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Abstract 
Many options exist for developing and implementing monitoring systems 
for research and scientific applications. Commercially, available systems 
and devices, however, are usually built using proprietary tools and pro-
gramming instructions, and often offer limited flexibility for end users. The use 
of open-source hardware and software has been embraced by the research and 
scientific communities and can be used to target unique data and information 
requirements. Development based on the Arduino microcontroller project 
has resulted in many successful applications, and the Arduino hardware and 
software environment continues to expand and become more powerful but 
can be intimidating for users with limited electronics or programming expe-
rience. The open-source Python language has gained in popularity and is be-
ing taught in schools and universities as an introduction to computer pro-
gramming and software development due to its simple structure, ease of use, 
and large standard library of functions. A project called CircuitPython was 
developed to extend the use of Python to programming hardware devices 
such as programmable microcontrollers and maintains much of the original 
Python language and features, with additional support for accessing and con-
trolling microcontroller hardware. The objective of the work reported here is to 
discuss the CircuitPython programming language and demonstrate its use in 
the development of research and scientific applications. Several open-source 
sensing and monitoring systems developed using open-source hardware and 
the open-source CircuitPython programming language are presented and de-
scribed. 
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1. Introduction 

Numerous options exist for developing and implementing sensing and moni-
toring systems for research and scientific applications. Many electronic equip-
ment manufacturers and vendors offer instruments, instrument systems, and 
complete monitoring systems for a variety of applications. These systems and 
devices, however, are usually available in limited configurations designed by the 
vendor, are built using proprietary tools and programming instructions, and of-
ten offer limited flexibility for end users. 

The use of open-source hardware and software has been embraced by the re-
search and scientific communities as a means of developing bespoke sensing and 
monitoring systems to target unique data and information requirements and 
achieve specific research goals [1] [2] [3]. The open-source Arduino project  
(https://arduino.cc) consists of a hardware component, a microcontroller devel-
opment circuit board, and a software component, an Integrated Development 
Environment (IDE). The Arduino has proven to be a popular and powerful de-
velopment tool for researchers and scientists, as well as hobbyists, artists, and 
other makers. Electronic devices and instrumentation have been developed in 
many different disciplines, such as agriculture [4] [5] [6] [7] [8], irrigation and 
water management [9] [10] [11] [12], robotics [13] [14] [15], scientific and en-
vironmental studies [16] [17] [18] [19], and multipurpose laboratory and field 
data collection [20] [21] [22] [23] [24]. 

Development using the Arduino project has resulted in many successful ap-
plications, and the Arduino hardware and software environment continues to 
expand, include additional features, and become more powerful [25]. The origi-
nal hardware, based on an 8-bit microcontroller, with limited features and a slow 
processing speed, has been augmented with much faster, feature-rich, and more 
powerful 32-bit microcontrollers. The software programming environment un-
dergoes continuous upgrades to offer additional features and support for new 
hardware. A few issues regarding the Arduino IDE have contributed to the suc-
cess of the Arduino project, but also to some intimidation for users, especially 
those new to microcontrollers and computer programming. The IDE supports 
programming based on the C/C++ computer language, which allows powerful 
and fast-executing programs to be written and deployed. For more than simple 
programs, however, a fair amount of in-depth knowledge of the language is re-
quired. In addition, the Arduino IDE must be downloaded (https://arduino.cc) 
and installed on a computer, configured by installing additional utilities to sup-
port specific microcontroller hardware, and various hardware drivers often must 
also be installed and special cables used to interface and interact with the mi-
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crocontroller. 
Much progress in computer software development has been made due to the 

C/C++ languages, but other programming languages exist and have been gaining 
in popularity. The open-source Python language (https://python.org) has gained 
many users and is being taught in schools and universities as an introduction to 
computer programming and software development due to its simple structure, 
ease of use, and large standard library of functions. A project called MicroPy-
thon (https://microcpython.org) was developed to extend the use of Python to 
programming and controlling hardware devices such as programmable micro-
controllers. MicroPython maintains much of the original Python language and 
features, with additional support for accessing and controlling microcontroller 
hardware. 

