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Growers and field scouts need assistance in surveying cotton (Gossypium hirsutum L.) fields subjected to
thermal defoliation to reap the benefits provided by this nonchemical defoliation method. A study was
conducted to evaluate broadband spectral data subjected to unsupervised classification for surveying cot-
ton plots subjected to thermal defoliation. Ground-based reflectance measurements of thermally treated
and non-treated cotton canopies were collected at two study Sites (Site 1 and Site 2) with a handheld
hyperspectral spectroradiometer. The hyperspectral data were merged into eight broad spectral bands:
coastal blue (400-450 nm), blue (450-510 nm), green (510-580 nm), yellow (585-625 nm), red (630-
690 nm), red-edge (705-745 nm), near-infrared (770-895 nm), and panchromatic (450-800 nm). Also,
a broadband normalized difference vegetation index (NDVI) was created with the red (630-690 nm)
and near-infrared bands (770-895 nm). For each study Site, two datasets were analyzed: (1) two-class
case (thermally treated cotton observations and non-treated cotton observations) and (2) five-class case
(thermally treated cotton observations and non-treated cotton observations and three additional classes
created with the weighted average of the thermally treated cotton observations and non-treated cotton
observations). The clustering algorithm referred to as CLUES (CLUstEring based on local Shrinking) was
employed to automatically group the data into clusters without the user selecting the number of clusters.
Cluster validation was determined with the average silhouette width; also accuracy was assessed with
contingency matrixes. Clustering analysis worked well in dividing the data into appropriate groups, with
the best cluster structure occurring for the NDVI. User’s and producer’s accuracies for the NDVI were
greater than 86%, indicating an excellent classification. Findings support future endeavors to assess air-
borne and satellite-borne systems equipped with sensors sensitive to the wavelengths deemed useful
in this study and unsupervised classification techniques that automatically determines the numbers of
clusters to evaluate thermal defoliation of cotton fields.
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1. Introduction

Over the last ten years, thermal defoliation has shown promise
as a nonchemical alternative for terminating cotton growth and
defoliating cotton canopies (Funk et al., 2004, 2006; Showler
et al., 2006), making it an ideal harvest aid for cotton grown under
organic farming methods (Funk et al., 2006, 2012). The technique
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involves using propane to heat air that is applied directly to the
plant canopy to quickly kill the leaves. Unlike traditional defolia-
tion methods, it does not require optimal weather conditions to
apply the treatment, and producers are able to harvest fields
twenty-four hours after treatment if needed (Showler et al,
2006). Additionally, producers can use this form of defoliation in
conventional systems to prepare fields threatened by severe
weather, increasing their ability to harvest fields before the arrival
of the inclement weather (Showler et al., 2006). Finally, thermal
defoliation has shown potential for late-season pest control
(Bundy et al., 2006; Funk et al., 2012).

There are several risks associated with incomplete thermal
defoliation. Staining of the cotton fiber may occur in areas where
leaf kill is incomplete, reducing the price grade of the cotton. Addi-
tionally, juices in green leaves may increase gum build-up on
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picker spindles, requiring stoppage to clean the spindles and thus
increasing harvesting time per field. Therefore, rapidly identifying
areas, not responding to thermal treatment can support producer
decision making regarding re-treating these areas. This would
maintain the price grade of the cotton throughout treated fields
and reduce the time required to harvest them.

Variation of cotton growth within the field is usually the same
from year to year within a field. If re-treatment is not an option
for the current year, growers do need a record showing areas not
responding to treatment. In the following year, producers can
adjust the defoliation process; for example, reducing the speed of
the defoliating apparatus in areas not responding to treatment in
the previous year would increase leaf kill. For these reasons, grow-
ers need assistance in surveying fields subjected to thermal defoli-
ation to reap the benefits provided by this nonchemical defoliation
method.

Ground-based and airborne remote sensing systems have
shown potential as tools for monitoring defoliation of cotton.
Yang et al. (2003) demonstrated applications of ground-based
reflectance data and airborne color-infrared (CIR) and normalized
difference vegetation index (NDVI) imagery to differentiate cotton
plants exposed to different defoliants from a control and other
chemical treatments. They noted that differences between control
and treated plants were statistically significant for green, red, and
NDVI recorded data. Ground-based reflectance indices based on
red-edge measurements provided accurate and consistent defolia-
tion estimates for cotton subjected to chemical treatment (Ritchie
and Bednarz, 2005). Fletcher et al. (2007) showed that CIR photog-
raphy had potential for differentiating thermally defoliated cotton
plants from control plants. Color-infrared film is no longer sold,
eliminating it as an option for consultants and producers to use
for surveying thermally defoliated cotton fields. Most remote sens-
ing research have focused on chemical defoliates and have concen-
trated on visual, statistical, and modeling efforts (Ritchie and
Bednarz, 2005; Yang et al., 2003, 2011). No information is available
on using classification algorithms as a means to group thermally
defoliated plants based on their spectral properties.

