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Abstract

BACKGROUND: Palmer amaranth (Amaranthus palmeri S. Wats.) is a troublesome agronomic weed in the southern United States,
and several populations have evolved resistance to glyphosate. This paper reports on spectral signatures of glyphosate-resistant
(GR) and glyphosate-sensitive (GS) plants, and explores the potential of using hyperspectral sensors to distinguish GR from GS
plants.

RESULTS: GS plants have higher light reflectance in the visible region and lower light reflectance in the infrared region of
the spectrum compared with GR plants. The normalized reflectance spectrum of the GR and GS plants had best separability
in the 400–500 nm, 650–690 nm, 730–740 nm and 800–900 nm spectral regions. Fourteen wavebands from within or near
these four spectral regions provided a classification of unknown set of GR and GS plants, with a validation accuracy of 94% for
greenhouse-grown plants and 96% for field-grown plants.

CONCLUSIONS: GR and GS Palmer amaranth plants have unique hyperspectral reflectance properties, and there are four distinct
regions of the spectrum that can separate the GR from GS plants. These results demonstrate that hyperspectral imaging
has potential application to distinguish GR from GS Palmer amaranth plants (without a glyphosate treatment), with future
implications for glyphosate resistance management.
Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
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1 INTRODUCTION
Glyphosate [N-(phosphonomethyl) glycine] is the most widely
used herbicide in the world, in large part because of its appli-
cation in transgenic, glyphosate-resistant cropping systems.1

Glyphosate use (both in frequency and amount) has increased in
glyphosate-resistant (GR) corn, cotton and soybean. Repeated and
intensive use of glyphosate has exerted a high selection pressure
on weed populations, resulting in evolution of GR weeds. To date,
a total of 25 weed species, including Palmer amaranth (Ama-
ranthus palmeri S. Wats.), have evolved resistance to glyphosate
worldwide.2 GR Palmer amaranth was first reported in Georgia
in 2006.3 Since then, 18 other states in the United States have
reported GR Palmer amaranth populations.2

GR Palmer amaranth is a troublesome weed in corn, cotton and
soybean. It can emerge throughout the growing season, grow
rapidly, reaching heights in excess of 2 m, quickly overtopping
crops such as cotton and soybean, and reduce yield and har-
vest efficiency.3,4 Not all Palmer amaranth field populations are
resistant to glyphosate. GR and glyphosate-sensitive (GS) Palmer

amaranth plants look alike, and visually it is impossible to distin-
guish GR plants from GS plants.

Currently, GR and GS plants are identified by assessing physio-
logical and biochemical changes in plants following glyphosate
treatment. Whole plants, single leaves or leaf discs are sub-
jected to glyphosate treatment to identify GR from GS plants.
Glyphosate-treated GS plants develop visible injury symp-
toms (chlorosis, necrosis) and are killed, while GR plants survive
glyphosate treatment, with the duration to survival dependent
on glyphosate resistance mechanism(s) and prevailing growing
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conditions. In a leaf-dip assay, where a single leaf is dipped in
glyphosate solution for 48 h and leaf injury (wilting and discol-
oration) is visually estimated,5 leaves of GS plants exhibit greater
injury than leaves of GR plants. An in vivo shikimate accumulation
assay with leaf discs following glyphosate treatment is often used
to distinguish GR from GS plants.6 In most cases, GS plants accu-
mulate higher levels of shikimate, and lower levels of shikimate or
a lack thereof in GR plants indicate resistance to glyphosate.

Whole-plant and leaf-dip or leaf-disc shikimate assays, while
undoubtedly reliable in distinguishing GR from GS plants, are
tedious and labor intensive. Hyperspectral technology involves
using sensors that collect spectral data across a wide range of
the optical spectrum at a high spectral resolution, allowing for
detailed spectral signatures of an object. This technology has been
used in many agricultural studies, including identification of plant
stress caused by drought, nutrient deficiencies, pest infestations
and herbicide applications.7 There have been studies on weeds
in which the locations of agricultural weeds were mapped using
hyperspectral technology,8,9 but the authors are not aware of any
studies where this technology has been used to address its util-
ity in differentiating GR and GS weeds. The mechanisms involved
in glyphosate resistance in GR Palmer amaranth may affect its
leaf chemical composition. Differences in chemical composition in
turn could affect light absorption patterns in GR and GS plants. It
was hypothesized that there could be differences in hyperspec-
tral reflectance properties between GR and GS plants. The spe-
cific objectives of the present study were (1) to characterize the
hyperspectral reflectance properties of GR and GS Palmer ama-
ranth plants and (2) to assess classification accuracy of an unknown
set of plants (test set) using the analysis of data from a known set
of plants (training set).