CircuitPython (https://circuitpython.org) is an open-source programming 
language derived from MicroPython and was developed by Adafruit Industries 
(https://adafruit.com) to be easier to learn and use. Different from MicroPython, 
CircuitPython was developed to support a limited and specific subset of micro-
controllers, specifically the 32-bit ARM Cortex M0 SAMD21 and ARM Cortex M4 
SAMD51 microcontrollers (Microchip Technology; https://www.microchip.com) 
and the 32-bit nRF52840 ARM Cortex M4 microcontroller (Nordic Semicon-
ductor; https://www.nordicsemi.com). While the number of supported micro-
controllers is limited, unique development boards from a variety of manufactur-
ers based on these microcontrollers and compatible with CircuitPython number 
approximately 150 (https://circuitpython.org/downloads). 

The objective of the work reported here is to discuss the CircuitPython pro-
gramming language and demonstrate its use in the development of research and 
scientific applications. Several open-source sensing and monitoring systems de-
veloped using open-source hardware and the open-source CircuitPython pro-
gramming language are presented and described. 

2. Methods and Materials 
2.1. Software 

CircuitPython is based on the open-source Python 3 programming language and 
has been ported to run on several specific microcontrollers. CircuitPython is a 
Python compiler that is loaded onto the microcontroller hardware and runs and 
interprets Python code. The compiler includes core, standard Python 3 libraries 
and modules that allow access to mathematical functions, text and string mani-
pulation and parsing, internet protocols, and file and operating-system interac-
tion. Additional modules offer access to the microcontroller hardware to interact 
with and manage various hardware features, such as input/output pins, analog 
and digital signal processing, analog-to-digital converters, serial ports, and digi-
tal (I2C, SPI) communications protocols. Supplemental libraries and modules 
are available to support interfacing the microcontroller with external peripher-
als, such as sensors, displays, real-time clock/calendars, data storage devices, 
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GPS receivers, cameras, motors, and Bluetooth, wifi, and other wireless devices 
(https://circuitpython.org/libraries).  

CircuitPython is installed on a microcontroller development board via a boot-
loader utility unique to each microcontroller board. The bootloader is downloaded 
in the form of a USB Flashing Format (uf2) file for the specific microcontroller 
from the CircuitPython repository (https://circuitpython.org/downloads). The 
microcontroller board is connected to a host computer with a standard micro-
USB cable. The microcontroller is put into a bootloading mode by pressing a 
button on the microcontroller development board, and the board appears on the 
host computer as a removable flash drive. The user then copies the uf2 file to the 
board’s flash drive via the micro USB cable, the file structure is created, and the 
CircuitPython compiler and core libraries are copied to the drive. 

Writing a microcontroller program in CircuitPython is similar to writing a 
program in Python: the program is written as a text file using any text editor, 
and the file is saved with a “.py” extension. Text editors used by the Python 
community, such as Mu (https://codewith.mu) and Atom (https://atom.io), 
support several versions of Python, including CircuitPython, and offer real-time 
interaction for writing and testing code, debugging, and plotting. When a pro-
gram is written, the file is named and it, and supporting libraries, are saved to 
the board’s flash drive. Multiple program files and libraries may be stored on the 
flash drive. Whenever the microcontroller is powered on, the CircuitPython 
compiler searches for a file named “code.py” and, if found, immediately runs 
that file. The user can run any of multiple stored programs by simply changing 
the program’s filename to code.py. 

Testing and modifying programs in CircuitPython are different than when 
using the Arduino IDE. Using the Arduino IDE, the user makes code changes, 
then must recompile the program and upload the recompiled program to the 
microcontroller. In CircuitPython, the user enters code or makes changes to the 
code.py program file using the text editor, then only needs to save the modified 
file. The microcontroller detects the presence of the modified file, automatically 
resets itself and restarts, and begins execution of the new code.py file. This al-
lows for user interaction with the microcontroller and its programming without 
the need for a specific programming environment, like the Arduino IDE: the us-
er can modify CircuitPython with any text editor on almost any computer, tab-
let, or even smartphone. 

