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Abstract: 8 

 9 

RUSLE2 is the most recent in the family of USLE/RUSLE/RUSLE2 models proven to provide 10 

robust estimates of average annual sheet and rill erosion from a wide range of land use, soil, and 11 

climatic conditions.  RUSLE2’s capabilities have been expanded over earlier versions using 12 

methods of estimating time-varying runoff and process-based sediment transport routines so that 13 

it can estimate of sediment transport/deposition/delivery on complex hillslopes.  In this report we 14 

propose and evaluate a method of predicting a series of representative runoff events whose sizes, 15 

durations, and timing are estimated from information already in the RUSLE2 database. The 16 

methods were derived from analysis of 30-year simulations using a widely-accepted climate 17 

generator and runoff model and were validated against additional independent simulations not 18 

used in developing the index events, as well as against long-term measured monthly 19 

rainfall/runoff sets. Comparison of measured and RUSLE2-predicted monthly runoff suggested 20 

that the procedures outlined may underestimate plot-scale runoff during periods of the year with 21 

greater than average rainfall intensity, and a modification to improve predictions was developed.  22 

In order to illustrate the potential of coupling RUSLE2 with a process-based channel model, the 23 

resulting set of representative storms was used as an input to the channel erosion routines used in 24 

CREAMS to calculate ephemeral gully erosion. The method was applied to a hypothetical 5 ha 25 

field cropped to cotton in Marshall County, MS, bisected by a potential ephemeral gully having 26 

channel slopes ranging from 0.5 to 5% and with hillslopes on both sides of the channel with 5% 27 

steepness and 22.1 m length. Results showed the representative storm sequence produced 28 

reasonable results in CREAMS indicating that ephemeral gully erosion may be the same order of 29 

magnitude as sheet and rill erosion. 30 
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INTRODUCTION 36 
 37 

The goal of this project was to enhance the RUSLE2 model by using readily-available monthly 38 

climate data to generate a representative series of runoff events, allowing expansion of RUSLE’s 39 

conservation planning capabilities beyond erosivity-driven to runoff-driven phenomena, 40 

including such examples as ephemeral gully erosion or phosphorus transport.  In order to 41 

understand this approach, it is important to understand the overall USLE/RUSLE/RUSLE2 42 

family of models, especially as they evolved in how they handle runoff. 43 

The Universal Soil Loss Equation (USLE; Wischmeier and Smith, 1965, 1978) summarized 44 

thousands of years of plot research and became widely used for conservation planning purposes 45 

on agricultural croplands, based on estimating the average annual soil erosion by water. This was 46 

an empirical model of simple structure that captured the main effects of rainfall intensity, soil 47 

type, topography, and management on sheet and rill erosion, with no attempt to account for 48 

sediment deposition nor gully erosion.  In the early 1980’s a program to develop technology to 49 

replace the USLE was initiated, resulting in the computer-based RUSLE (Revised Universal Soil 50 

Loss Equation) model, documented in written form in 1997 (Renard et al., 1997).  RUSLE 51 

incorporated significant advances over the USLE and permitted application of soil erosion 52 

estimation for a great variety of crops and management practices beyond those in the original 53 

USLE data base.  RUSLE was subsequently revised to include more advanced scientific and 54 

interface technology and subsequently delivered as RUSLE2 (Revised Universal Soil Loss 55 

Equation Version 2) in 2002 (Foster et al., 2003; USDA-ARS, 2008).  RUSLE2 is currently used 56 

by the United States Department of Agriculture - Natural Resources Conservation Service 57 

(USDA-NRCS) for conservation planning. RUSLE2 is a “hybrid” model in that it computes 58 

sheet and rill erosion on a hillslope based on empirical equations driven by rainfall erosivity, but 59 

uses process-based equations driven by runoff estimates to determine sediment transport 60 

capacity, deposition, and sediment enrichment in clay and organic matter. 61 

Estimation of runoff and the impact of management on runoff and its ability to carry sediment is 62 

probably the aspect that changed the most in the USLE/RUSLE/RUSLE2 evolutionary process, 63 
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with that evolution described in Table 1.  In the USLE, there was no runoff estimation and the 64 

slope length was defined as beginning at the top of the hillslope where runoff began, and 65 

extending down to where the sheet and rill flow reaches either a concentrated flow channel or a 66 

depositional area.  The limit at the start of the depositional area was required because such 67 

deposition rarely occurred on the plots used to collect USLE data.   68 

In RUSLE, the hillslope definition was expanded to include areas of deposition caused by 69 

management changes. This was accomplished by including some of the process-based routines 70 

used in CREAMS (Foster et al., 1980a and b). Runoff was estimated using a location-specific 71 

index storm approach (described in more detail below) coupled to a user-selected runoff index 72 

similar to a Curve Number (CN) (Renard et al., 1997, Table 6-5). This index storm was used to 73 

determine critical slope length and to calculate P factors for such practices as contouring, grass 74 

strips, terraces, sediment basins, and subsurface drainage.  However, deposition on concave 75 

slopes for management systems without contouring was still not considered. 76 

In RUSLE2, this approach was extended to handle sediment deposition caused by changes in 77 

topography, and the simplified approach in RUSLE was expanded to include more of the 78 

CREAMS science.  Hillslopes now always reached from the top where runoff began now to a 79 

concentrated flow channel, and were conceived as being composed of three layers: topography, 80 

soil, and management. Allowing each of these layers to be segmented independently, RUSLE2 81 

represented any complex one-dimensional hillslope as a series of segments comprising each 82 

unique combination of the slope steepness, soil, and management layers.  With the CREAMS 83 

sediment transport and deposition equations available within every segment, RUSLE2 could now 84 

predict deposition due to both management changes and topographic concavity, considering both 85 

their impact on runoff generation and on overland flow transport capacity.  86 

Like USLE and RUSLE, RUSLE2 assumed that sheet and rill erosion was linearly related to 87 

rainfall erosivity.  Direct runoff values have never been part of the USLE/RUSLE detachment 88 

calculations, as the good correlation between measured storm erosivity and Unit Plot erosion 89 

indicated no need for that.  This means that the impact of soil, topography, and management on 90 
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runoff and the resulting impact of runoff on sheet and rill erosion must be subsumed in the other 91 

RUSLE factors (K – soil erodibility, LS – topography, and CP – management impacts). There is 92 

strong evidence that knowledge of the actual runoff amounts can be used to increase the 93 

accuracy of USLE/RUSLE erosion estimates (Kinnell and Risse, 1998), but there is some 94 

question whether the accuracy is still better if the runoff is estimated from rainfall values.  This 95 

approach would also require recalculating all the other RUSLE factors to remove the subsumed 96 

runoff impacts mentioned earlier. 97 

The approach of basing erosion solely on rainfall erosivity was not good enough, however, for 98 

what needed to be done in RUSLE2 to estimate remote deposition occurring in areas with 99 

concave topography or high flow retardance, so RUSLE2 made runoff estimates using an index 100 

storm and time-varying estimates of the CN based on soil and management characteristics.  This 101 

RUSLE2 calculated runoff was not used directly to estimate soil erosion, but rather to determine 102 

the following: if sediment transport capacity has been satisfied on a given slope segment; to 103 

predict sediment deposition within hillslope segments, channels, and impoundments; and to 104 

predict contour failure and backwater ponding upslope of barriers and buffer strips. 105 

RUSLE2 currently does not predict erosion within concentrated flow channels. Although it has 106 

frequently been suggested that ephemeral gully erosion may be of a magnitude comparable to 107 

that of sheet and rill erosion (Poesen et al., 2003), there is no database of ephemeral gully erosion 108 

observations comparable to the thousands of plot years of research that support the cropland 109 

sheet and rill erosion estimates calculated by USLE/RUSLE/RUSLE2. Therefore, most efforts to 110 

predict concentrated flow erosion in upland areas have involved application of algorithms that 111 

represent physical processes involved in detachment and transport (Foster et al., 1980a; Hairsine 112 

and Rose, 1992; Street and Quinton, 2001; Gordon et al., 2007).  113 

The USLE calculations for time-varying phenomena were done on the basis of either annual 114 

values or a qualitatively-defined “cropstage period.”  In RUSLE, this was narrowed to half-115 

month periods, which matched the available erosivity values.  In RUSLE2 the calculations are 116 

done on a daily timestep so they need daily rainfall and erosivity values, which could come from 117 
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measured daily values or daily values developed using a stochastic climate generator. Instead of 118 

this, in keeping with the desire for a general conservation planning model RUSLE2 developers 119 

assumed that only monthly normal precipitation and erosivity values were available, so RUSLE2 120 

climate databases included only monthly averages for precipitation, temperature, and erosivity 121 

density (erosivity per unit rainfall, MJ ha-1 h-1, a measure of rainfall intensity), plus the location’s 122 