Cotton plants exposed to thermal treatment may be perfect
candidates for remote sensing instruments. Heat Kkills the leaves,
causing them to turn brown within a few hours. Showler et al.
(2006) reported that up to 60% of the desiccated leaves remain
on the cotton plant until harvest.

Supervised and unsupervised classifications are general
approaches used to derive maps from image data or group
unknown reflectance data into classes. Supervised classification
uses a set of user-defined spectral signatures to assign samples
to groups (Campbell, 2002; Mather, 2005). Unsupervised classifica-
tion requires minimum input from the operator; no training sam-
ples are used, and subdivision of the feature space is achieved by
identifying natural groupings of the measurement vectors
(Campbell, 2002; Mather, 2005). Clustering is the most widely
used unsupervised procedure. It involves development of struc-
tures in unlabeled data by grouping pixel data into groups with
similar properties. Pixel values within clusters are similar to each
other, but are not similar to pixel values in other clusters.

Clustering algorithms such as K-means and the Iterative Self-
Organizing Data Analysis Technique requires the user to input
the number of clusters to create. For the user, deciding the number
of clusters is often a difficult task. Researchers have developed
clustering algorithms that automatically estimate the number of
clusters without user input. These procedures are divided into
methods that select the number of clusters by optimizing a mea-
sure of strength of the clusters (Tibshirani et al., 2000), that assem-
ble the data into small clusters followed by merging these clusters
until no further merging can occur (Frigui and Krishnapuram,
1999), that extract one cluster at time (Zhung et al., 1996), that

uses a bump hunting technique to determine the number clusters
(Wang et al., 2007), and that iteratively move data points toward
cluster centers and then use the number of convergent points as
the number of clusters (Wang et al., 2007).

Broadband (spectral bands greater than 10 nm) panchromatic
and multispectral remote sensing products are readily available
to the public through commercial companies via airborne or
satellite platforms. It was hypothesized that cotton plants effec-
tively treated by thermal defoliation could be separated from
non-treated plants using broadband spectral data and unsuper-
vised classification based on clustering analysis. The objective
of this study was to evaluate ground-based broadband spectral
data and cluster analysis as tools for surveying cotton plots sub-
jected to thermal defoliation to prepare them for harvesting.
Spectra simulating the broadbands of the WorldView 2 satellite
were examined in this study: coastal blue (400-450 nm), blue
(450-510 nm), green (510-580 nm), yellow (585-625 nm), red
(630-690 nm), red-edge (705-745nm), near-infrared (770-
895 nm), and panchromatic (450-800 nm). These bands were
chosen because the blue, green, red, near-infrared, and panchro-
matic bands are similar to those found on other high spatial res-
olution broadband satellite sensors. The coastal blue, yellow, and
red-edge bands provide additional information relevant to iden-
tifying and mapping vegetation (Digital Globe, 2009). Also, the
spectral bands are easy to fabricate for filters to use in multi-
spectral cameras flown in aircraft. Furthermore, the study
focused on using a clustering algorithm that determined the
number of clusters without user input and application of multi-
spectral, panchromatic, and vegetation index forms of the data
as input into the clustering algorithm to separate adequately
treated plants from inadequately treated or non-treated plants.

2. Materials and methods
2.1. Study sites

Data were collected from two study Sites, referred to as Site 1
and Site 2. The study Sites were located near the Kika de la Garza
Subtropical Agricultural Research Center, Weslaco, Texas
(26°09'N 97°57'W). These Sites were being used for on-going stud-
ies to compare thermal defoliation to chemical defoliation. The
experiment at each study Site was a randomized complete block
design consisting of three treatments (thermal defoliation, chemi-
cal defoliation, and control) replicated six times (blocks). Treat-
ments within each replicate contained twelve rows planted to
Deltapine 5415RR (Delta Pine and Land Co.; Scott, MS). Row spac-
ing was 1 m, resulting in an area of 0.19 ha per treatment. The
objective of the current study was to compare the thermally defo-
liated cotton and the control cotton; therefore, subsequent analy-
ses focused on these two treatments. The thermal treatment
occurred on 27 July 2005. It involved using the two row thermal
defoliator prototype described by Funk et al. (2006) to apply heat
at 193 °C to the cotton canopies.