2.2. Hardware 

CircuitPython is suitable for programming to interface and control a variety of 
electronic hardware, including microcontrollers, sensors, and communications 
and other peripheral devices. While many and varied microcontrollers are 
available from a variety of manufacturers, CircuitPython is targeted and opti-
mized to run on Microchip Technology 32-bit ARM Cortex M0 SAMD21 and 
ARM Cortex M4 SAMD51 microcontrollers and the Nordic Semiconductor 
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32-bit nRF52840 ARM Cortex M4 microcontroller. The main differences be-
tween the microcontrollers are in processing speed and memory size: the 
ATSAMD21 operates at 48 MHz, with 256 KB of flash and 32 KB of RAM; the 
ATSAMD51 operates at 120 MHz, with 512 KB flash and 192 KB RAM; and the 
nRF52840 operates at 64 MHz, with 1 MB flash and 256 KB of RAM. The 
nRF52840 microcontroller also different in that it has a built-in Bluetooth Low 
Energy 2.4 GHz radio which the user can access and program. 

Microcontroller development boards consist of a microcontroller and aux-
iliary electronic components mounted on a circuit board that breaks out the 
multiple input/output pins of the microcontroller, making the pins and built-in 
features conveniently accessible to the user. Built-in features include: multi-
channel analog-to-digital converters for measuring analog voltages; multiple 
digital communications ports, including serial, I2C, and SPI, for interfacing dig-
ital sensors and peripheral devices; timers and clocks for event interval and pulse 
measurement and timekeeping; pulsewidth modulation for controlling motors 
and lights; and USB support for interfacing with a host computer. On boards ex-
plicitly designed for use with CircuitPython, a flash memory chip is incorpo-
rated to store the Python interpreter and programming and library files, result-
ing in a self-contained programming and run-time device. 

While many manufacturers offer microcontroller development boards, discussion 
here is limited to boards produced by Adafruit Industries (https://adafruit.com) 
and Sparkfun Electronics (https://sparkfun.com), with which the authors are 
familiar and have experience developing in both Arduino and CircuitPython 
programming environments. Microcontroller boards, as well as sensors and pe-
ripheral components from these manufacturers, are well documented and sup-
ported by their respective manufacturers, and are available in many parts of the 
world via online electronics retailers. The discussion is applicable to devices 
from other manufacturers, but the user would need to identify and install the 
appropriate uf2 bootloader file and specific libraries for the exact hardware used. 

The original Arduino development board had a specific form factor (size of 
the board, spacing of input/output pins, and arrangement of specific pins and 
features) that allowed for interchangeability of boards from different manufac-
turers, and for the development of plug-in boards, called shields. While that 
form factor is still in use and supported by many manufacturers, the Feather se-
ries of development boards (Adafruit Industries) introduced a new physical 
form factor, different from the original Arduino microcontroller board. The new 
form factor has been adopted by several other manufacturers. 

A wide range of sensors and peripheral device are available, from Adafruit 
Industries, Sparkfun Electronics, and many other manufacturers, that interface 
easily with microcontrollers and are supported by CircuitPython libraries. Simi-
lar to Arduino shields, peripheral plug-in boards for Feather boards, called 
wings, allow, for example, external sensors, clock/calendars, GPS receivers, wifi, 
Bluetooth, cellular, and other wireless modules, and SDcard storage devices, to 
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plug directly into the microcontroller board and share pins. No external circui-
try is required by the user to develop powerful sensing and monitoring systems. 

3. Example Applications 

Electronic monitoring systems have been developed to support research related 
mainly to agricultural and water-management efforts by researchers with the 
United States Department of Agriculture’s Agricultural Research Service at the 
Jamie Whitten Delta States Research Center, Stoneville, Misissippi USA. Several 
of these systems are described in the following sections. In the spirit of open- 
source collaboration and sharing of information, all hardware and software de-
tails, including CircuitPython code, are freely available by contacting the au-
thors. 

3.1. Desktop Weather Station 

A simple “weather station” was developed to access and display a time-series of 
weather data using internet-based services. The desktop weather station is a vir-
tual weather station that connects to the internet over a wifi network and ac-
cesses weather data from an internet service. Weather data are downloaded and 
displayed on a data-hosting website. 

