. Slight circuit
modifications are made to replace the weather-related sensors with circuitry to
interface and read soil-moisture sensors.

For the soil-moisture monitor, four soil-moisture sensors, Watermark Model
200-SS (Irrometer Company, Inc.; https://irrometer.com), interface with the mi-
crocontroller via half-bridge (voltage-divider) resistor networks. Each Water-
mark sensor acts as a variable resistor, with resistance proportional to sensor
water content, and the sensor and a fixed-value (10 k ohm) resistor form a
half-bridge network. When a voltage is applied to the sensor network, the vol-
tage at the center of the half-bridge is measured with the microcontroller’s
built-in analog-to-digital converter, and the resistance of the Watermark sensor
can be calculated. An electrical schematic of the soil-moisture monitor is shown
in Figure 6.

A circuit board was fabricated based on the electrical schematic, with similar
components and methods as that used for the Cellular Weather Station. In place of
the weather sensors, a Spring Terminal Block (Adafruit Industries) was soldered to
the ProtoShield to connect the soil-moisture sensors. The circuit components are
shown in Figure 7, and the Cellular Soil-Moisture Monitor had a total cost of ap-
proximately US$ 120. The monthly charge for the hologram.io cellular data plan
was US$ 0.60. The Watermark soil-moisture sensors cost US$ 30 each.

Figure 6. Electrical schematic for cellular soil-moisture monitor circuit.

https://doi.org/10.4236/ait.2021.111004
https://irrometer.com/

D. K. Fisher et al.

DOI: 10.4236/ait.2021.111004 55 Advances in Internet of Things

Figure 7. Soil-moisture sensor monitoring system hardware components.

The soil-moisture monitoring system was programmed in CircuitPython and

since the system uses many of the same hardware components, it reuses many of
the same software routines written for the Cellular Weather Station. The pro-
gram begins by importing libraries needed to set up serial communications with
the cellular module, specifying pins to interconnect the microcontroller, cellular
shield, TPL5110 and soil-moisture sensors, and configuring and starting serial
communications.

Each of the four soil-moisture sensors is read in turn by providing an excita-
tion voltage to the network. Voltage is applied to the sensor’s half-bridge network
with one polarity (high voltage at one end, low voltage/ground at the other end)
and the center voltage is measured with the microcontroller’s analog-to-digital
converter. The polarity is then switched, and the center voltage measured again.
The alternating excitation is applied five times to provide a stable response and
to avoid polarization of and damage to the sensor. The half-bridge center voltage
is used to calculate the resistance of the sensor, and that resistance is input to a
calibration equation to estimate soil-moisture status in units of matric potential,
kPa.

Following reading of the four sensors, data are transmitted to the ThingSpeak
internet data-hosting website as described for the Cellular Weather Station. The
TPL5110 low-power timer is then signaled and battery power is turned off to the
entire circuit for a period of 2 hrs, after which the circuit is powered on and the
sensor measurement process is repeated. A sample website showing data from a
soil-moisture monitoring system, installed in an agricultural field with soil-moisture
sensors at four depths below the soil surface, is shown in Figure 8.

4. Conclusion

Open-source hardware and software have been used by the research and scien-
tific communities to develop sensing and monitoring systems, often based on the
Arduino microcontroller project. The original hardware and software continue

https://doi.org/10.4236/ait.2021.111004

D. K. Fisher et al.

DOI: 10.4236/ait.2021.111004 56 Advances in Internet of Things

Figure 8. Time series of sensor data collected with the cellular soil-moisture monitor.

to evolve and become more powerful, with upgrades to both the microcontrol-
lers and programming features and support. The Arduino programming envi-
ronment, based on C/C++ computer language allows for development of po-
werful programs and devices, but a fair amount and expertise are required by the
user. The open-source Python language has gained many users and a version de-
rived for programming microcontrollers, called CircuitPython, has been devel-
oped. CircuitPython retains much of the core Python functions and program-
ming options and offers features and advantages for users to interact with hard-
ware and develop sensing and monitoring systems. Numerous microcontroller
development boards, sensors, and peripheral devices are available that are sup-
ported by CircuitPython programming. Three sensing and monitoring systems
were described and discussed to examine the usefulness of CircuitPython for re-
search and scientific applications. Users, especially those with limited electronics
or programming experience, can take advantage of CircuitPython’s ease of use
and extensive features to develop unique applications for data collection and

https://doi.org/10.4236/ait.2021.111004

D. K. Fisher et al.

DOI: 10.4236/ait.2021.111004 57 Advances in Internet of Things

monitoring and enhance hardware and programming skills.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Pearce, J.M. (2012) Building Research Equipment with Free, Open-Source Hard-

ware. Science, 337, 1303-1304. https://doi.org/10.1126/science.1228183

[2] Pearce, J.M. (2012) The Case for Open Source Appropriate Technology. Environ-
ment, Development and Sustainability, 14, 425-431.
https://doi.org/10.1007/s10668-012-9337-9