10-yr 24-hr precipitation amount (P10y,24h).  The program then generated the necessary daily 123 

values by disaggregating the monthly data into daily values that preserved monthly totals yet 124 

varied smoothly from day to day, resulting in small amounts of precipitation and erosivity on 125 

every day of the year. 126 

The daily-disaggregation approach worked very well for the erosion estimates because of the 127 

linear relationship between erosivity and erosion seen in the original USLE plot data, but the 128 

small daily rainfall amounts would result in prediction of zero or very low runoff using the curve 129 

number method. In order to get around this limitation for the transport/deposition calculations, 130 

RUSLE2 used a precipitation index storm taken as the location’s P10y,24h .  The ratio of sediment 131 

yield to erosion from the index storm falling on a given day was used to estimate the  actual 132 

sediment yield as SYi = Ai * SYIi / AIi, where SYi is the daily sediment yield, Ai is the daily 133 

erosion, and SYIi / AIi is the ratio of sediment yield from the index storm to erosion from the 134 

index storm on that day.  This approach essentially calculated a sediment delivery ratio for the 135 

slope on each day using the index storm erosion and yield, and then assumed that same ratio held 136 

for any storm size. It was thought that the uncertainty associated with this assumption was 137 

probably less than that associated with trying to estimate daily runoff. The other way of thinking 138 

of this approach is that the sediment yield calculated for the erosion and runoff from the index 139 

storm on that day was scaled by the ratio of each day’s disaggregated erosivity to the erosivity of 140 

the P10y,24h rainfall. Details on this approach can be found in the RUSLE2 documentation 141 

(USDA-ARS, 2008). 142 

Through appropriate calibration, this approach provided reasonable and conservative estimates 143 

of sediment transport and sediment deposition suitable for conservation planning purposes.  144 

However, the runoff generated by assuming that P10y,24h occurs every day was unrealistically 145 
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high and was not appropriate for driving  a physically-based channel erosion model where the 146 

dimensions of the channel are important and vary through time, making it critical to have good 147 

estimates of the actual runoff rates. Therefore, a more realistic representative runoff event 148 

sequence was needed in order to drive hydraulically-driven processes such as channel erosion. 149 

The purpose of this paper is to describe new routines based solely on existing RUSLE2 database 150 

information that have been implemented in RUSLE2 (USDA-ARS, 2010) to calculate a 151 

representative sequence of daily runoff events suitable as inputs to physically-based runoff-152 

driven models, such as models to allow estimation of average annual channel (e.g., ephemeral 153 

gully) erosion, or models of phosphorus transport.  In order to be considered successful, the 154 

resulting representative storm sequence must meet the following requirements:  1) in order to 155 

ensure that the erosion results are similar to those using the current daily-disaggregated 156 

approach, 1a) the annual erosivity from these storms must equal the annual erosivity found in the 157 

database, and 1b) the general erosivity patterns over the year for the two methods must match 158 

relatively well; 2) in order to ensure conservation of mass, the annual precipitation depths and 159 

patterns over the year for the two methods (current daily-disaggregated and new representative 160 

storm sequence) must match.  The method is validated through comparison to independent 161 

generated data and to measured field data, and use of the method in driving a runoff-based model 162 

is illustrated by coupling the RUSLE2 output for a hypothetical field to the channel erosion 163 

model used in CREAMS and WEPP. 164 

 165 

RUSLE2 DATABASE VALUES AFFECTING HYDROLOGY 166 

In order to calculate average daily erosion and sediment delivery, RUSLE2 normally 167 

disaggregates monthly values of precipitation and erosivity into daily values.  These climatic 168 

values do not affect the amount of biomass produced by a vegetation description, but they do 169 

affect the rates at which surface and subsurface residues and surface roughness degrade over 170 

time (USDA-ARS, 2008). The disaggregation procedure used to convert monthly to daily values 171 
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is described in detail in section 3.1 of USDA-ARS (2008).  As described there, this process 172 

conserves the monthly sum of values such as precipitation and erosivity, and the monthly 173 

average of values such as temperature and erodibility. These disaggregated values represent the 174 

best estimators of long term average values and therefore have great utility. 175 

As mentioned above, disaggregation of monthly values is not the only way that RUSLE2 can get 176 

daily values.  Rather, daily precipitation and erosivity values can be a user-defined set, either 177 

entered by hand from “real” measured data or pulled from a climate generator through the 178 

“Single-storm erosivity” input option.  In these latter two cases, discrete user-specified values are 179 

used to determine erosion and sediment delivery, but the other impacts of climate (e.g., residue 180 

decomposition and roughness degradation) are still based on the long-term disaggregated values 181 

to maintain the robustness of the approach, and because the results of these effects were 182 

calibrated against the USLE database to ensure a good fit to the large empirical database.  In 183 

other words, RUSLE2 can do its calculations based on linkage to a climate generator, but use of 184 

the smoothed disaggregated average values is more robust and just as valid for conservation 185 

planning purposes (Yoder et al., 2007), except those purposes tied to runoff-driven calculations. 186 

RUSLE2 management descriptions comprise combinations of operation and vegetation 187 

descriptions. Operations such as tillage, planting, or harvest take place on specified dates and 188 

affect hydrologically important properties such as surface roughness and residue cover. 189 

Vegetation descriptions specify growth timing and the amounts and types of residues produced. 190 

Residue characteristics include a biomass-cover relationship and a potential decay rate.  191 

RUSLE2 soil descriptions affect hydrology primarily through the choice of soil hydraulic class 192 

and through textural effects on soil roughness created by tillage (ARS, 2008). 193 

THE CURVE NUMBER AND STORAGE INDEX 194 

In order to understand the new approach to developing representative storms in RUSLE2, it is 195 

essential to understand the underlying curve number runoff calculation.  This starts with the 196 
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storage index S, sometimes called “maximum retention”, which is a transform of the Curve 197 

Number (CN; ASCE, 2009). Using SI units, S (mm) is calculated as: 198 

S = (25400 - 254 CN) / CN        [1] 199 

Conceptually, CN can vary from 0 to 100, corresponding to S varying from ∞ to 0. When the 200 

“initial abstraction” is taken as 0.2S, and when S, precipitation P, and runoff Q, are in the same 201 

units, runoff is calculated as: 202 

SP
SPQ

8.0
)2.0( 2

+
−

=
         [2] 203 

RUSLE2 internally calculates a CN based on soil, climate, and management descriptions, 204 

varying it on a daily basis due to changes in soil biomass, soil consolidation, soil roughness, and 205 

soil residue cover. However, the RUSLE2 CN does not vary through the year due to variation in 206 

the antecedent soil water content, because RUSLE2 does not include explicit water balance 207 

computations.   208 

While use of the CN approach has received considerable criticism, including especially that 209 

curve number results do not vary depending on the storm rainfall intensity (e.g., Garen and 210 