A number of internet-based services provide current and historical weather 
data and weather forecasts, often at no cost to the user. Services such as Open-
Weather (https://openweathermap.org), Meteostat (https://meteostat.net), wea-
therstack (https://weatherstack.com), and AccuWeather (https://accuweather.com) 
allow users access to weather data via a simple Application Programming Inter-
face (API). The API consists of a URL (essentially a website address) containing 
information such as specific geographic location, units of measure, time period, 
and user account number embedded in the URL. Upon sending the URL, weather 
data and descriptive information are returned, in a specific JSON-formatted re-
sponse, and the user parses the response to retrieve individual data values. 

For this project, the OpenWeather service (https://openweathermap.org) was 
selected based on its simple API and ease in parsing the formatted data response. 
Upon registering on the OpenWeather website, a user account is created, and a 
unique user API key is assigned. The API allows the user to specify geographic 
location by city name, postal code, or latitude and longitude coordinates, and 
units as metric or imperial. To access data, the user assembles and sends a URL 
consisting of OpenWeather’s base URL, geographic location, measurement units, 
and user API key, as shown in the following example:  
http://api.openweathermap.org/data/2.5/weather?zip=38776&units=imperial&A
PPID=user_api_key.  

A variety of internet-based data-hosting services are available that allow users 
to transfer data from remote locations and store, view, and share data via a web 
browser. The ThingSpeak platform (https://thingspeak.com) offers no-cost, li-
mited-use access, and users can select and customize output formats for dis-
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playing their data in graphical and text formats. Interaction with ThingSpeak is 
similar to interaction with the OpenWeather website in that an API defines the 
format of a URL, which the user assembles and sends to the website. To use the 
ThingSpeak service, the user registers on the ThingSpeak website, an account is 
created, and a unique user API key and data channel number (webpage address) 
are assigned. The user configures the data channel/webpage by defining the 
number of data values to be uploaded and the graphical format of the data dis-
plays. Data are uploaded to the website in a manner similar to that for down-
loading OpenWeather data, by assembling a URL including the ThingSpeak base 
URL, user API key, and data values. The data can then be viewed via a web 
browser by specifying the channel number on the ThingSpeak website. 

The Desktop Weather Station hardware consists of a Feather M4 Express mi-
crocontroller development board (Adafruit Industries) and an AirLift Fea-
therWing ESP32 WiFi Co-Processor board (Adafruit Industries). The two 
boards are designed with the same physical form-factor to mate directly and 
share pins, with no external circuitry required. The two boards, shown in Figure 
1, plug together using male header pins soldered to one board and female head-
ers soldered to the other. The assembled boards share electrical power via a mi-
croUSB cable and power supply. Cost of the hardware components totaled 
US$ 42. 

The Desktop Weather Station microcontroller was programmed in the Cir-
cuitPython programming language. The CircuitPython uf2 bootlader file for the 
Feather M4 Express board was downloaded from the CircuitPython repository 
(https://circuitpython.org) and loaded onto the microcontroller board. Circuit-
Python libraries were also downloaded (https://circuitpython.org/libraries), and 
specific modules needed for the project were stored on the flash drive on the 
board. Programming was accomplished using the open-source Mu code editor. 

The program begins by importing libraries needed to set up digital communi-
cations between microcontroller and Airlift ESP32 and configure wifi functions. 
Specific pins which interconnect the microcontroller and the ESP32, and cre-
dentials required for logging on to the user’s wifi network (network name, login, 
and password), accessing the OpenWeatherMap website (user API key), and 
uploading data to the ThingSpeak website (user API key), are defined. Wifi services 

 

 
Figure 1. Desktop weather station hardware components. 
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are then enabled and the Airlift ESP32 connects to the user’s wifi network, pro-
viding access to internet sites and services. 

Weather data are downloaded from the OpenWeatherMap website by assem-
bling a URL as described above and sending the URL via the internet. The re-
sponse is received as a JSON-formatted string, which appears to CircuitPython 
as a Python dictionary containing key-word and data-value pairs. The response 
is parsed to extract measurements of air temperature, relative humidity, wind 
speed, atmospheric pressure, precipitation, and cloud cover. The program will 
make up to three attempts to retrieve data, in case an error occurs and an in-
complete or no response is received. 