2 MATERIALS AND METHODS
2.1 Greenhouse study

2.1.1 Genetically heterogeneous GR and GS Palmer amaranth
plants
GR and GS Palmer amaranth biotypes from Mississippi10

were raised from seed and used in the study during
September–October 2012. Seeds were planted at 1 cm depth
in 50 × 20 × 6 cm plastic trays with holes that contained a
commercial potting mix (Metro-Mix 360; Sun Gro Horticulture,
Bellevue, WA). Two weeks after emergence, Palmer amaranth
plants were transplanted into 10 × 10 × 10 cm pots containing
the potting mix mentioned before. Plants were fertilized once
with a nutrient solution (Miracle-Gro; The Scotts Company LLC,
Marysville, OH) containing 200 mg L−1 each of N, P2O5 and K2O 1
week after transplanting, and were subirrigated as needed. The
greenhouse was maintained at 28/22 ± 3 ∘C day/night temper-
ature, with natural light supplemented by sodium vapor lamps
to provide a 12 h photoperiod. GR and GS plants, both at the
6–7-leaf growth stage (10–15 cm tall), were used for reflectance
measurements.

2.1.2 Genetically homogeneous GR and GS Palmer amaranth
plants
Plants propagated via cloning (Hoagland RE, private communica-
tion, 2013) were used in the study during November–December
2012. Seeds were collected from the area around Stoneville,
Mississippi (two GR populations), and two areas in Georgia (two

GS populations). The plants were cloned from individual parents
by excising petioles of branch points and immediately placing the
excised tissue sections in deionized water. The excised tissue was
then removed from the deionized water and dried with a towel.
The cut tips were then coated with rooting hormone powder
(1.6%; Hormex, Brooker Chemicals, Hollywood, CA) and planted in
moistened vermiculite/peat (Sun Gro Horticulture, Bellevue, WA)
potting mixture. After about 7 days to allow root initiation and
growth, the clones were transplanted into large pots (15 cm in
diameter by 15 cm in height) containing soil and placed in a green-
house under similar growing conditions as described before. The
plants were in the early flowering stage when they were imaged.

2.2 Field study
Previously characterized10 GR and GS plants were grown in the
greenhouse as described for genetically heterogeneous plants.
Eighty plants each of GR and GS, 10–15 cm tall, were trans-
planted in the field at the USDA-ARS Crop Production Systems
Research Unit farm, Stoneville, Mississippi, on 10 July 2013. Plants
were watered as needed and allowed to establish. Hyperspectral
reflectance measurements were taken on 1–2 August 2013, and
plants were about 75–120 cm tall.

2.3 Plant hyperspectral imaging
2.3.1 Greenhouse study
Two sets of plants were imaged using hyperspectral sensors. The
first set of plants (27 GS and 25 GR) were from heterogeneous
populations. The second set of plants (61 GS and 72 GR) were
from genetically homogeneous populations. A Resonon Pika II
hyperspectral camera (Resonon, Bozeman, MT) mounted on a
stand was used to capture images of the Palmer amaranth plants.
The Pika II camera is a push-broom hyperspectral sensor with a
spectral range of 394.300–896.917 nm in 240 wavelength bands.
An objective lens with a 23 mm focal length gave the camera a 12∘
field of view. As the camera was held about 66 cm above the plants,
the spatial resolution of the images was about 0.24 × 0.24 mm
pixel−1. This set-up permitted imaging of one plant every minute.
The high spatial resolution permitted a large number of pure plant
pixels to be collected and analyzed. Taller plants were closer to the
artificial light source (provided by four 35 W 12 VDC incandescent
light bulbs) and thus were exposed to greater light intensity
than the white reference, which was collected at floor level. To
ameliorate this effect whenever possible, plants of approximately
the same age were imaged, so that the distance between the
plants and the camera was nearly always the same. Effects of
height differences were normalized in the image processing step.