Moore, 2005; ASCE, 2009), most objections disappear when the objective of the model is long-211 

term average behavior, as is the case for this application in RUSLE2. 212 

DATA TO DERIVE A REPRESENTATIVE RUNOFF EVENT SEQUENCE 213 

Some erosion models use climate generators to predict stochastic series of input variables to 214 

drive the models (Bingner and Theurer, 2001; Meyer et al., 2008).  Multi-year outputs of such 215 

models are then summarized to predict long-term averages or the likely magnitude of events with 216 

different probabilities of occurrence.  Though RUSLE2 could take this approach through use of 217 

the daily precipitation/erosivity inputs described earlier, in general RUSLE2 predicts long-term 218 

average sheet and rill erosion and the distribution of that erosion through a year or a rotation 219 

cycle. To be complementary, a RUSLE2 runoff-driven erosion estimate would need to be a long-220 

term average of a highly variable sequence of events.  Yu (2002) used a stochastic climate 221 
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generator to derive RUSLE climate files. We took that one step further by using a stochastic 222 

model to generate the initial rainfall/runoff sets. 223 

In order to meet the objective of developing a representative runoff event sequence based on the 224 

available database information, we needed a set of storm rainfall/runoff values.  These could 225 

have been “real” storm data collected from plots over years, but we chose to use the output of a 226 

stochastic model as the observations to derive the routines.  These “synthetic data” were used for 227 

several reasons:  1) we desired a general approach that could be used across the continental US, 228 

which would allow application of the method to a wide range of users; 2) the data needed to 229 

represent a broad range of management and soil conditions at each location, in order to 230 

adequately demonstrate the impact of management and soil on runoff; 3) the data needed to be 231 

for the plot/field scale modeled by RUSLE.   232 

Generating long term average runoff estimates using AnnAGNPS 233 

We chose to use AnnAGNPS (version 3.5; Bingner and Theurer, 2001) as the stochastically 234 

driven model to generate our rainfall/runoff sets because AnnAGNPS and RUSLE use 235 

compatible management descriptions and both are operational models supported by available 236 

databases. Although AnnAGNPS and RUSLE2 both use Curve Number methods to estimate 237 

runoff, the models differ considerably in their hydrology. AnnAGNPS uses measured or 238 

generated stochastic climatic input data with a sequence of wet and dry days and rainfall event 239 

sizes that vary from year to year. In contrast, for conservation planning purposes, RUSLE2 240 

generally uses 30-y monthly mean rainfall disaggregated into a continuous series of daily rainfall 241 

values, and weather is assumed to be the same long-term normal every year.  AnnAGNPS 242 

requires users to choose a base CN (NRCS, 2004) and daily adjusts that CN based on antecedent 243 

soil water conditions determined by water balance computations and planting and harvesting 244 

events; RUSLE2 calculates a CN internally based on soil, management, and climatic 245 

descriptions, and does not include an antecedent soil water content adjustment to the CN.   246 

The  AnnAGNPS and RUSLE2 input data for Goodwin Creek Watershed in Panola County, MS, 247 

are compared in Figure 1. The AnnAGNPS input file was a 30-y synthetic GEM (Harmel et al. 248 

2002)  simulation based on weather statistics from Memphis, TN, and Greenwood, MS, 249 
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combined with monthly estimates of dew point, sky cover, and wind speed interpolated to the 250 

Goodwin Creek watershed from maps in the AnnAGNPS Climate Atlas. In Fig. 1A, the 251 

maximum rainfall occurring on each day during the simulation is plotted to demonstrate the 252 

stochastic nature of the AnnAGNPS inputs. However, the 12 monthly means of that record 253 

resemble the monthly rainfall files that are part of RUSLE2 database for Panola County, MS 254 

(NRCS, 2008), and both are similar to the monthly rainfall totals measured over 23 years (1982 255 

to 2003) at gauging station #1 in the Goodwin Creek experimental watershed (Fig. 1B). 256 

AnnAGNPS was used to transform 30-y synthetic climate input files into a time sequence of 257 

runoff events for 30 U.S. locations with annual precipitation from 191 to 1420 mm. At each 258 

location, a factorial combination of four soils (soil hydrologic classes A, B, C, and D) and four 259 

managements (tilled fallow, tilled maize [Zea mays, L.], no-till maize, and pasture) were 260 

simulated. All the locations were in the continental U.S. between 30 and 48 degrees N latitude 261 

and 74 and 123 degrees W longitude. RUSLE2 climate databases (NRCS, 2008) were obtained 262 

from the same counties as the AnnAGNPS locations. In counties within the eleven western USA 263 

states that have multiple RUSLE2 climate files, sub county zones were selected so that average 264 

annual precipitation in the selected RUSLE2 climate file for each location differed by no more 265 

than 15% from that in the AnnAGNPS input dataset.  These combinations of 266 

locations/soils/managements were chosen to provide a wide range of applicability of the 267 

technique to the lower continental U.S.  268 

Results from four of the locations, selected to span a range of annual precipitation amounts and 269 

temperature regimes, were not used in the development of RUSLE2 prediction equations but 270 

were reserved to provide an independent assessment of prediction efficiency. This left 416 (26 271 

locations, 4 soils, 4 managements) 30-year daily AnnAGNPS runoff series as the basis for 272 

developing regression relationships allowing prediction based on available RUSLE2 databases 273 

of: (1) long term mean monthly runoff and (2) parameters to describe the frequency and 274 

statistical distribution of runoff events.   275 

 276 

PREDICTING AVERAGE MONTHLY RUNOFF 277 
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Our technique for predicting monthly runoff values followed three steps. First we sought to 278 

account for snow pack accumulation and melting by adjusting the RUSLE2 monthly 279 

precipitation values. Though snow pack accumulation and melting generally has minimal impact 280 

on rainfall erosivity because of the low precipitation intensities involved with snow, they can 281 

have a substantial impact on monthly runoff.  Secondly, we used values from the RUSLE2 282 

climate database to predict monthly adjustments to the storage index S (equation [1]) that reflect 283 

seasonal variations in CN due to variations in antecedent soil water content.  Thirdly, we used 284 

the results of the first two steps and other information available in the RUSLE2 climate, soil, and 285 

management databases in multiple regression analysis to the predict average monthly runoff 286 

from the large pool of rainfall/runoff sets generated by AnnAGNPS. 287 

Snowpack accumulation and melting  288 

In limiting ourselves to the data available in the RUSLE2 climate database, snowpack 289 

accumulation was presumed to depend on precipitation and temperature values.  These values 290 

were fit to the effect as modeled by AnnAGNPS, yielding adjusted RUSLE2 monthly 291 

precipitation amounts, Pai (mm), calculated by subtracting the predicted change in snowpack 292 

(δPsi, mm) from the average monthly precipitation Pi (mm)available in the RUSLE2 climate 293 

database for each location. Precipitation was reduced when the snowpack increased, and 294 

increased when the snowpack decreased through the relationships:  295 

δPsi = Pi * [-0.0735 + 0.00851* Ti + δTi *(-0.04386+0.0061*Ti)],   Ti≤8  [3] 296 

δPsi = 0,           Ti >8 297 

Pai = Pi - δPsi 298 

where: Ti is mean monthly temperature (°C) and δTi is the change in Ti from the previous month 299 

(δTi, = Ti  - Ti-1 ).  The snowpack increases (δPsi is positive) when δTi is less than about -2 °C.   300 

If δTi is positive, the snowpack melts and Pai is larger than Pi. If the absolute magnitude of δTi is 301 

small, there is little gain or loss of snow pack. The main effect of Ti is to amplify the impact of 302 

δTi.  The temperature effect inside the brackets of equation [3] is multiplied by the monthly 303 

precipitation, so effects are larger in wetter climates. For 30-y AnnAGNPS simulations at 26 304 

locations, there were 104 location months with Ti ≤ 8 °C, and this four-parameter model 305 
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predicted the average monthly AnnAGNPS changes in snowpack moderately well (R2 = 0.65, 306 

n=104).  Predicted δPsi ranged from -31 to +43 mm, while the AnnAGNPS results ranged from 307 

about -69 to +51mm, with two observations less than -30 mm, and two above +30 mm. Thus, the 308 

adjustment shifted precipitation in the correct direction to capture important winter effects, but 309 

did not capture the entire effect for the highest snow locations (e.g., March in Portland, ME).  310 

Monthly water balance adjustment to S (and CN)  311 

Monthly values of the ratio of average monthly storage index, Si, to that of its annual average, 312 

SA, for were calculated for 4992 combinations (26 locations, 4 soils, 4 managements, 12 months) 313 