The weather data are then uploaded to the ThingSpeak website by assembling 
a URL containing the weather data values. An example of a ThingSpeak URL for 
uploading two data values would be of the form  
https://api.thingspeak.com/update?api_key=user_API_key&field1=12.3&field2=
4.56. A sample of weather data downloaded from OpenWeatherMap for the 
Stoneville, Mississippi USA location during a seven-day period in August 2020 
and uploaded to ThingSpeak is shown in Figure 2. 

 

 
Figure 2. Time-series of weather data downloaded from OpenWeather and displayed on 
the ThingSpeak website. 
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3.2. Cellular Weather Station 

The Cellular Weather Station, different from the virtual Desktop Weather Sta-
tion, is a physical device deployed in the field to monitor actual weather condi-
tions. The device consists of a microcontroller development board, weather sen-
sors, cellular modem, and rechargeable battery power. The microcontroller was 
programmed in CircuitPython to periodically take measurements of atmospher-
ic temperature, humidity, and pressure, and light level. Data are transmitted to 
the internet-based ThingSpeakdata-hosting website via the cellular communica-
tions network. 

The circuit is based on an ItsyBitsy M4 Express microcontroller development 
board (Adafruit Industries) and a SIM7000 LTE CaT-M1/NB-IoT + GPS cellular 
shield (Botletics; https://botletics.com). The ItsyBitsy circuit board has a differ-
ent physical format from that of the Feather microcontroller board but is based on 
the same Cortex M4 microcontroller. The SIM7000 cellular shield features a SIM-
Com 7000 LTE Cat-M1 cellular module (SIMCom; https://www.simcom.com), 
which interfaces with the microcontroller over a standard two-wire serial port. 
The SIM7000 module operates on the recently commissioned LTE Cat-M1 cel-
lular network (https://www.3gpp.org), which is built on the existing 4G network. 
The LTE Cat-M1 network is designed for low-frequency, small-packet data 
transfer, sometimes referred to as Internet of Things, applications. To enable 
cellular data transfer, cellular network service is enabled via a data plan pur-
chased from Hologram (https://hologram.io). 

Two sensor breakout boards, each containing a solid-state sensor and aux-
iliary electronic circuitry, interface with the microcontroller to provide mea-
surements of several weather parameters. The BME280 Temperature, Humidity, 
and Pressure breakout board (Adafruit Industries) measures air temperature, rela-
tive humidity, and atmospheric pressure using a BME280 Temperature, Humidity, 
and Pressure sensor (Bosch Sensortronics; https://www.bosch-sensortec.com). 
The TSL2591 Digital Light Sensor (Adafruit Industries) measures light level us-
ing a TSL2591 Light to Digital Converter (ams; https://ams.com). The two sen-
sors interface with the microcontroller via I2C (Inter Integrated Circuit), a 
two-wire digital communications protocol: both sensors connect to the micro-
controller’s I2C port and the microcontroller communicates with and controls 
each sensor using the sensor’s unique I2C address. 

To enable long-term, battery-powered operation, microcontrollers and ac-
companying circuitry are often placed in a low-power sleep mode, waking pe-
riodically to perform circuit functions, then returning to sleep. CircuitPython, 
however, is currently not able to provide this feature. Instead, a hardware solu-
tion is incorporated into the circuit to reduce power consumption and enable 
operation under battery power. The TPL5110 Low-Power Timer (Sparkfun 
Electronics; https://sparkfun.com) is installed between the microcontroller and 
the 2500-mAh Lithium Ion Polymer Battery (Adafruit Industries). The low- 
power timer regulates electrical power from the battery to the microcontroller 
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and sensor circuit. At periodic intervals, the TPL5110 energizes and switches 
battery power on to the microcontroller and circuit. The CircuitPython program 
begins execution, reading sensors and transmitting data via the cellular network. 
At the end of program execution, the microcontroller sends a signal to the 
TPL5110, which completely turns off battery power to the circuit. The interval at 
which power is turned on and off, ranging from milliseconds to 2 hours, is de-
termined easily by the user by configuring a set of switches installed on the 
TPL5110 circuit board. A schematic of the electrical circuit is shown in Figure 3. 