2.2. Field spectra collection

Reflectance measurements (referred to as reflectance) of the
non-treated and thermally treated cotton canopies were collected
on 8 August and 1 August 2005 at Sites 1 and Sites 2, respectively,
with a FieldSpec Handheld spectroradiometer (Analytical Spectral
Devices, Inc., Boulder, CO) having a spectral range of 325-
1075 nm. The device has a spectral resolution of 3 nm; however,
the data is resampled to 1 nm intervals by the software used to
operate the instrument. The data output range is between 0 (0%
reflectance) and 1 (100% reflectance). The instrument has a 25°
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viewing angle. During sampling, it was held approximately one
meter above the plant canopies, resulting in a field of view of
0.696 m>. At each study Site, the treatments were replicated six
times; reflectance measurements were collected at five different
locations in each non-treated and thermally treated replicate. Each
location in a treatment is considered an observation (i.e., a sam-
ple); therefore, a total of thirty samples were collected per treat-
ment at Sites 1 and 2. Each observation was an average of ten
spectra. The instrument was calibrated at ten-minute intervals
with a spectralon white reference panel (Labsphere, North Sutton,
NH). Data acquisition occurred under sunny conditions *2 h of
solar noon.

2.3. Post processing of field spectral data

Post processing of the reflectance data involved using the View-
Spec Pro software (version 5.6.10, Analytical Spectral Devices, Inc.,
Boulder, CO) to qualitatively analyze the data and to check for erro-
neous data. During this review, it was discovered that data was
only collected at twenty-nine locations for the thermally treated
cotton canopies at Site 1; for this Site, subsequent analysis will
focus on twenty-nine thermally treated cotton observations and
thirty non-treated cotton observations. For Site 2, thirty spectra
were recorded for the treated and for the non-treated cotton obser-
vations. Spectra were exported to text format for further process-
ing. Wavelengths greater than 880 nm and less than or equal to
940 nm were moderately noisy and wavelengths greater than
940 nm were severely affected by noise. A Savitzky-Golay filter
(Savitzky and Golay, 1964; Press et al., 2007) was applied to reduce
the noise in the spectra. The parameters that worked best were a
second order polynomial encompassing thirty-one points to create
the new point. However, spectra greater than 900 nm were still
noisy, leading to data greater than 900 nm not being used for fur-
ther analysis.

Spectra simulating the broadbands of the WorldView 2 satellite
were explored in this study: coastal blue (400-450 nm), blue (450-
510 nm), green (510-580 nm), yellow (585-625 nm), red (630-
690 nm), red-edge (705-745 nm), near-infrared (770-895 nm),
and panchromatic (450-800 nm). For each observation, the band
equivalent reflectance (BER, Trigg and Flasse, 2000) equation (see
Eq. (1)) was used to convert the Savitzky-Golay filtered hyperspec-
tral data to the band equivalent reflectance for the WorldView 2
spectral bands. Other researchers have employed BER equation to
transform narrowband hyperspectral data to broadband spectral
data (Trigg and Flasse, 2000; Eitel et al., 2007, 2011; Smith et al.,
2010).

A max A max

Re= > rpi/ Y mi (1)

i=2 min i=2 min

Parameters of Eq. (1) are as follows: R, represents BER for band x,
7 min and 2 max denotes minimum and maximum reflectance,
respectively, of band x’s filter function, r; equals relative response
for band x at wavelength i, and p; indicate relative reflectance
measured by the spectrometer at wavelength i (Trigg and
Flasse, 2000). Relative spectral response values (i.e., values quan-
tifying how the bands of various satellite sensors measure the
intensity of the wavelengths of light), were obtained from Digital
Globe, Inc., the commercial vendor and operator of the World-
View 2 satellite. The WorldView 2 satellite also has a sensor that
collects data in a second near-infrared band (860-1040 nm). This
band was not tabulated with the Savitzky-Golay filtered hyper-
spectral data because spectral data greater than 900 nm were
too noisy to employ for further processing. The normalized differ-
ence vegetation index (NDVI, Rouse et al., 1973) was derived with
the following equation.

NDVI — (near-infrared reflectance — red reflectance)
" (near-infrared reflectance + red reflectance)

@)

It was tabulated with the broadband red (630-690 nm) and broad-
band near-infrared (770-895 nm) bands created in the previous
step.