2.3.2 Field study
The camera described in the greenhouse study was used to image
the plants in the field. The camera was mounted on a three-point
hitch on a tractor, flexible to move vertically and horizontally
as needed. This set-up permitted imaging of one plant every
3–4 min. Initially, 80 GS plants and 80 GR plants were planted
in the field in two rows, but, owing to mortality and accidental
damage during imaging process, only 63 plants of each GR and
GS were imaged. Imaging took place on two consecutive days,
with approximately half of the plants imaged each day between
9 a.m. and 2 p.m. The first day began with imaging of GR plants
and then GS plants. The second day began with imaging of GS
plants and then GR plants. Small to medium-size clouds formed
occasionally as the time approached noon on both days, and the
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data collection efforts were halted while the sun was blocked by
clouds. The camera was calibrated immediately before each plant
was imaged by collecting a white reference at the plant canopy. As
the height of the field plants varied from 75 to 120 cm, the height of
the camera was adjusted to about 66 cm above the plant canopy. It
should be noted that the imaging process in the field was rugged,
unlike in the greenhouse, owing to plant movement by wind and
camera vibration from the engine of the tractor.

2.4 Image processing
The Pika II software (SpectrononPro v2.29-R6409; Resonon, Boze-
man, MT) used in this study automatically combined white ref-
erence and dark current measurements with the images on a
pixel-by-pixel basis to compute reflectance images. All reflectance
images were processed to segment the plants from the back-
ground of the hyperspectral images by thresholding the band cen-
tered at 770 nm at 60% of the maximum value in the image. Plants
typically reflect more light than soil in the near-infrared portion of
the spectrum. The 770 nm band was chosen after tests showed
that it provided good segmentation; however, other bands may
provide similar results. This segmentation algorithm was effective
in processing field plant images taken even under rugged condi-
tions. After each plant was segmented out from the image, all the
pixels labeled as part of the plant were combined to obtain a mean
reflectance for each plant. The reflectances were then normalized
to eliminate the effect of taller plants being exposed to higher light
intensity. Normalization was accomplished by dividing the spec-
tral band values by the magnitude. The magnitude was computed
using the vector magnitude formula

||x|| =
√

x2
1 + x2

2 + · · · + x2
n (1)

where ||x|| is a vector with n elements. In order to use this function,
the hyperspectral bands were treated as elements of the vector.
The normalized reflectance was then a unit vector (v) computed
by the equation

v = x||x|| (2)

2.5 Data analysis
The analysis used forward selection to select the bands, Fisher’s
linear discriminant analysis (FLDA) to reduce dimensionality and
maximum likelihood to classify plants (these components were
identical to the ones described below). The heterogeneous plants
grown in the greenhouse more closely approximate the popula-
tion of Palmer amaranth in agricultural fields. However, there were
only 52 total plants available. The relatively small number of plants
(compared with the number of spectral bands) available for this
analysis limited the number of spectral bands that could be uti-
lized before classification accuracy degraded owing to the Hughes
phenomenon.11 Hughes stated that, as the number of variables (in
this case spectral bands) employed for classification increases, the
number of statistical parameters (mean and covariance for each
band) increases. Estimates of these parameters degrade in accu-
racy as the dimensionality increases, but the number of training
samples does not also increase because the samples more sparsely
populate the higher dimensional space. At some point the ben-
efit obtained by adding more bands is negated by the increased
error in parameter estimates. However, there were 133 plants in

Figure 1. Flow chart of the data analysis algorithm.

genetically homogeneous populations and 185 plants when both
heterogeneous and homogeneous populations were combined.
Pooled data permitted better estimates of statistical parameters,
and thus lessened the effects of the Hughes phenomenon.

The data analysis procedure is outlined in Fig. 1. Initially, the data
samples were split into training and testing groups. Plants were
assigned to groups randomly, with about three-quarters going to
the training group (greenhouse: 66 GS, 72 GR; field: 47 GS, 47 GR),
and about a quarter going to the testing group (greenhouse: 22
GS, 25 GR; field: 16 GS, 16 GR).