The electrical circuit was then used to fabricate a circuit board. Female head-
ers were located and soldered to an Arduino ProtoShield (Sparkfun Electronics), 
which has the same form-factor as that of the Botletics cellular module. Male 
header pins were soldered to the microcontroller board and each of the sensor 
and low-power timer boards. A functioning circuit board, shown in Figure 4, 
resulted by plugging all the components together. To install the circuit in the 
field, the assembled circuit was placed inside a protective electronics enclosure 
(Adafruit Industries), which was then inserted into a Solar Raditation Shield 
(AcuRite, https://www.acurite.com) to protect from direct exposure to sunlight. 
Total cost of the Cellular Weather Station components was approximately 
US$ 160. The monthly charge for the hologram.io cellular data plan was US$ 0.60. 

 

 
Figure 3. Electrical schematic of the cellular weather station. 
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Figure 4. Cellular Weather Station hardware components. 

 
The microcontroller was programmed in a manner similar to that described 

for the Desktop Weather Station described above. The CircuitPython uf2 file for 
the ItsyBitsy M4 Express board was loaded onto the microcontroller board, spe-
cific modules needed for communicating via the I2C protocol and reading the 
BME280 and TSL2591 sensors were downloaded and copied to the flash drive. 
Programming was accomplished using the open-source Mu code editor. 

The program begins by importing libraries needed to set up serial and I2C 
communications and enable the BME280 and TSL2591 sensors. Specific pins 
which interconnect the microcontroller and cellular shield and TPL5110 are de-
fined, and serial and I2C communications protocols and sensors are configured 
and started. 

The two sensors interface with the microcontroller using the same two I2C 
pins, and each sensor is read in turn. The microcontroller first reads the BME280 
sensor by sending its unique I2C address to specify that individual sensor, then 
sends a series of commands to retrieve sensor measurements of air temperature, 
humidity, and pressure. The microcontroller then reads the TSL2591 similarly, 
sending its I2C address and commands to retrieve a light level measurement. 

To send data to the ThingSpeak website, the cellular module is powered on, 
and a connection between the microcontroller and cellular module is established 
via a two-wire serial port. Control of the cellular module is accomplished via 
standard Hayes AT commands, which were developed for computer modems in 
the early 1980s and still in use today by many serial devices. Commands are sent 
for the module to register on the cellular network, specify the access point for 
the hologram.io cellular service, and enable data and internet services. Sensor 
data are sent by assembling a URL as previously described for the Desktop 
Weather Station, and the URL is sent. Data and internet services are then ter-
minated, and the module is detached from the cellular network and powered 
down. The circuit is then put into a low-power state by sending a signal to the 
TPL5110 low-power timer. The TPL5110 disconnects the battery from the cir-
cuit, and no battery power is used by the circuit until the next measurement 
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interval. 
A sample of weather sensor data from the Cellular Weather Station is shown 

in Figure 5. The data were collected from the same location and time period as 
downloaded by the Desktop Weather Station, shown in Figure 2. 

3.3. Cellular Soil-Moisture Monitor 

Soil-moisture sensors are commonly used to monitor the soil-water status in the 
root zone of agricultural crops. Knowledge of soil-moisture status is used to 
evaluate water use by the crops and to offer guidance for water management and 
determining the proper timing of irrigation water application. A monitoring 
system was developed previously [25] to read and transmit soil-moisture sensor 
measurements and was designed to allow remote access of sensor data via the 
cellular communications network. The existing monitoring system, consisting of 
a microcontroller-based circuit, soil-moisture sensors, and a cellular modem, 
was modified for operation under CircuitPython programming. 

The new monitoring system is very similar in design and operation to the 
Cellular Weather Station described above. Both systems are based on the Itsy-
Bitsy M4 Express microcontroller development board (Adafruit Industries),  

 

 
Figure 5. Time series of weather data collected with the cellular weather station. 
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SIM7000 LTE CaT-M1/NB-IoT + GPS cellular shield (Botletics), and TPL5110 
Low-Power Time (Sparkfun Electronics) and rechargeable battery. Slight circuit 
modifications are made to replace the weather-related sensors with circuitry to 
interface and read soil-moisture sensors. 