2.4. Simulation study-five class case

As indicated earlier for the thermal defoliation, heat kills the
leaves causing them to turn brown within a few hours. Many of
them curl up and remain attached to the stalk, depending on treat-
ment temperature. To enhance our knowledge of the effectiveness
of using the broadband spectral data and the clustering algorithm
to survey cotton plots subjected to thermal defoliation, the non-
treated and treated canopy observations were used to develop
three additional classes representing a mixture of green and brown
leaves: (1) 75% non-treated - 25% thermally treated, 50% non-trea-
ted - 50% thermally treated, and 25% non-treated — 75% thermally
treated. For interpretation purposes and an example, 75% non-trea-
ted - 25% thermally treated represents a thermally treated obser-
vation; yet, its appearance is more similar to the non-treated
observation.

The following procedures were used to derive the three simu-
lated classes for study Sites 1 and 2: (1) the thermally treated
and non-treated observations Savitzky-Golay filtered hyperspec-
tral data were employed to create a new spectral measurement
representing a specific simulated class based on a weighted aver-
age and (2) then the spectrum created in step 1 was used as input
into the BER equation (Eq. (1)) to produce the broadband spectra
simulating the WorldView 2 bands. The replicates were equally
represented for developing the new spectral classes. As indicated
earlier, at Site 1, five samples each were collected from non-treated
and thermally treated plots within replicate 1. The samples from
those treatments were used to create five spectra for the three
additional classes with the following technique. The samples were
number one through five. Using a random number generator in
Microsoft Excel, one sample was selected at random from the ther-
mally treated and non-treated cotton spectral observations to cre-
ate the new spectra for a particular class. The random selection
was repeated until all spectra for that replication were created
(Note: a non-treated and thermally treated cotton observation
were used only once for spectra development for a particular
class.). Then, the same procedure was repeated for replicates 2-6.
The simulated spectra were calculated with Microsoft Excel
(2007, Microsoft Corporation, Redmond, WA). Finally, the simu-
lated hyperspectral data for each class were used as input into
the BER equation to create the broad spectral bands for the simu-
lated classes. The NDVI for the simulated classes were determined
using Eq. (2) and the broadband simulated classes’ near-infrared
and red bands. The original data plus the three additional classes
are referred to as the five-class data set.

2.5. Unsupervised classification

The R package (R version 2.15.2; R Core Team, 2012) CLUES
(CLUstEring based on local Shrinking, Chang et al., 2010) was used
to develop clusters. It uses nonparametric measures to employ
shrinking (i.e., condensing clusters by moving observations toward
the center of the cluster) and partitioning (i.e., grouping observa-
tions into clusters) procedures to approximate an optimal number
of groups by using either the CH index or the Silhouette index,
rather than relying on guessing a pre-specified number of groups
(Chang et al., 2010). The following arguments were input into the
algorithm to develop the clusters: (1) distance method - Euclidean
and (2) strength method - silhouette width index. The distance
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method represents the dissimilarity measurement, differences
between observations based on some criterion. For this study the
Euclidean distance was used as the difference metric; its values
range from O to infinity (Chang et al., 2010). The larger the value,
the further apart are the two observations. Thus, observations with
large values will not be grouped into the same cluster.

The average silhouette width index provided a measure of the
compactness (i.e., a measurement of how well the observations
are packed together in a cluster, cluster homogeneity) of the clus-
ters and an indication of how well the clusters were separated. For
each sample assigned to a cluster, the silhouette index is deter-
mined by calculating the dissimilarity of a data observation in
one cluster to data observations assigned to the nearest neighbor-
ing cluster (Chang et al., 2010). This calculation is performed on all
observations within clusters. The average silhouette index value is
the mean of silhouette index values tabulated for all of the obser-
vations. Its values range from —1 to +1. The following scale was
used to describe cluster strength based on the average silhouette
index value: (1) 0.71-1.0, a strong structure has been found; (2)
0.51-0.70, a reasonable structure has been found; (3) 0.25-0.50,
the structure is weak and could be artificial; and (4) less than
0.25, no substantial structure has been found (Anonymous, 2011).

For the unsupervised classification procedure, the data were
partitioned into five band combinations: (1) a three-band combi-
nation consisting of blue, green, and red bands, (2) a three band-
combination consisting of green, red, and near-infrared bands, (3)
a seven-band combination consisting of coastal blue, blue, green,
yellow, red, red-edge, and near-infrared bands, (4) a single band
containing the panchromatic band, and (5) a single band consisting
of the NDVL

Additionally, contingency matrices were used to analyze the
accuracy of the clustering analysis, including user’s and producer’s
accuracies (Jones and Vaughan, 2010). The former refers to the
probability that observation labeled as a certain land-cover by
clustering is really that class; the latter refers to the probability
that a certain land-cover of an area on the ground is classified as
such. User’s accuracy is calculated by dividing the total number
of correct observations for a category by the total number of obser-
vations classified in that category. Producer’s accuracy is deter-
mined by dividing the total number of correct observations
within a specific category by the total number of observations as
indicated by reference data for that specific category.