After the data had been assigned to groups, sensitive bands
were selected using an algorithm based on the forward selec-
tion algorithm.12 The algorithm begins with an empty set of vari-
ables (in this case, the hyperspectral bands), and iteratively adds
the variable to the set that improves the preselected metric the
most. In this study, the area under the receiver operating char-
acteristic (ROC) curve was used as the metric.13 The area under
the ROC curve is a measurement of the overlap of two classes in
a one-dimensional variable space. It is improved if the means of
the two classes are further apart, or if the variances of one or both
decreases. Both situations would provide for better classification.
However, as the area under the ROC curve can only be computed
for a one-dimensional variable space, a dimensionality reduction
technique had to be used once the number of variables in the set
grew to two or more. In this study, FLDA was used to reduce the
dimensionality of the set.14 A weighted average of the variables in
the set can be expressed as

w1v1 + w2v2 + · · · + wnvn = w · v (3)

where the weight vector w = ⟨w1,w2, … ,wn⟩ and the variable
vector v = ⟨v1, v2, … , vn⟩. Thus, the weighted average is a dot
product projection of variables (the selected bands) onto the
weight vector. FLDA works by choosing weights that optimize
between-class scatter divided by within-class scatter. Once the
weights are determined, they are used to reduce the dimension-
ality of the variables for each plant to a single scalar ‘feature’ by
computing the dot product between the weight vector and vari-
ables in the set. The forward selection algorithm terminates after a
predetermined number of hyperspectral bands has been selected.
The number of bands varied from 1 to 20.

The next step in the model development was training the
maximum likelihood (ML) classifier.14 This involves estimating the
means and variances for both GS and GR plants in the feature
space, which consists of the single feature computed using the
weights and selected bands obtained with FLDA. ML estimates
these statistical parameters from the training data by choosing
the values that have the highest probability (most log-likelihood)
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of being the correct value. In the case of Gaussian distributions
(as was assumed in this study), ML selects the sample mean
and sample variance because it can be proven that these values
have the greatest log-likelihood of being the actual mean and
variance of the population. From the means and variances (and the
Gaussian assumption), probability distributions can be estimated
for GS and GR plants.

Model validation used the testing data group, which was deter-
mined when the data were split, to determine the classifica-
tion accuracy. The feature developed in the model development
section was computed for each testing data sample. The prob-
ability distributions estimated for GS and GR were used to esti-
mate the probability that each testing sample was GS or GR, and
they were assigned the label with the highest probability. Then,
the label results were organized into confusion matrices.12 For the
combined study, a permutation study was conducted by repeat-
ing the data analysis 100 times. As the data were split randomly,
different sets of plants were chosen for testing and training each
time. Thereafter, the mean and standard deviation of the confusion
matrices for those 100 permutations were computed.

3 RESULTS AND DISCUSSION
3.1 Hyperspectral reflectance properties of GR and GS
Palmer amaranth plants
Both greenhouse- and field-grown Palmer amaranth plants have
similar reflectance properties. Apparently, GS and GR plants have
their own unique reflectance spectral signatures (Figs 2A and B). In
general, the GS plants reflected a slightly greater portion of light in
the visible part of the spectrum, while GR plants reflected a greater
portion of light in the infrared part of the spectrum. There were dif-
ferences in reflectance pattern between GR and GS plants, in spite
of the fact that these biotypes were morphologically identical. The
mechanism of resistance to glyphosate in Palmer amaranth from
Georgia has been identified as amplification of the epsps gene15

which encodes the enzyme 5-enolpyruvylshikimate-3-phosphate
synthase target site of glyphosate. This mechanism has also been
reported in GR biotypes from Mississippi,16 in addition to reduced
absorption and translocation of glyphosate.10

It is not clear whether and how the mechanisms of resistance
may alter the reflectance properties in GR plants. Genomes of
GR Palmer amaranth plants are known to have 5–160-fold more
copies of the epsps gene than the genomes of GS Palmer ama-
ranth plants.15 It is postulated that amplification of the epsps gene
may increase the carbon flow through the shikimate pathway,
which may lead to an increase in downstream phenolic com-
pounds such as coumarins, flavonoids and lignins in GR Palmer
amaranth.17 These compounds are photodynamic, and change
in their endogenous levels would alter light reflectance patterns.
Whether this difference in reflectance patterns between the GR
and the GS plants is due to differences in their cuticular chemi-
cal composition needs further investigation. It will be interesting
to investigate whether similar differences in reflectance properties
are also detectable in one or more of the 24 other weed species
that have evolved resistance to glyphosate.