[3] Fisher, D.K. and Gould, P.J. (2012) Open-Source Hardware is a Low-Cost Alterna-
tive for Scientific Instrumentation and Research. Modern Instrumentation, 1, 8-20.
https://doi.org/10.4236/mi.2012.12002

[4] Mangundu, E.M., Mateus, J.N., Zodi, G.A.L. and Johson, J. (2017) A Wireless Sen-
sor Network for Rainfall Monitoring, Using Cellular Network: A Case for Namibia.
2017 Global Wireless Summit, Cape Town, 15-18 October 2017, 240-244.
https://doi.org/10.1109/GWS.2017.8300469

[5] Ray, P.P. (2017) Internet of Things for Smart Agriculture: Technologies, Practices
and Future Direction. Journal of Ambient Intelligence and Smart Environments, 9,
395-420. https://doi.org/10.3233/AIS-170440

[6] Fisher, D.K., Woodruff, L.K., Anapalli, S.S. and Pinnamaneni, S.R. (2018) Open-
Source Wireless Cloud-Connected Agricultural Sensor Network. Journal of Sensor
and Actuator Networks, 7, 47. https://doi.org/10.3390/jsan7040047

[7] Rodriguez-Juarez, P., Junez-Ferreira, H.E., Trinidad, J.G., Zavala, M., Burnes-Rudecino,
S. and Bautista-Capetillo, C. (2018) Automated Laboratory Infiltrometer to Esti-
mate Saturated Hydraulic Conductivity using an Arduino Microcontroller Board.
Water, 10, 1867. https://doi.org/10.3390/w10121867

[8] Fletcher, R.S. and Fisher, D.K. (2019) Spatial Analysis of Soybean Plant Height and
Plant Canopy Temperature Measured with On-the-Go Tractor Mounted Sensors.
Agricultural Sciences, 10, 1486-1496. https://doi.org/10.4236/as.2019.1011109

[9] Fisher, D.K. and Sui, R. (2013) An Inexpensive Open-Source Ultrasonic Sensing
System for Monitoring Liquid Levels. Agricultural Engineering International: CIGR
Journal, 15, 328-334.

[10] Payero, J.O., Mirzakhani-Nafchi, A., Khalilian, A., Qiao, X. and Davis, R. (2017)
Development of a Low-Cost Internet-of-Things (IoT) System for Monitoring Soil
Water Potential Using Watermark 200SS Sensors. Advances in Internet of Things,
7, 71-86. https://doi.org/10.4236/ait.2017.73005

[11] Cao-Hoang, T., Tinh, T., Van, P. and Nguyen Duy, C. (2017) Design of a Cost Ef-
fective Soil Monitoring System to Support Agricultural Activities for Smallholder.
Journal of Information Communication Technology and Digital Convergence, 2,
1-5.

[12] Spinelli, G.M. and Gottesman, Z.L. (2019) A Low-Cost Arduino-Based Datalogger
with Cellular Modem and FTP Communication for Irrigation Water Use Monitor-
ing to Enable Access to Crop Manage. Hardware X, 6, e00066.
https://doi.org/10.1016/j.ohx.2019.e00066

[13] Li, Q.Q. and Wu, T. (2013) Research and Design of Small Humanoid Robot Based

https://doi.org/10.4236/ait.2021.111004
https://doi.org/10.1126/science.1228183
https://doi.org/10.1007/s10668-012-9337-9
https://doi.org/10.4236/mi.2012.12002
https://doi.org/10.1109/GWS.2017.8300469
https://doi.org/10.3233/AIS-170440
https://doi.org/10.3390/jsan7040047
https://doi.org/10.3390/w10121867
https://doi.org/10.4236/as.2019.1011109
https://doi.org/10.4236/ait.2017.73005
https://doi.org/10.1016/j.ohx.2019.e00066

D. K. Fisher et al.

DOI: 10.4236/ait.2021.111004 58 Advances in Internet of Things

on the Arduino. Applied Mechanics and Materials, 431, 258-261.
https://doi.org/10.4028/www.scientific.net/AMM.431.258

[14] Araújo, A., Portugal, D., Couceiro, M.S. and Rocha, R.P. (2015) Integrating Ardui-
no-Based Educational Mobile Robots in ROS. Journal of Intelligent & Robotic Sys-
tems, 77, 281-298. https://doi.org/10.1007/s10846-013-0007-4

[15] Ariawan, K.U., Santyadiputra, G.S. and Sutaya, I.W. (2019) Design of Hexapod Ro-
bot Movement Based on Arduino Mega 2560. The 1st International Conference on
Vocational Education and Technology, Bali, 3 November 2018, Article ID: 012011.
https://doi.org/10.1088/1742-6596/1165/1/012011