30-y AnnAGNPS simulations. This “S-ratio” (Si/SA) represents the seasonal variation in the 314 

storage index as reflected in the AnnAGNPS adjustment to the CN, which is based primarily on 315 

a daily soil water balance. We then used Proc Mixed (SAS, 1996) to develop a regression model 316 

to predict Si/SA from information already in the RUSLE2 climate database, including the 317 

monthly rainfall adjusted for snow effects. A 60 degree of freedom (12 monthly intercepts plus 318 

the interactions of 12 months with 4 parameters) regression model was highly significant (R2 = 319 

0.99, n=4992) and the resulting coefficient estimates, which are appropriate only to northern 320 

temperate regions, are presented in Table 2. The monthly intercepts had the most predictive 321 

power, reflecting an increased storage index between June and October when antecedent 322 

conditions tend to be dry, and a decreased storage index from November to March. The four 323 

parameters modifying the effect of month were average temperature and snow-adjusted 324 

precipitation, and the deviations of these monthly values from their annual averages. These three 325 

parameters (month, temperature, and precipitation) are logical in defining the expected 326 

antecedent moisture impact on the CN, and therefore on the Si value, as they have a clear 327 

correlation to sunlight and temperature—which in turn control evapotranspiration—and to 328 

rewetting of the soil. 329 

Calculating average monthly runoff from RUSLE2 databases 330 

A monthly runoff index parameter, qi (mm), was calculated based on equation [2] as: 331 

qi = (Pai – 0.2 SRSi/SA)2 / (Pai + 0.8 SRSi/SA)      [4] 332 



14 

 

where SR is the average annual RUSLE2 storage index. The parameter qi reflects a combination 333 

of soil, management, and climatic effects on runoff, and equals the runoff that would be 334 

predicted if the entire monthly precipitation fell as one storm.   335 

A 22-parameter regression model using qi and other information available in the RUSLE2 336 

databases  was fitted to average monthly AnnAGNPS runoff values (26 locations, 4 soils, 4 337 

managements, 12 months), with the results shown in Table 3. The regression model represented 338 

the AnnAGNPS average monthly runoff (R2 = 0.90, n=4992) reasonably well.  All retained terms 339 

were significant at P < 0.001 after considering all other terms in the model.  Significant terms 340 

included qi, SR and Si/SA, soil hydrologic group, precipitation, erosivity, temperature, and 341 

interactions and time differences between some of them. The first four of these terms represent 342 

the management and soil effects on the curve number. The precipitation and erosivity values 343 

represent rainfall amounts and intensities.   In application in RUSLE2, if the regression model 344 

predicted negative monthly runoff, that monthly runoff value was set to zero. 345 

In examining the results of this portion of the process, Figure 2A illustrates the event runoff 346 

predicted by AnnAGNPS for the precipitation inputs shown in Fig. 1A, while Fig 2B shows the 347 

average monthly runoff from the AnnAGNPS simulations and that calculated by the RUSLE2-348 

based regression model for a hydraulic class C soil cropped to conventional tillage maize in 349 

Panola County, MS. Shown for comparison is the mean of a 22-year average monthly runoff 350 

measured at gauging station #1 of the Goodwin Creek experimental watershed. The pattern 351 

predicted by RUSLE2 is similar to the AnnAGNPS predictions and both vary slightly from to the 352 

measured data, which is to be expected since soils and land uses vary substantially within the 21 353 

km2 Goodwin Creek watershed (Kuhnle et al., 1996; Kuhnle et al., 2008).  354 

To test the ability of the RUSLE2 regression model to predict monthly runoff amounts outside 355 

the calibration data set, the results of the four validation locations (Table 4) were predicted for all 356 

16 management and soil type combinations.  Taking the AnnAGNPS values as observed data 357 

and RUSLE2 regression (Table 3) predictions as modeled values, the Nash-Sutcliffe model 358 

efficiency coefficient (Moriasi et al., 2007) for monthly runoff amounts was 0.80 (n=768). 359 

DETERMINING A REPRESENTATIVE RUNOFF EVENT SEQUENCE 360 
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Given estimates of monthly runoff calculated from regression results, there remains the problem 361 

of determining a suitable sequence of runoff events. This was approached by determining the 362 

mean number of events per year and parameters characterizing the statistical distribution of 363 

runoff event sizes for each combination of location, soil, and management. Using these values 364 

and postulating that the largest event to be simulated in each RUSLE2 year would have a 1.0 365 

year return period, a sequence of events was calculated as described below. The goal of this task 366 

was to develop a storm sequence that would produce the correct amount of runoff distributed 367 

among a reasonable number of events, matching the total precipitation and erosivity defined in 368 

the RUSLE climate database, the temporal distribution of that precipitation through the year,  369 

and the runoff estimated by the rainfall/runoff set. 370 

Estimate the number of runoff events per year for each location, soil type, and management  371 

The average number of AnnAGNPS runoff events per year (EPY) for each location, 372 

management, and soil type combination that had more than 6 runoff events within a 30-year 373 

AnnAGNPS simulation was fitted to a 24-parameter regression model based on information 374 

available in the RUSLE2 climate, soil, and management databases, with the results shown in 375 

Table 5. The model accounted for most of the variability in the annual number of runoff events 376 

in the calibration data set (R2 = 0.98, n=377).  All retained terms were significant at P < 0.02, 377 

and included SR, soil hydrologic group, precipitation, erosivity, temperature, and interactions and 378 

time differences between some of these. The number of runoff events will clearly be a function 379 

of precipitation depth and intensity, as well as depending on soil characteristics, management 380 

influences, temperature effects on antecedent moisture.   In this case, the influence of 381 

management entered the model only through the parameter SR and soil hydrologic group.  In the 382 

RUSLE2 implementation, if the regression equation predicted less than four events per year, the 383 

number of events per year was set to four. The Nash-Sutcliffe model efficiency coefficient for 384 

predicting the average annual number of runoff events for all soil type and management 385 

combinations at the four locations not used in the calibration was 0.83 (n=64). 386 

Determine the gamma function scale and shape parameters describing daily runoff amounts  387 
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A gamma distribution is commonly used to fit rainfall data (Haan, 1977) and is generally defined 388 

by a scale parameter σ indicating something of the range of the values, and a shape factor α 389 

indicating the shape of the distribution.  In this study, a gamma distribution was fit using Proc 390 

Univariate (SAS, 1996) to each runoff sequence with more than 6 runoff events within a 30-year 391 

AnnAGNPS simulation. Preliminary analysis indicated that for all location, soil, and 392 

management combinations the shape factor α was close to 0.5, so the gamma distribution scale 393 

parameter σ was estimated for all locations after specifying the shape parameter uniformly as 394 

0.5. The resulting estimates of σ were then used as the dependent variable in a regression 395 

analysis conducted with Proc Mixed (SAS, 1996). The analysis resulted in a 22-parameter model 396 

(R2 = 0.99, n=377) involving combinations and interactions of variables calculated from 397 

RUSLE2 databases (Table 6). All retained terms were significant at P < 0.01, and included SR, 398 

soil hydrologic group, precipitation, erosivity, temperature, and interactions and time differences 399 

between some of these.  Because the resulting gamma function represented the distribution of 400 

runoff event depths given that a runoff event had occurred, we would expect that the results 401 

would be dominated by the precipitation values, which was the case, moderated by the primary 402 

factors controlling the resulting curve number. In the RUSLE2 implementation, if the predicted 403 

scale parameter σ was less than 2 mm, σ for that location, soil, and management was set to 2 404 

mm. The Nash-Sutcliffe model efficiency coefficient for predicting the gamma distribution scale 405 

parameter for all 16 combinations of soil and management at the four locations not used in the 406 

calibration was 0.83 (n=64).  407 

Determine the return period of the largest storm in a representative storm sequence  408 

The default return period (RP) of the largest expected annual runoff event was set to a 1.0 y. 409 

However, in the RUSLE2 implementation, this parameter can be varied by the user to investigate 410 

the effect of larger maximum events. 411 

Determine the magnitude of the maximum annual runoff event 412 

The size of a runoff event with a specified return period (y), was calculated as: 413 