3.2 Classification of GR and GS Palmer amaranth plants
Leave-one-out validation analyses of hyperspectral reflectance
data differentiated GR Palmer amaranth from GS Palmer amaranth.
The classification accuracy in the heterogeneous populations was
94.2% with 52 plants, and in homogeneous populations it was
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Figure 2. Plots of mean normalized reflectance signatures for the GS and
GR Palmer amaranth plants: (A) mean of 88 GS and 97 GR plants grown in
a greenhouse; (B) mean of 63 GS and 63 GR plants grown in the field.

100.0% with 133 plants. In the pooled populations, the classifica-
tion accuracy was 93.5% with 185 plants (Table 1). The lower clas-
sification accuracy in the heterogeneous plants, raised from seed,
could be due to a combination of subtle anatomical differences,
existing resistance mechanism(s), segregation and other unknown
factors. The homogeneous plants were all raised asexually from
individual clones, thereby not ‘contaminating’ the original genetic
make-up. The confusion matrix with prediction accuracy (as com-
puted using leave-one-out validation) indicates how the plants of
each type of Palmer amaranth were classified (Table 1). The ‘GS’
row of the confusion matrix describes how the GS plants were clas-
sified, and the ‘GR’ row describes how the GR plants were classi-
fied. The numbers in the ‘GS’ column indicate how many plants
of each type were classified as GS, and the numbers in the ‘GR’
column indicate how many plants of each type were classified
as GR. For example, out of the total of 27 GS plants in the het-
erogeneous population, 26 were (correctly) classified as GS, and
one was (incorrectly) classified as GR. Typically, the ‘actual’ column
is left out of confusion matrices because it can be computed by
summing the ‘GS’ and ‘GR’ rows, while the ‘prediction accuracy’
is generally regarded as part of the confusion matrix. In the com-
bined analysis, optimum classification was obtained with 14 bands
(Fig. 3). The standard deviation of overall accuracy also decreases
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Table 1. Confusion matrices and prediction accuracies in heterogeneous, homogeneous and combined populations grown in a greenhouse. These
results were obtained using 14 hyperspectral bands with leave-one-out validation

Heterogeneous Homogeneous Pooled

Predicted Predicted Predicted
Palmer
amarantha Actual GS GR

Prediction
accuracy (%) Actual GS GR

Prediction
accuracy (%) Actual GS GR

Prediction
accuracy (%)

GS 27 26 1 96.3 61 61 0 100.0 88 82 6 93.2
GR 25 2 23 92.0 72 0 72 100.0 97 6 91 93.8
Overall accuracy (%) 94.2 100.0 93.5

a GS, glyphosate-sensitive Palmer amaranth; GR, glyphosate-resistant Palmer amaranth.
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Figure 3. Plot of overall accuracy versus number of wavebands for the
greenhouse plant (A) and field plant (B) analysis. The error bars indicate
standard deviation.

as more bands are used. The permutation mean and standard devi-
ation of the confusion matrix obtained with 14 bands using the
pooled greenhouse data yielded a mean accuracy of about 93.8%
(Table 2).

Similarly to greenhouse populations, the overall classification
accuracy was 96.8% with 126 plants grown under field conditions
(Table 3) using leave-one-out validation. The permutation mean
and standard deviation of the confusion matrix obtained with
14 bands using the field data yielded an overall mean accuracy
of about 96.4% (Table 4) and are comparable with the results in
Table 2.