3. Results
3.1. Thermally treated versus non-treated (two-class case)

Summarized in Table 1 are the clustering results obtained at
Site 1 for the thermally treated versus non-treated observations.
Two clusters were established for the single and multiple band
combinations used as input into the clustering algorithm (Table 1).
The best cluster structure, as indicated by the silhouette index, was
established with the NDVI data followed, in descending order, by
the three-band combination consisting of the green, red, and
near-infrared bands, the seven-band combination consisting of
the coastal blue, blue, green, yellow, red, red-edge, and near-infra-
red bands, the panchromatic band, and the three-band combina-
tion consisting of the blue, green, and red bands. User’s and
producer’s accuracies were equal to 100% for all of the band com-
binations, indicating an excellent classification; nevertheless, all of
the band combinations except for the blue, green, and red bands
achieved silhouette index values representing strong cluster struc-
tures (silhouette index range - 0.71-1.0).

With the exception of the panchromatic data, thermally treated
and non-treated cotton observations were placed into two separate

clusters for the spectral data analyzed with the clustering algo-
rithm at Site 2; however, the results were variable (Table 2). For
the panchromatic band, the clustering algorithm divided the data
into four clusters. Cluster one consisted of fourteen non-treated
cotton observations and one thermally treated cotton observation,
cluster 2 contained thirteen non-treated cotton observations and
eight thermally treated cotton observations, cluster three had
three non-treated cotton observations and eleven thermally trea-
ted cotton observations, and cluster four consisted of ten thermally
treated cotton observations. Clusters one and two represented the
non-treated cotton class, and clusters three and four symbolized
the thermally treated cotton class. Thus, clusters one and two were
combined, and clusters three and four were merged.

The descending order of silhouette index values (Table 2) at Site
2 for the band combinations resulting in the development of two
clusters were (1) NDVI, (2) green, red, and near-infrared band com-
bination, (3) seven-band combination, and (4) blue, green, and red
band combination. Note: four clusters were originally derived from
the panchromatic dataset. Strong cluster structure (silhouette
index range - 0.71-1.0) was attained by the NDVI and three-band
combination consisting of the green, red, and near-infrared bands;
reasonable cluster structure (silhouette index range - 0.51-0.70)
was achieved for the other datasets.

User’s and producer’s accuracies of 100% were obtained for the
three-band combination consisting of the green, red, and near-
infrared bands, the seven-band combination consisting of the
coastal blue, blue, green, yellow, red, red-edge, and near-infrared
bands, and the NDVI. Compared with the other band combinations,
higher errors occurred in discriminating the non-treated cotton
observations from treated cotton observations for the three-band
combination consisting of the blue, green, and red bands, and the
panchromatic band. Including both datasets, the user’s and pro-
ducer’s values ranged from 70% to 100%.

3.2. Five-class case

Summarized in Table 3 are the number of clusters and the aver-
age silhouette index values obtained for the five-class case for Site
1. Five clusters matching the original five classes were created with
three of the band combinations: (1) the NDVI, (2) the green, red,
and near-infrared spectral band combination, and (3) the seven-
band combination. The remainder of the results for the five-class
case of Site 1 concentrated on the NDVI, the green, red, and near-
infrared spectral band combination, and the seven-band
combination.

Using the silhouette index as a measure of cluster strength,
NDVI was ranked first followed by the green, red, and near-infrared
spectral band combination, and the seven-band combination con-
sisting of the coastal blue, blue, green, yellow, red, red-edge, and
near-infrared spectral bands. The NDVI had a strong cluster struc-
ture (silhouette index value between 0.71 and 1.0). The other two
combinations were within the range identified as reasonable struc-
ture for clusters (silhouette index values of 0.51-0.70).

Summarized in Tables 4-6 are the contingency matrixes for the
NDVI (Table 4), the three-band combination consisting of the
green, red, and near-infrared bands (Table 5), and the seven-band
combination containing the coastal blue, blue, green, yellow, red,
red-edge, and near-infrared bands (Table 6), respectively, for Site
1. User’s and producers accuracies ranged from 93.1% to 100%,
from 96.7% to 100%, and from 93.3% to 100% for the NDVI, for the
three-band combination consisting of the green, red, and near-
infrared bands, and for the seven-band combination, respectively.
Overall, the error matrix results were nearly equal for the afore-
mentioned spectral data and indicated superb grouping of the data
into the appropriate classes. However, the NDVI cluster structure
was ten and twelve points greater (i.e., multiplying the silhouette
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Site 1 contingency matrixes and silhouette index values derived with the panchromatic, multispectral, and normalized difference vegetation index data as input into the
clustering algorithm. Two-class case.