Qev = Γ-1(p,α) * σ         [5]  414 
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where p = 1 - 1/(RP * EPY) is the probability that an event will be smaller than the specified 415 

event within a gamma cumulative distribution function with shape parameter α and scale 416 

parameter σ, and Γ-1 indicates we are taking the inverse of the gamma function.  Thus, for a 10-417 

year return period at a location with 50 events per year, p = 0.998; for a 1.0-year return period at 418 

a location with 50 events per year, p = 0.98; and for a 1.0-year return period at a location with 25 419 

events per year, p = 0.96. As mentioned above, the maximum event was taken as the 1-y runoff 420 

event (Q1y,24h) . 421 

Determine the representative sequence of runoff events 422 

To derive the sequence of significant runoff events, the monthly runoff estimates Qi were 423 

disaggregated to daily runoff values using standard RUSLE2 procedures (USDA-ARS, 2008, 424 

section 3.1). The ratio of Q1y,24h  to the maximum daily runoff amount in the disaggregated runoff 425 

record was then termed RQ and was used in two ways: (a) as a magnitude factor to convert daily 426 

runoff to representative event runoff, Qev, and (b) as the basis for determining the period between 427 

representative runoff events. The number of events in the representative storm sequence was 428 

determined by rounding down the quotient of 365 d divided by RQ and then dividing 365 d by 429 

the resulting number of events. Taking the first event day as the date of maximum disaggregated 430 

daily runoff, the quotient was sequentially added, with each sum rounded down to determine 431 

event dates. On each event day, the depth of disaggregated daily runoff is multiplied by RQ to 432 

calculate event runoff depth.  This process resulted in the largest event being equal to Q1y,24h, and 433 

the sum of all events very closely approximating the AnnAGNPS results for annual runoff for 434 

the location, soil, and management. 435 

Table 7 shows the runoff parameter results for the four validation sites, comparing the input 436 

rainfall/runoff sets (in this case developed using AnnAGNPS) to the values resulting from the 437 

representative storm sequence as described above.  These results show very close matches, not 438 

only in the actual calculated runoff values, but even in the number of storms seen at the various 439 

locations. 440 

CALCULATING EVENT SEQUENCE SHEET AND RILL EROSION  441 
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Since RUSLE2 calculates sheet and rill erosion based on rainfall erosivity rather than runoff 442 

amounts, a procedure was needed to transform the runoff event sequence back into a sequence of 443 

rainfall erosivity events.  444 

Determine precipitation amount of each event 445 

Event precipitation amounts, Pev, were calculated from event runoff by using the quadratic 446 

formula to solve equation [2] for P, using an event storage index Sev defined as the product of the 447 

disaggregated daily SRi calculated from the RUSLE2 disaggregated CN, times the disaggregated 448 

Si/SA on the event date.  449 

Determine the normal precipitation that occurs between runoff events 450 

The normal precipitation between runoff events, Pei, was determined by summing the 451 

disaggregated snowpack-adjusted precipitation values between sequential runoff event dates. 452 

Determine the event erosivity density multiplier  453 

The ratio of normal rainfall between events to each event’s precipitation was termed the erosivity 454 

density multiplier, edmev = Pei/Pev.  Calculating EI30ev by multiplying Pev times the disaggregated 455 

daily erosivity density on the event day, Eev, and edmev ensured that the sum of the rainfall 456 

erosivity for the representative event sequence would approximately equal the normal rainfall 457 

erosivity for the location. In this way the annual sheet and rill erosion calculated for the 458 

representative event sequence will be shown to be very close to the normal RUSLE2 estimate.  459 

 460 

TEST CASE: RUNOFF AND EROSION FROM PLOTS AT HOLLY SPRINGS, MS 461 

We demonstrate the procedure of calculating a runoff event sequence and using it to calculate 462 

sheet and rill erosion with RUSLE2 by representing the erosion plots reported and discussed in 463 

detail by Dabney et al. (2009). The plots were 22.1 m long hillslopes with 5% steepness cropped 464 

to conventional till (CT) or no-till (NT) cotton from 1991 to 1997 in Marshall County, MS, USA.  465 

Table 8 summarizes the climate parameters for Marshall County, MS, USA, obtained from the 466 

RUSLE2 database. The climate of Marshall County, MS, was not part of the calibration dataset, 467 
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but it is similar to the climate of Panola County, MS, (Fig. 1) which was. Comparison of the 468 

input monthly RUSLE2 precipitation data (Table 8, column 3) with the snowpack adjusted Pai 469 

values (column 6) shows that in Marshall County, MS, snowpack adjustment resulted in only a 470 

slight decrease in effective precipitation during December and a slight increase during February.  471 

Results reported are available in the “Storm sequence” tab of the “ARS Science May2010” 472 

template of the latest version of RUSLE2 (USDA-ARS, 2010).  RUSLE2 predicted that the CN 473 

was higher for CT than for NT, and the regression models presented in Tables 3, 5, and 6 474 

predicted how tillage system affects runoff-related parameters (Table 9). The gamma distribution 475 

scale parameter σ varied depending on whether the long term average RUSEL2 climate file or 476 

the actual weather observed during the 7-year study was sued. Using long term average weather, 477 

σ was 14.9 mm for CT vs 14.2 for NT. CT was predicted to have 49 runoff events per year 478 

compared to only 43 for NT. Of those events, 17 events spaced 22 days apart were considered to 479 

be significant events in CT, compared with 16 events spaced 23 days apart for NT. The peak 480 

runoff event occurred in December. 481 

Table 9 also reports predicted and observed annual average runoff, sheet and rill erosion, and 482 

sediment concentration values for CT and NT cotton. As reported by Dabney et al. (2009), using 483 

long term average climate records RUSLE2 predicted sheet and rill erosion was 76% of 484 

measured annual averages for CT, and 114% of the measured value for NT.  However, both 485 

RUSLE2-predicted (like AnnAGNPS-predicted) runoff was lower than observed annual 486 

averages for both tillage systems, so sediment concentration estimates were higher than 487 

measured values. This discrepancy is discussed below. 488 

Predicting monthly runoff for the test case 489 

Monthly runoff predictions and selected intermediate results are reported in the bottom section of 490 

Table 9. The monthly variation in the RUSLE2 storage index, SRi, values reflect the monthly 491 

changes to the CN calculated internally by RUSLE2 in response to management operations that 492 

affect surface roughness, surface residue cover, and soil biomass. For CT, the RUSLE2 CN goes 493 

down (SRi increases) during April after tillage, while for NT, SRi is highest in NT during the 494 

winter after residue addition associated with cotton harvest. It is noteworthy that the relative 495 



20 

 

changes in SRi are smaller than, and out of phase with, the monthly variation in the Si/SA ratio 496 

that reflects antecedent soil water content effects (Table 8).  The product SRiSi/SA reflects the 497 

combined influences of soil, management, and climate, including the water balance adjustment 498 

to the curve number, and leads to the estimation of qi and monthly runoff (using Table 4). 499 

Figure 3A shows the monthly RUSLE2 precipitation and predicted and observed monthly runoff 500 

amounts from CT and NT cotton.  Comparison of predicted and observed monthly runoff 501 

patterns helps to explain the underestimation of annual runoff.   Since part of the discrepancy 502 

might be due to the differences between observed average rainfall patterns during the 7 yr of 503 

observations and the long-term mean reflected in the RUSLE2 database, we also present 504 

observed 7-y average monthly rainfall and predictions based on measured rainfall amounts and 505 

measured erosivity density (Fig. 3B).  Using either long term average or measured rainfall 506 

resulted in substantially underestimated runoff during the summer, which is a period of higher 507 

than average erosivity density (Table 8). It may be that the RUSLE2 relationships under-predict 508 

runoff because the AnnAGNPS predictions upon which the regression relationships are based do 509 

not reflect the influence of rainfall intensity on CN, which is sometimes important (Hawkins, 510 

1982; Hjelmfelt, 1991; Smith, 1997; Jain et al., 2006).   The RUSLE2 monthly erosivity density 511 

values are directly proportional to the average monthly 30-minute rainfall intensity (USDA-ARS, 512 