As the forward selection algorithm was executed on each per-
mutation with a different set of training data, the bands used
were not always the same for each permutation. Thus, the results
in Tables 2 and 4 are indicative of the accuracy obtained when
using the forward selection algorithm, but not of the accuracy
obtained from any particular set or sets of features. When using

Table 2. Confusion matrix from combined analysis of genetically
heterogeneous and homogeneous plants grown in a greenhouse.
Fourteen spectral bands were used in the classification of 47 unknown
plants

Predicted
Palmer
amarantha Actual GS GR

Prediction
accuracy (%)

GS 22 20.6 (1.13)b 1.4 (1.13) 93.6 (5.14)
GR 25 1.5 (1.23) 23.5 (1.23) 94.0 (4.91)
Overall accuracy (%) 93.8 (3.72)

a GS, glyphosate-sensitive Palmer amaranth; GR, glyphosate-resistant
Palmer amaranth.
b Values in parentheses denote the standard deviation.

Table 3. Confusion matrices and prediction accuracies in Palmer
amaranth plants grown in the field. These results were obtained using
14 hyperspectral bands with leave-one-out validation

Predicted
Palmer
amarantha Actual GS GR

Prediction
accuracy (%)

GS 63 61 2 96.8
GR 63 2 61 96.8
Overall accuracy (%) 96.8

a GS, glyphosate-sensitive Palmer amaranth; GR, glyphosate-resistant
Palmer amaranth.

the data from all plants to choose 14 bands, the bands indicated in
Table 5 are selected for each dataset. Most of the selected bands
are contained within three major clusters (Fig. 4). These clusters are
394–487 nm, 668–762 nm and 821–863 nm.

As the GS and the GR plants have different reflectance signa-
tures (Figs 2A and B), a naive approach to distinguishing GR plants
from GS plants would be to use this characteristic. However, that
would neglect the role that within-class variance plays in degrad-
ing separability of GS and GR. In order to show class separation
more clearly, graphs can be constructed by subtracting the com-
bined mean normalized reflectance from the mean normalized
reflectance of each class (GS and GR). As about 68% of the spectral
signatures for each class will fall within these envelopes, the over-
lap between the two classes becomes more visible (Fig. 5). It also
becomes apparent that there are four windows where there is less
overlap between the classes. These windows are approximately
400–500 nm, 650–690 nm, 730–740 nm and 800–900 nm. The 14
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Table 4. Confusion matrix from plants grown in the field. Fourteen
spectral bands were used in the classification of 32 unknown plants

Predicted
Palmer
amarantha Actual GS GR

Prediction
accuracy (%)

GS 16 15.5 (0.75)b 0.5 (0.75) 96.7 (5.39)
GR 16 0.6 (0.89) 15.4 (0.89) 96.1 (5.92)
Overall accuracy (%) 96.4 (4.69)

a GS, glyphosate-sensitive Palmer amaranth; GR, glyphosate-resistant
Palmer amaranth.
b Values in parentheses denote the standard deviation.

Table 5. Central wavelengths of hyperspectral bands when
all available data from greenhouse- and field-grown plants
were used to select 14 bands

Dataset Central wavelength (nm)

Heterogeneous 409 413 417 441 445 447 470 481 485 487 668 685 743 750

Homogeneous 394 396 411 554 556 712 733 739 743 825 846 853 870 897

Pooled 396 403 443 445 447 598 676 685 689 741 756 760 762 851

Field 394 399 430 445 466 682 701 714 731 821 825 830 855 863

390 490 590 690 790 890

Central wavelength (nm)

Heterogeneous

Homogeneous

Pooled

Field

Figure 4. Number line plot of the central wavelengths of spectral bands
when 14 were chosen using all the data for each plant set.

bands in Table 5 and Fig. 4 correlate with the clusters discovered in
Fig. 5. Thus, the bands are suitable choices for this application.