For the soil-moisture monitor, four soil-moisture sensors, Watermark Model 
200-SS (Irrometer Company, Inc.; https://irrometer.com), interface with the mi-
crocontroller via half-bridge (voltage-divider) resistor networks. Each Water-
mark sensor acts as a variable resistor, with resistance proportional to sensor 
water content, and the sensor and a fixed-value (10 k ohm) resistor form a 
half-bridge network. When a voltage is applied to the sensor network, the vol-
tage at the center of the half-bridge is measured with the microcontroller’s 
built-in analog-to-digital converter, and the resistance of the Watermark sensor 
can be calculated. An electrical schematic of the soil-moisture monitor is shown 
in Figure 6. 

A circuit board was fabricated based on the electrical schematic, with similar 
components and methods as that used for the Cellular Weather Station. In place of 
the weather sensors, a Spring Terminal Block (Adafruit Industries) was soldered to 
the ProtoShield to connect the soil-moisture sensors. The circuit components are 
shown in Figure 7, and the Cellular Soil-Moisture Monitor had a total cost of ap-
proximately US$ 120. The monthly charge for the hologram.io cellular data plan 
was US$ 0.60. The Watermark soil-moisture sensors cost US$ 30 each. 

 

 
Figure 6. Electrical schematic for cellular soil-moisture monitor circuit. 

https://doi.org/10.4236/ait.2021.111004
https://irrometer.com/


D. K. Fisher et al. 
 

 

DOI: 10.4236/ait.2021.111004 55 Advances in Internet of Things 
 

 
Figure 7. Soil-moisture sensor monitoring system hardware components. 

 
The soil-moisture monitoring system was programmed in CircuitPython and 

since the system uses many of the same hardware components, it reuses many of 
the same software routines written for the Cellular Weather Station. The pro-
gram begins by importing libraries needed to set up serial communications with 
the cellular module, specifying pins to interconnect the microcontroller, cellular 
shield, TPL5110 and soil-moisture sensors, and configuring and starting serial 
communications. 

Each of the four soil-moisture sensors is read in turn by providing an excita-
tion voltage to the network. Voltage is applied to the sensor’s half-bridge network 
with one polarity (high voltage at one end, low voltage/ground at the other end) 
and the center voltage is measured with the microcontroller’s analog-to-digital 
converter. The polarity is then switched, and the center voltage measured again. 
The alternating excitation is applied five times to provide a stable response and 
to avoid polarization of and damage to the sensor. The half-bridge center voltage 
is used to calculate the resistance of the sensor, and that resistance is input to a 
calibration equation to estimate soil-moisture status in units of matric potential, 
kPa. 

Following reading of the four sensors, data are transmitted to the ThingSpeak 
internet data-hosting website as described for the Cellular Weather Station. The 
TPL5110 low-power timer is then signaled and battery power is turned off to the 
entire circuit for a period of 2 hrs, after which the circuit is powered on and the 
sensor measurement process is repeated. A sample website showing data from a 
soil-moisture monitoring system, installed in an agricultural field with soil-moisture 
sensors at four depths below the soil surface, is shown in Figure 8. 

4. Conclusion 

Open-source hardware and software have been used by the research and scien-
tific communities to develop sensing and monitoring systems, often based on the 
Arduino microcontroller project. The original hardware and software continue  
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Figure 8. Time series of sensor data collected with the cellular soil-moisture monitor. 

 
to evolve and become more powerful, with upgrades to both the microcontrol-
lers and programming features and support. The Arduino programming envi-
ronment, based on C/C++ computer language allows for development of po-
werful programs and devices, but a fair amount and expertise are required by the 
user. The open-source Python language has gained many users and a version de-
rived for programming microcontrollers, called CircuitPython, has been devel-
oped. CircuitPython retains much of the core Python functions and program-
ming options and offers features and advantages for users to interact with hard-
ware and develop sensing and monitoring systems. Numerous microcontroller 
development boards, sensors, and peripheral devices are available that are sup-
ported by CircuitPython programming. Three sensing and monitoring systems 
were described and discussed to examine the usefulness of CircuitPython for re-
search and scientific applications. Users, especially those with limited electronics 
or programming experience, can take advantage of CircuitPython’s ease of use 
and extensive features to develop unique applications for data collection and 
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monitoring and enhance hardware and programming skills. 
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