2008) and thus reflect seasonal variation in rainfall intensity at a location. Therefore, we tested 513 

an adjustment to the storage index based on monthly erosivity density, Ei: 514 

Sei = (1 - (Ei – 3) / 14)3       if Ei > 3  [6] 515 

Sei = 1           if Ei <= 3      516 

The dimensionless factor Sei is multiplicative with the adjustment reflecting antecedent water 517 

content, so an adjusted monthly storage index was calculated as SeiSRiSi/SA. This modification 518 

reduced the storage index and increased predicted runoff when monthly erosivity density 519 

exceeded 3 MJ ha-1 h-1.  Applying this adjustment improved the agreement of measured and 520 

predicted monthly runoff (Fig. 3C). When the Sei adjustment was applied with observed rainfall 521 

(Fig. 3D), the Nash-Sutcliff efficiency for predicted monthly runoff was 0.51 (n=24).  522 
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Although the adjustment proposed as equation [6] gives reasonable values over the range of 523 

erosivity density values encountered in the RUSLE2 database, it is based on a limited dataset and 524 

more testing is needed.  The influence of rainfall intensity on infiltration/runoff partitioning is 525 

likely to vary with the amount of residue cover, the susceptibility of the soil to crusting, and 526 

other factors. The fact that the watershed level comparison in Panola County did not show an 527 

under-prediction of summer runoff (Fig. 1) suggests that a rainfall intensity adjustment may be 528 

more important at the plot scale than at the watershed scale. Nevertheless, the Holly Springs 529 

dataset suggests that adjustment of predicted runoff based on rainfall intensity can improve 530 

model efficiency. Underestimation extreme events by synthetic GEM may be another 531 

contributing factor as several studies have found that weather generators are better at predicting 532 

monthly means than at matching extreme events (Johnson et al., 1996; Meyer et al. 2008). 533 

Predicting a runoff event sequence for the test case  534 

Figure 4A shows the disaggregated RUSLE2 erosivity density for Marshall County, MS and the 535 

disaggregated daily runoff amounts for CT cotton with and without the proposed Sei adjustment.  536 

Although using the Sei adjustment and actual measured rainfall data improved agreement with 537 

measured monthly runoff patterns, we chose the normal long-term average RUSLE2 rainfall to 538 

demonstrate estimation of a representative event sequence.  Without the Sei adjustment, the 539 

single largest daily disaggregated runoff value for CT cotton was 1.9 mm d-1 on 12 December.  540 

The ratio of Q1y,24h  (40 mm, Table 9) to this maximum daily runoff value yielded RQ = 21.5 d, 541 

which is the magnitude factor for transforming disaggregated daily runoff values to event values. 542 

The number of events per year is determined by rounding down the quotient of 365 d divided by 543 

RQ, yielding 17 events in this example. In order to determine the sequence of event dates (Table 544 

10), the time between events is determined by dividing 365 d by the number of events (17), and 545 

then sequentially adding the quotient (21.5 d) to the day of the first event, which is taken as the 546 

day of maximum runoff (12 December in this example).  Each sum is rounded down to 547 

determine event dates, leading to intervals between events of either 21 or 22 d. On each event 548 

date, the value of disaggregated runoff (Fig. 4A) was multiplied by the magnitude factor (21.5 d 549 

in this example) to calculate event runoff amounts.  The event runoff predictions are illustrated 550 

with open triangles in Fig. 4B, which are observed to follow the predicted monthly (Fig. 3A) and 551 
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disaggregated daily (Fig. 4A) runoff patterns. The largest of the 17 events in the representative 552 

sequence has a runoff amount equal to Q1y,24h (40 mm), but there are several similarly sized (four 553 

> 37 mm) events in the sequence.   If the Sei adjusted runoff had been used, the higher peak 554 

disaggregated daily runoff value (2.0 mm on 21 March) would have led to a larger set of events 555 

(18 events per year), but the size of largest event would have remained the same and equal to 556 

estimated Q1y,24h.  557 

In the CT cotton example, the sum of the sheet and rill event erosion estimates for the event 558 

sequence in Table 10 is 45.4 Mg ha-1 y-1 and is within 3% of the 44.4 ha-1 y-1 calculated by 559 

normal RUSLE2 procedures (Table 9), demonstrating that the event approach does not 560 

significantly alter hillslope erosion estimates. 561 

The apparent sediment concentrations reported in Table 10 were determined from the RUSLE2 562 

calculated event sheet and rill erosion and predicted event runoff. These values can serve as 563 

inputs to a channel erosion model.   564 

LINKAGE WITH A RUNOFF-DRIVEN MODEL 565 

Since the procedure represented above appears to provide good runoff and erosion results both 566 

for the validation RUSLE runs and a specific “real world” test case, the remaining success 567 

criterion defined at the beginning was to show that the representative storm sequence could be 568 

used to drive an existing runoff-based model. 569 

To demonstrate the ability to link RUSLE2 to process-based, runoff-driven channel erosion 570 

model, we chose to use the well known CREAMS formulation (Foster et al., 1980a) which is 571 

essentially the same theory used in the watershed version of WEPP (Ascough et al., 1997) and in 572 

GeoWEPP (Renschler, 2003) to estimate channel and ephemeral gully erosion. In the CREAMS 573 

scheme, ephemeral gullies grow by first incising until they reach a non-erodible layer and then 574 

widening on top of that layer until the shear stress at the base of the channel sidewall is equal to 575 

the critical shear stress, τc, of the soil (Foster, 2005). Haan et al. (1994) provided a clear 576 

conceptual derivation of the channel erosion theory represented by the equations used in 577 

CREAMS. The theory is based several assumptions: (1) that Manning’s equation applies, (2) that 578 

the shear stress distribution around the cross section of a channel can be represented by a 579 
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dimensionless distribution, (3) that the soil consists of a uniform erodibile layer with 580 

characteristic erodibility and critical shear stress values overlying a non-erodible layer at a 581 

specified depth, (4) that potential detachment rate is proportional to excess shear stress, (5) that 582 

actual detachment is proportional to the unsatisfied transport capacity of a steady-state runoff 583 

rate, (6) that transport capacity can be determined by the set of equations proposed by Yalin 584 

(1963), and (7) that deposition occurs if sediment load exceeds transport capacity.  In 585 

application, shear stress is calculated for an effective steady state runoff rate using channel slope, 586 

Manning’s n, and channel dimensions to determine velocity and hydraulic radius, and the 587 

assumption that average shear stress is proportional so the product of slope, hydraulic radius, and 588 

the unit weight of water. Application of detachment/transport coupling relationships together 589 

with the assumption of a rectangular channel shape leads to the determination of an effective 590 

channel width during the incision phase that depends on critical shear stress but not soil 591 

erodibility. The time to reach the non-erodible layer is determined (depending on available 592 

transport capacity and soil erodibility) and the total time of the event is divided into a period 593 

before reaching the non-erodible layer and a period after reaching the layer.  After the non-594 

erodible layer is reached, the channel widens, asymptotically approaching the width where shear 595 

stress at the toe of the channel bank is equal to the specified critical stress.  This scheme allows 596 

application of a rapidly-solved analytical calculation of soil loss at several cross sections down 597 

the channel. Two limitations of this approach are that the non-erodible layer remains forever 598 

non-erodible, and any deposition of sediment predicted from one event is neglected in 599 

subsequent erosion calculations 600 

To drive CREAMS, representative event runoff depths had to be transformed into runoff rates.  601 

In RUSLE2, the duration of the P10y,24h index storm is assumed to be 60 min. We modified this 602 

by multiplying this base duration by the ratio of the annual average erosivity density (4.7 MJ ha-1 603 

h-1 in Marshall County, MS; Table 8) to the daily disaggregated erosivity density on each event 604 

day. This adjustment was based on the logic that runoff occurs at higher rates during periods of 605 

the year with higher than average erosivity density. The result is illustrated in Fig. 4B, where the 606 

solid diamonds (runoff rate mm h-1) are higher than the open triangles (runoff amount per day) 607 

when Eev >4.7 and are lower than when Eev <4.7 MJ ha-1 h-1. 608 
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 609 