The spectral reflectance signatures analyzed in this study were
means of the hyperspectral pixels from the entire plant. As aver-
aging of pixels tends to remove spatially uncorrelated noise,18 the
averaging pixel feature was computed using 14 bands for each
pixel. Examples of GS and GR plant images created with feature val-
ues computed from 14 bands indicate that the difference is likely
impossible to distinguish visually with the human eye in this fea-
ture space (Fig. 6). The difficulty is due to the large range of values
the plant pixels can take. As histograms of the plant pixels show
(Fig. 7), the feature value takes a Gaussian distribution, with most
feature values ranging from about 300 to 1200 (the feature is unit-
less). The actual value of the feature used for classification is the
mean of all the pixels in the histograms. As mean values have a
smaller standard deviation,12 the range of values for the feature
used for classification is much less than the values for individual
pixels. The histogram of the feature values derived from the 14
bands for all 185 plants used in the study reveals that the mean
of the GR plants is about 706, and the mean of the GS plants is
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Figure 5. Illustration of separability of GS and GR plants with respect to
wavelength. Solid lines indicate the mean of each class relative to the mean
of all plants. The envelope shown by dotted lines indicates one standard
deviation. Plot A was obtained from the greenhouse plants, and plot B from
the field plants. The boxes indicate windows where the separability is best.
The window between 730 and 740 nm is not as well defined in the field
plants.

about 712 (Fig. 8). This means that the difference between a GS
and a GR plant is about 6 units in the feature space. Because the
difference is so small compared with the range of values pixels
can take, it requires very precise measurements to differentiate GS
from GR using a hyperspectral sensor. The segmentation algorithm
also must be accurate, otherwise soil and other background pixels
may influence the feature. This would possibly result in misclassifi-
cations.

The predictive model developed from greenhouse data was
used to classify field-grown GR and GS Palmer amaranth plants.
The classification accuracy was 55.6% (data not shown). This low
classification accuracy was not surprising, as it is apparent from
Figs 2A and B that there were possible calibration differences
between the greenhouse and field measurements. Also, the cuticle
of greenhouse- and field-grown plants would be very different,
which would have a great impact on light reflectance. Although
the same camera was used in both the greenhouse and the field,
it should be noted that in the field the light source was natural
sunlight, which interacts with the Earth’s dynamic atmosphere.
Furthermore, the growing conditions of the greenhouse and field
plants were different. Hence, a separate model was developed
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Figure 6. Images of GS and GR plants created with feature values computed from 14 bands (396, 403, 443, 445, 447, 598, 676, 685, 689, 741, 756, 760, 762
and 851 nm).

GS GR 

Figure 7. Histograms of the feature values computed for each pixel from a GS and GR Palmer amaranth.

Figure 8. Histogram of mean feature values for all 185 plants grown in a
greenhouse.

for field data. The classification accuracy of the field model was
96.4% (Table 4) and was comparable with the 93.8% classification
accuracy of the greenhouse model (Table 2). It was conjunctured
that this small difference in the predictive accuracies between

greenhouse and field models is more likely due to differences in
plant populations and less likely due to plant imaging conditions.
Greenhouse plants included both genetically homogeneous and
heterogeneous populations, whereas field plants included only a
heterogeneous population.

4 CONCLUSIONS
GR and GS Palmer amaranth plants exhibit differences in hyper-
spectral reflectance properties. It is possible to differentiate GR
and GS Palmer amaranth plants without subjecting plants to a
glyphosate treatment. In general, GS plants reflect a slightly higher
percentage of the total light in the visible region, and GR plants
reflect a slightly higher percentage of the total light in the infrared
region of the spectrum. There are four regions of the spectrum
(400–500 nm, 650–690 nm, 730–740 nm and 800–900 nm) that
present the best separability. There are three major clusters of
selected bands when 14 are chosen for each dataset. These clus-
ters are in the 394–487 nm, 668–762 nm and 821–863 nm regions,
which correlate well with the windows of best separability. It is
very likely that there exists some physiological difference between
GS and GR Palmer amaranth that causes the reflectance to differ
more in these areas of the spectrum. It is speculated that ampli-
fication of the epsps gene would be a basis for this physiological
difference. This study yielded an accuracy of 93.5% or better each
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time 14 spectral bands were chosen to predict GS and GR plants.
The distributions of GS and GR in the feature space are accurately
described by Gaussian distributions, which make statistical clas-
sifiers well suited for the Palmer amaranth glyphosate resistance
detection problem. Hyperspectral reflectance properties of other
GR and GS weed species need to be investigated to gain a better
understanding of reflectance patterns between GR and GS plants
and to develop a technique towards accurate classification. This
hyperspectral imagery technique to identify GR and GS plants is
non-destructive, does not require glyphosate treatment and has
potential in practical weed management strategies.
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