Reference data

Band combination® Non-treated Treated Predicted total User’s accuracy (%) Silhouette index
Pan Cluster 1 30 0 30 100 0.88
Cluster 2 0 29 29 100

Reference total 30 29
Producer’s accuracy (%) 100 100
B,G,R Cluster 1 30 0 30 100 0.70
Cluster 2 0 29 29 100
Reference total 30 29
Producer’s accuracy (%) 100 100
G, R, NIR Cluster 1 30 0 30 100 0.91
Cluster 2 0 29 29 100
Reference total 30 29
Producer’s accuracy (%) 100 100
Seven-band Cluster 1 30 0 30 100 0.90
Cluster 2 0 29 29 100
Reference total 30 29
Producer’s accuracy (%) 100 100
NDVI Cluster 1 30 0 30 100 0.96
Cluster 2 0 29 29 100
Reference Total 30 29
Producer’s accuracy (%) 100 100

2 Pan - panchromatic, B - blue, G - green, R - red, NIR - near-infrared, and NDVI - normalized difference vegetation index. Seven-band - coastal blue, blue, green, yellow,
red, red-edge, and near-infrared bands.

Table 2

Site 2 contingency matrixes and silhouette index values derived with the panchromatic, multispectral, and normalized difference vegetation index data as input into the
clustering algorithm. Two-class case.

Reference data

Band combination® Non-treated Treated Predicted total User’s accuracy (%) Silhouette index
Pan Cluster 1 27 9 36 75.0 0.68"
Cluster 2 3 21 24 87.5

Reference total 30 30
Producer’s accuracy (%) 90.0 70.0
B,G,R Cluster 1 25 0 25 100 0.60
Cluster 2 5 30 35 85.7
Reference total 30 30
Producer’s accuracy (%) 83.3 100
G, R, NIR Cluster 1 30 0 30 100 0.71
Cluster 2 0 30 30 100
Reference total 30 30
Producer’s accuracy (%) 100 100
Seven-band Cluster 1 30 0 30 100 0.69
Cluster 2 0 30 30 100
Reference total 30 30
Producer’s accuracy (%) 100 100
NDVI Cluster 1 30 0 30 100 0.88
Cluster 2 0 30 30 100
Reference total 30 30
Producer’s accuracy (%) 100 100

2 Pan - panchromatic, B - blue, G - green, R - red, NIR - near-infrared, and NDVI - normalized difference vegetation index. Seven-band - coastal blue, blue, green, yellow,
red, red-edge, and near-infrared bands.
" The optimal number of clusters chosen by the algorithm for the panchromatic band was three; the silhouette index value shown in the table represents the three clusters.
These clusters were merged into two clusters for accuracy comparisons.

index values by 100) than the respective three-band combination
consisting of the green, red, and near-infrared bands (Table 5),
and the seven-band combination, supporting it as the better tool
for developing more compact clusters for the thermally defoliated
data.

Tabulated in Table 3 are the numbers of clusters and the aver-
age silhouette index values obtained at Site 2 for each of the spec-
tral datasets. Five clusters matching the five treatment classes
were not obtained with none of the spectral datasets. Additionally,
the silhouette index indicated that only the NDVI and the panchro-

matic data established clusters having a reasonable structure (sil-
houette index values of 0.51-0.70); whereas, the other spectral
band combinations created clusters with weak and potentially arti-
ficial structures (silhouette index values of 0.26-0.50). Even
though the criterion of the classes was not met, Site 2 results
focused on the NDVI and panchromatic data because of their rea-
sonable cluster structures.

The contingency matrixes obtained with the NDVI data for the
five-class classification are presented in Table 7. Clusters one and
two were combinations of the non-treated, N75-T25, and N50-T50
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Table 3 cotton observations and the N25-T75 and thermally treated cotton

The number of clusters and the average silhouette index derived from the spectral observations, respectively. User's and producer’s accuracies were

datasets evaluated for the five-class case at Sites 1 and 2. s ’ oy i e . .
within the range of 87-100%, indicating an excellent classification.