PREDICTING EPHEMERAL GULLY EROSION: A HYPOTHETICAL EXAMPLE 610 

We used CREAMS driven by the new RUSLE2 storm sequence to calculate potential ephemeral 611 

gully erosion for a hypothetical 5 ha field with a silt loam soil cropped to CT or NT cotton in 612 

Marshall County, MS, USA, with the field bisected by a potential ephemeral gully channel.  613 

Hillslopes on either side of the gully were modeled to represent the 22.1 m long CT and NT 614 

erosion plots simulated above, so the length of the channel was about 1130 m. A non-erodible 615 

layer was assumed at 0.05 m depth.  Computations were done at four ephemeral gully thalweg 616 

slopes (0.5, 1, 2, and 5%). Soil erodibility  and critical shear stress, τc, values (Table 11) were 617 

estimated as the average of values suggested USDA-SCS (1992) for tilled and no-till cropland.  618 

Predicted event ephemeral gully and RUSLE2 sheet and rill erosion are illustrated in Fig. 5.  It 619 

may be noted that, rather than being associated mainly with the largest events, predicted 620 

ephemeral gully erosion was concentrated in the first significant runoff events following tillage. 621 

Total annual ephemeral erosion estimates ara presented in Table 11 exceeded average annual 622 

sheet and rill erosion (Table 9) in this hypothetical field for all cases where channel slope was 623 

1% or greater. Since no long-term database ephemeral gully erosion rates are available for 624 

comparison with the simulations, the ephemeral gully erosion predictions discussed are regarded 625 

as conceptual. Their magnitude suggests that ephemeral gullies make an important contribution 626 

to field scale sediment delivery underscore the need for more field measurements of this process.  627 

SUMMARY AND CONCLUSIONS 628 

RUSLE2 already uses runoff estimates to model transport and depositional processes on the 629 

hillslope as sediment moves through areas of higher flow retardance or lower steepness.  It does 630 

this by routing runoff from an index storm down the slope every day to calculate a design 631 

sediment delivery ratio, then applying that ratio to the actual daily estimated erosion to derive a 632 

sediment delivery estimate. This approach enables reasonable and robust estimation of sediment 633 

delivery for the conservation planning process on the hillslope.  This approach cannot be used, 634 

however, when estimating runoff-driven phenomena such as ephermal gully erosion or 635 

phosphorus transport, because in such cases the actual absolute runoff rate must be known to 636 
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determine channel size and resultant flow velocities, shear stresses, sediment transport capacities, 637 

etc. 638 

The objective of this study was to develop a process to provide an average annual representative 639 

runoff event series that could be put into RUSLE2 in place of the current daily disaggregated 640 

climate information.  Event characteristics would be estimated based on information already 641 

available in the RUSLE2 climate database.  The regression relationships to do this were 642 

generated using a series of rainfall/runoff data for extended periods in multiple locations across 643 

the continental US.  Actual data sets could have been used for this regression, but because such 644 

data sets are limited, the sets were generated using AnnAGNPS, which uses the GEM as a 645 

stochastic climate generator and a curve number approach to estimate runoff. 646 

Regression relationships developed using available RUSLE2 database information reliably 647 

approximated the mean monthly runoff, annual runoff event frequency, and a gamma 648 

distribution function scale parameter that characterized 30-year stochastic runoff predictions 649 

generated using the AnnAGNPS model.  With these parameters, the size of the runoff event with 650 

any return period can be estimated, allowing RUSLE2 to be used in risk assessment calculations. 651 

By assuming that the largest in a series of runoff events that cause annual average ephemeral 652 

gully erosion had a 1-year return period and that the depths of the periodic runoff events were 653 

proportional to long term average daily runoff amounts, the parameters were used to estimate the 654 

dates and sizes of a representative runoff event sequence within RUSLE2.  The largest event in 655 

the sequence is equal to Q1y,24h and the sum of all events approximates the annual runoff for any 656 

location, soil, and management combination.  The validity of the procedure was tested by 657 

comparison to the input runoff values, comparison to current RUSLE erosion estimates, and by 658 

linking the representative event sequence hillslope runoff, sediment yield, and sediment size 659 

distribution to the CREAMS physically-based channel erosion and sediment transport model, 660 

which produced reasonable results.  661 

Comparison of predicted runoff amounts with plot observations suggested that the procedures 662 

developed may underestimate runoff during periods of higher than average rainfall intensity. A 663 

modified procedure was suggested that improved the fit to measurements at Holly Springs, but 664 

more testing is needed to determine the generality of the formulation.  The general agreement 665 
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between uncalibrated predictions and observations during winter months, and the correct trend in 666 

relative runoff amounts between CT and NT management, suggests that the AnnAGNPS and 667 

RUSLE2 models adequately represented the critical processes needed to reliably reflect the 668 

effects of management alternatives on trends in runoff and erosion.  669 

The methods presented provide a means of linking of runoff-driven phenomena such as 670 

ephemeral gully erosion with RUSLE2 as the sum of a location-specific representative sequence 671 

of runoff events. 672 
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 765 

LIST OF SYMBOLS 766 

CN – Curve Number 767 

E – average annual erosivity density for a location (erosivity per mm of rainfall, MJ ha-1 h-1) 768 

Ei – average monthly erosivity density (MJ ha-1 h-1)  769 

ΔE – the range between the minimum and maximum monthly erosivity density (MJ ha-1 h-1) 770 

Eev – daily disaggregated erosivity density on the date of a runoff event (MJ ha-1 h-1) 771 

edmev – an erosivity density multiplier used with Pev and Eev to calculate EI30ev (dimensionless) 772 

EI30i – RUSLE2 monthly rainfall erosivity (MJ mm ha-1 h-1) 773 

EI30ev – RUSLE2 rainfall erosivity occurring between runoff events (MJ mm ha-1 h-1) 774 

EPY – number of runoff events per year  775 

mon – month 776 

p –  1 - 1/(RP * EPY) is the probability that an event will be smaller than the specified event  777 

P – RUSLE2 average annual precipitation for a location (mm) 778 

Pi – RUSLE2 monthly precipitation depth (mm) 779 

δPsi – monthly change in snow pack from the previous month (positive when the snowpack is increasing) 780 

Pai – RUSLE2 monthly precipitation depth after adjusting for snowpack (Pai = Pi - δPsi, mm) 781 

ΔPa – the range between the minimum and maximum monthly snowpack-adjusted precipitation  782 

devPai – the deviation in monthly adjusted RUSLE2 precipitation from the location’s average monthly 783 
adjusted precipitation 784 

P10y,24h – RUSLE2 10-y, 24-h precipitation depth for a location (“index storm”, mm) 785 
 786 
Pei – normal snowpack-adjusted precipitation expected between runoff event i-1 and event I (mm) 787 

Pev – event precipitation depth calculated from Qev (mm) 788 

Q0.5y,24h – depth of a 24-h runoff event with an expected recurrence interval of 0.5 y (mm) 789 

Qev – the event runoff depth (mm),  790 
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qi – an index runoff depth defined through equation [3] that equals the runoff that would be predicted if a 791 
month’s precipitation fell as one storm (mm) 792 

R – annual rainfall erosivity for a RUSLE2 location (R = Σ EI30i, MJ mm ha-1 h-1) 793 

ΔR – the range between the minimum and maximum EI30i (MJ mm ha-1 h-1) 794 

RP – return period (y) 795 

RQ – the ratio of Q0.5y,24h  to the maximum daily disaggregated runoff amount (d) 796 

s – channel grade  797 

S – storage index, a transform of CN through equation [1] (mm) 798 

Sei –  a proposed adjustment to S defined through equation [6] that reflects rainfall intensity effects on S 799 
(dimensionless) 800 

Sev – the storage index on the date of a runoff event  801 

Si/SA – the ratio of average monthly to annual average S determined from AnnAGNPS results 802 
(dimensionless) 803 

SR –  the annual average storage index corresponding to the average annual CN predicted internally by 804 
RUSLE2 for a given soil, management and climate combination (mm);  805 