[16] Vidal-Pardo, A. and Pindado, S. (2018) Design and Development of a 5-Channel
Arduino-Based Data Acquisition System (ABDAS) for Experimental Aerodynamics
Research. Sensors, 18, 2382. https://doi.org/10.3390/s18072382

[17] Busquets, J., Busquets, J.V., Tudela, D., Pérez, F., Busquets-Carbonell, J., Barberá,
A., Rodríguez, C., García, A.J. and Gilabert, J. (2012) Low-Cost AUV Based on Ar-
duino Open Source Microcontroller Board for Oceanographic Research Applica-
tions in a Collaborative Long Term Deployment Missions and Suitable for Com-
bining with an USV as Autonomous Automatic Recharging Platform. 2012 IEEE/OES
Autonomous Underwater Vehicles, Southampton, 24-27 September 2012, 1-10.
https://doi.org/10.1109/AUV.2012.6380720

[18] Rivas-Sanchez, Y.A., Moreno-Perez, M.F. and Roldan-Canas. J. (2019) Environment
Control with Low-Cost Microcontrollers and Microprocessors: Application for
Green Walls. Sustainability, 11, 782. https://doi.org/10.3390/su11030782

[19] Bridge, E.S., Wilhelm, J., Pandit, M.M., Moreno, A., Curry, C.M., Pearson, T.D.,
Proppe, D.S., Holwerda, C., Eadie, J.M., Stair, T.F., Olson, A.C., Lyon, B.E., Branch,
C.L., Pitera, A.M., Kozlovsky, D., Sonnenberg, B.R., Pravosudov, V.V. and Ruyle,
J.E. (2019) An Arduino-Based RFID Platform for Animal Research. Frontiers in
Ecology and Evolution, 7, 257. https://doi.org/10.3389/fevo.2019.00257

[20] Teikari, P., Najjar, R.P., Malkki, H., Knoblauch, K., Dumortier, D., Gronfier, C. and
Cooper, H.M. (2012) An Inexpensive Arduino-Based LED Stimulator System for
Vision Research. Journal of Neuroscience Methods, 211, 227-236.
https://doi.org/10.1016/j.jneumeth.2012.09.012

[21] D’Ausilio, A. (2012) Arduino: A Low-Cost Multipurpose Lab Equipment. Behavior-
al Research Methods, 44, 305-313. https://doi.org/10.3758/s13428-011-0163-z

[22] Grinias, J.P., Whitfield, J.T., Guetschow, E.D. and Kennedy, R.T. (2016) An Inex-
pensive, Open-Source USB Arduino Data Acquisition Device for Chemical Instru-
mentation. Journal of Chemical Education, 93, 1316-1319.
https://doi.org/10.1021/acs.jchemed.6b00262

[23] Wickert, A.D., Sandell, C.T., Schulz, B. and Ng, G.H.C. (2018) Open-Source Ar-
duino-Derived Data Loggers Designed for Field Research. Hydrology and Earth
Systems Sciences Discussions. https://doi.org/10.5194/hess-2018-591

[24] Fisher, D.K., Fletcher, R.S., Anapalli, S.S. and Pringle III, H.C. (2018) Development
of an Open-Source Cloud-Connected Sensor-Monitoring Platform. Advances in
Internet of Things, 8, 1-11. https://doi.org/10.4236/ait.2018.81001

[25] Fisher, D.K., Fletcher, R.S. and Anapalli, S.S. (2020) Evolving Open-Source Tech-
nologies Offer Options for Remote Sensing and Monitoring in Agriculture. Ad-
vances in Internet of Things, 10, 1-10. https://doi.org/10.4236/ait.2020.101001

https://doi.org/10.4236/ait.2021.111004
https://doi.org/10.4028/www.scientific.net/AMM.431.258
https://doi.org/10.1007/s10846-013-0007-4
https://doi.org/10.1088/1742-6596/1165/1/012011
https://doi.org/10.3390/s18072382
https://doi.org/10.1109/AUV.2012.6380720
https://doi.org/10.3390/su11030782
https://doi.org/10.3389/fevo.2019.00257
https://doi.org/10.1016/j.jneumeth.2012.09.012
https://doi.org/10.3758/s13428-011-0163-z
https://doi.org/10.1021/acs.jchemed.6b00262
https://doi.org/10.5194/hess-2018-591
https://doi.org/10.4236/ait.2018.81001
https://doi.org/10.4236/ait.2020.101001

	Python Software Integrates with Microcontrollers and Electronic Hardware to Ease Development for Open-Source Research and Scientific Applications
	Abstract
	Keywords
	1. Introduction
	2. Methods and Materials
	2.1. Software
	2.2. Hardware

	3. Example Applications
	3.1. Desktop Weather Station
	3.2. Cellular Weather Station
	3.3. Cellular Soil-Moisture Monitor

	4. Conclusion
	Conflicts of Interest
	References