Location  Band combination®  Number of clusters  Silhouette index The three clusters derived for the panchromatic band were
Site 1 Panchromatic 2 0.62 merged into two classes: (1) non-treated, N75-T25, and N50-T50
B,G,R 6 0.38 and (2) N25-T75 and treated (Table 8). User’s and producer’s accu-
G, R NIR 5 0.63 racies ranged from 61.7% to 82%. Misclassifications were evident
Is\le];'\e/?'band g 8:% within the two clusters and were greater than the errors observed
) i for clusters derived with the NDVI spectral data. These results sup-
Site 2 gazdgomanc ; 8'2; port using the NDVI instead of the panchromatic data to assess
G’, R: NIR 3 0:46 thermal defoliation at Site 2.
Seven-band 2 0.50
NDVI 2 0.62

2 B - blue, G - green, R - red, NIR - near-infrared, and NDVI - normalized dif- 4. Discussion

ference vegetation index. Seven-band combination consisting of the coastal blue,
blue, green, yellow, red, red-edge, and near-infrared bands. Based on the silhouette index, the NDVI produced the best final

clustering in terms of compactness and separation of the clusters

Table 4
Site 1 contingency matrix derived with the normalized difference vegetation index five-class data as input into the clustering algorithm.

Reference data

Clusters Non-treated N75-T25% N50-T50 N25-T75 Treated Predicted total User’s accuracy (%)
Cluster 1 30 1 0 0 0 31 96.7

Cluster 2 0 28 2 0 0 30 93.3

Cluster 3 0 0 27 0 0 27 100

Cluster 4 0 0 0 29 0 29 100

Cluster 5 0 0 0 0 29 29 100

Reference total 30 29 29 29 29

Producer’s accuracy (%) 100 96.6 93.1 100 100

2 Non-treated = original plant canopies not subjected to thermal defoliation, N75-T25 = weighted average consisting of 75% non-treated spectra and 25% treated spectra,
N50-T50 = weighted average consisting of 50% non-treated spectra and 50% treated spectra, N25-T75 = weighted average consisting of 25% non-treated spectra and 75%
treated spectra, and Treated = original plant canopies subjected to thermal defoliation.

Table 5
Site 1 contingency matrix derived with the green, red, and near-infrared five-class data as input into the clustering algorithm.

Reference data

Clusters Non-treated N75-T25% N50-T50 N25-T75 Predicted total Total User’s accuracy (%)
Cluster 1 29 0 0 1] 0 29 100

Cluster 2 1 28 0 0 0 29 96.6

Cluster 3 0 1 29 0 0 30 96.7

Cluster 4 0 0 1] 29 0 29 100

Cluster 5 0 0 0 0 29 29 100

Reference total 30 29 29 29 29

Producer’s accuracy (%) 96.7 96.6 100 100 100

¢ Non-treated = original plant canopies not subjected to thermal defoliation, N75-T25 = weighted average consisting of 75% non-treated spectra and 25% treated spectra,
N50-T50 = weighted average consisting of 50% non-treated spectra and 50% treated spectra, N25-T75 = weighted average consisting of 25% non-treated spectra and 75%
treated spectra, and Treated = original plant canopies subjected to thermal defoliation.

Table 6
Site 1 contingency matrix derived with the seven-band combination (coastal blue, blue, green, yellow, red, red-edge and near-infrared bands) five-class data as input into the
clustering algorithm.

Reference data

Clusters Non-treated N75-T25% N50-T50 N25-T75 Treated Predicted total User’s accuracy (%)
Cluster 1 28 0 0 0 0 28 100

Cluster 2 2 28 0 0 0 30 933

Cluster 3 0 1 29 0 0 30 96.7

Cluster 4 0 0 0 29 0 29 100

Cluster 5 0 0 0 0 29 29 100

Reference total 30 29 29 29 29

Producer’s accuracy (%) 93.3 96.6 100 100 100

2 Non-treated = original plant canopies not subjected to thermal defoliation, N75-T25 = weighted average consisting of 75% non-treated spectra and 25% treated spectra,
N50-T50 = weighted average consisting of 50% non-treated spectra and 50% treated spectra, N25-T75 = weighted average consisting of 25% non-treated spectra and 75%
treated spectra, and Treated = original plant canopies subjected to thermal defoliation.
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Table 7

Site 2 contingency matrix derived with the normalized difference vegetation index five-class data as input into the clustering algorithm.

Reference data

Clusters Non-treated + N75-T25 + N50-T50* N25-T75 + treated Predicted total User’s accuracy (%)
Cluster 1 81 0 81 100

Cluster 2 9 60 69 87.0

Reference total 90 60

Producer’s accuracy (%) 90.0 100

¢ Non-treated = original plant canopies not subjected to thermal defoliation, N75-T25 = weighted average consisting of 75% non-treated spectra and 25% treated spectra,
N50-T50 = weighted average consisting of 50% non-treated spectra and 50% treated spectra, N25-T75 = weighted average consisting of 25% non-treated spectra and 75%

treated spectra, and Treated = original plant canopies subjected to thermal defoliation.

Table 8

Site 2 contingency matrix derived with the panchromatic data as input into the clustering algorithm.

Reference data

Clusters Non-treated + N75-T25 + N50-T50" N25-T75 + treated Predicted total User’s accuracy (%)
Cluster 1 74 23 97 76.3

Cluster 2 16 37 53 69.8

Reference total 90 60

Producer’s accuracy (%) 82.2 61.7

2 Non-treated = original plant canopies not subjected to thermal defoliation, N75-T25 = weighted average consisting of 75% non-treated spectra and 25% treated spectra,
N50-T50 = weighted average consisting of 50% non-treated spectra and 50% treated spectra, N25-T75 = weighted average consisting of 25% non-treated spectra and 75%

treated spectra, and treated = original plant canopies subjected to thermal defoliation.

(Tables 1-3) and resulted in the development of clusters matching
the groups for the two-class case at both Sites and the five-class
case at Site 1. User’s and producer’s accuracies for those NDVI data-
sets were greater than 93% (Tables 1, 2 and 4). At Site 2, the ther-
mal treatment did not work as well in killing the leaves as at Site 1,
leading to a mixture of dead and green leaves in the canopies. It is
believed that this mixture affected the clustering algorithms ability
to appropriately group the simulated spectra into individual clas-
ses. At this point, there has not been an accuracy standard estab-
lished for dividing thermally defoliated fields into zones, but the
results support using NDVI to complete the task. Other researchers
have also indicated that vegetation indices are useful for monitor-
ing defoliation of cotton (Ritchie and Bednarz, 2005; Yang et al.,
2003, 2011). The study of Ritchie and Bednarz (2005) focused on
models to assess defoliation and results indicated that red-edge
vegetation indices worked well. That aspect was not evaluated in
this study, but could be the focus of future research studies in
which red-edge vegetation index data could be used as input into
the clustering algorithm.

5. Perspective and conclusions

The automatic determination of clusters would be invaluable
for the users of the remotely-sensed data since they would not
need to guess the appropriate number of clusters. As with any
unsupervised classification algorithm, the user has to visit the field
to determine what land-cover features the clusters represents. The
key to implementing remote sensing and the derivation of maps by
clustering is to have a test strip that is not subjected to any treat-
ment. Areas outside of the test strip that are grouped into clusters
containing the test strip data could be evaluated further to deter-
mine the effectiveness of the thermal defoliation.

Within a control plot, variability in plant growth exists; there-
fore, a section of a control plot may have similar reflectance to a
thermally treated area; especially if pests have damaged the plant.
Nonetheless with the control strip and knowledge of how NDVI
values relate to plant health, broadband spectral data and the clus-
tering algorithm can be used as a tool to assess thermal defoliation

of cotton fields. If time warrants, growers could opt to retreat areas
in which the defoliation did not work well, or they could decide to
use a precision harvesting technique. Barring major damage by
natural disasters or major insect infestations, cotton plots usually
have similar growth patterns from one year to the next. Data
acquired from the previous year can, therefore, serve as a tool for
treatment the following year. In areas where the treatment was
not effective the previous year because of high biomass, the grower
could opt to use a slower tractor speed so that the plants were
exposed to the heat for a longer period of time, thus providing bet-
ter leaf Kkill.

In this study, ground-based field data were evaluated to compare
the spectra of thermally defoliated cotton canopies to non-treated
cotton canopies. Digital brightness values and/or reflectance values
recorded in a pixel by aerial and satellite sensors are affected more
by leaf shape and orientation, background canopy reflectance, mea-
surement geometry, and in-canopy shadowing (Asner, 1998). Addi-
tionally for thermally treated plants, the pixel value will be an
integration of soil, background vegetation, and plant litter found
underneath the plants. Furthermore, ground-based measurements
do not account for atmospheric effects; nevertheless, the data do
provide information related to the potential of spectral bands to sep-
arate the individual components and efficacy of using unsupervised
classification in the form of cluster analysis to group the data. Find-
ings support future endeavors to assess airborne and satellite-borne
systems equipped with sensors sensitive to the wavelengths
deemed useful in this study and unsupervised classification tech-
niques that automatically determines the numbers of clusters to
evaluate thermal defoliation of cotton fields.
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