SRi –  the monthly storage index corresponding to the average monthly CN predicted internally by 806 
RUSLE2 for a given soil, management and climate combination (mm); 807 

SOIL –  the soil hydrologic class (A, B, C, or D);  808 

T – average annual temperature for a RUSLE2 location (°C) 809 

Ti – the average monthly RUSLE2 temperature (°C) 810 

ΔT – the range between the minimum and maximum monthly temperature  811 

devTi – the deviation of  monthly RUSLE2 average temperature from annual mean temperature 812 

δTi –  the change in Ti from the previous month (δTi = Ti - Ti -1)  813 

α, – shape factor of a gamma distributions of runoff events for all location, soil, and management  814 

σ – scale parameter of a gamma distribution (mm) 815 

τc – critical shear stress of soil (Pa) 816 

817 
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Table 1.  Evolution of the USLE/RUSLE family of models with respect to calculation and use of 818 

runoff estimates. 819 

Model 
Delivery Slope length 

down to 

Runoff estimate 

Initial Updates Based on Used to calculate 

USLE 
1965 (pub. Ag. 
Handbook 282) 

1978 (pub. Ag. 
Handbook 537) 

Conc. flow OR 
deposition 

None None 

RUSLE 
1991 (initial 
software 
release) 

1997 (pub. Ag. 
Handbook 
537);  

Conc. flow OR 
deposition caused 
by gradient 

Index storm 
P factor, critical 
slope length 

RUSLE2 
2004 (initial 
software 
release) 

2010 (latest 
update; on-line 
documentation) 

Conc. flow 

Index storm 
OR Daily 
values OR rep. 
storm  
sequence 

Full CREAMS 
process-based 
transport/deposition 

 820 

821 
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Table 2.  ANOVA and coefficient estimates for predicting the ratio of Si/SA, the ratio of monthly 822 
to annual average storage index from RUSLE2 climate file parameters.  The resulting regression 823 
relationship for each month i is of the form Si/SA = Ci1 * X1 + Ci2 * X2 + ... + Ci5 * X5, where Cij 824 
is the listed coefficient for effect j for month i, and Xj is the effect, for j = 1 to 5. 825 

Effecta Numerator Degrees 
of Freedom 

Denominator Degrees 
of Freedom 

F Value b Pr > F Estimate 

mon 12 4932 661.32 <0.0001  

devTi*mon 12 4932 74.39 <0.0001  

devPai*mon 12 4932 162.85 <0.0001  

Ti*mon 12 4932 152.26 <0.0001  

Pai*mon 12 4932 162.47 <0.0001  

Residual error     0.01366 

 Coefficient Estimates (Cij) 

Effect (Xj) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

mon 0.46 0.43 0.51 0.91 0.90 1.66 2.26 3.02 1.80 1.33 0.40 0.54 

devTi*mon -0.039 -0.051 0.064 -0.005 -0.037 -0.034 -0.069 -0.037 -0.035 -0.10 -0.080 -0.034

devPai*mon 0.000 -0.001 -0.004 -0.001 -0.004 -0.005 -0.007 -0.007 -0.010 -0.002 -0.000 -0.000

Ti*mon 0.012 0.017 0.017 0.013 0.011 -0.013 -0.033 -0.048 -0.025 -0.016 0.009 0.013

Pai*mon -0.004 -0.004 -0.002 -0.002 0.001 0.003 0.004 0.003 0.003 0.002 0.001 -0.002
a See LIST OF SYMBOLS for definition of abbreviations. 826 
b Ratio of effect mean square to residual error mean square; all statistical tests were made using partial 827 
sums of squares, which represent the contribution of each term to the model after considering all other 828 
terms so that the order of term addition does not influence the result. 829 

830 
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Table 3.  Numerator degrees of freedom, F statistic, regression coefficients, and standard error 831 
estimates for predicting monthly runoff depth Qi (mm) from the RUSLE2 databases. The first 13 832 
degrees of freedom describe monthly variation, while the last nine degrees of freedom in the 833 
model determine a constant (baseline monthly runoff) for  a given climate, management, and 834 
soil.  The resulting regression relationship for each month i is of the form Qi = C1 * Xi,1 + C2 * 835 
Xi,2 + ... + C22 * Xi,16, where Cj is the listed coefficient for effect j, and Xjj is the effect for month 836 
i and effect number j = 1 to 16.  When part of the effect is SOIL, the coefficient value used 837 
depends on the soil hydrologic group, so there are really 4 choices each for C2 and C11. 838 

Effecta (Xij) DF Fb Soil Coeff (Cj) SE 
qi*qi 1 314 0.00136 0.00008 
qi*SOIL 4 299 A 0.14604 0.01384 
qi*SOIL   B 0.20899 0.01397 
qi*SOIL   C 0.27213 0.01404 
qi*SOIL   D 0.31136 0.01417 
qi*Si/SA 1 238  -0.14526 0.00941 
Ti 1 82  -0.11496 0.01269 
Pai 1 41  -0.05910 0.00921 
Pai*Ei 1 31  -0.01401 0.00254 
Ti*Ei 1 146  0.06636 0.00549 
Pai*Pai 1 181  0.00106 0.00008 
Pai*R 1 116  -0.00002 0.00000 
EI30*Si/SA 1 12  -0.00483 0.00139 
SR*P10y,24h*SOIL 4 20 A -0.00006 0.00001 
SR *P10y,24h*SOIL   B -0.00005 0.00001 
SR *P10y,24h*SOIL   C -0.00000 0.00002 
SR *P10y,24h*SOIL   D -0.00004 0.00003 
ΔT 1 102 0.13536 0.01338 
ΔE 1 657 -2.04475 0.07979 
ΔR 1 68 -0.02232 0.00271 
R 1 400 0.00413 0.00021 
P10y,24h 1 17 0.02445 0.00586 
a See LIST OF SYMBOLS for definition of abbreviations 839 
b Ratio of effect mean square to residual error mean square; all statistical tests were made using partial 840 
sums of squares, which represent the contribution of each term to the model after considering all other 841 
terms so that the order of term addition does not influence the result. 842 
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Table 4.  RUSLE2 climate parameters for four locations that were used to test the ability of 843 
regression relationships to predict beyond the calibration dataset.  See LIST OF SYMBOLS for 844 
definition of abbreviations. 845 

County Dare Tulsa Ingham Spokane (R16-18) 
State NC OK MI WA 

     
T (°C) 16.5 15.2 8.4 8.5 
P (mm) 1318 988 786 435 
R (MJ mm ha-1 h-1) 5679 4422 1731 188 
E (MJ ha-1 h-1) 4.1 4.1 1.9 0.5 
P10y,24h (mm) 191 155 86 46 
ΔT (°C) 20.0 26.3 28.0 22.5 
ΔP (mm) 62 92 57 35 
ΔE (MJ ha-1 h-1) 4.8 5.6 4.2 0.8 

 846 

847 
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Table 5.  Numerator degrees of freedom, F statistic, regression coefficients, and standard error 848 
estimates for predicting the number of runoff events per year (EPY) from the RUSLE2 849 
databases.  The resulting regression relationship is of the form EPY = C1 * X1 + C2 * X2 + ... + 850 
C16 * X16, where Cj is the listed coefficient for effect j, Xj, for j = 1 to 16.  When part of the 851 
effect is SOIL, the coefficient value used depends on the soil hydrologic group, so there are 852 
really 4 choices each for C3, C4, and C13. 853 

Effecta DF Fb Soil Coeff (Cj) SE 
Pa*Pa 1 15  0.000029 0.000008 
P10y,24h* SR  1 847  -0.001863 0.000110 
SOIL 4 9 A -21.286656 5.967795 
SOIL   B -18.734973 5.813829 
SOIL   C -15.549807 5.788602 
SOIL   D -10.747570 5.786878 
P10y,24h* SR*SOIL 3 79 A 0.001424 0.000114 
P10y,24h* SR*SOIL   B 0.001019 0.000122 
P10y,24h* SR*SOIL   C 0.000655 0.000134 
P10y,24h* SR*SOIL   D 0.000000  
ΔT 1 21  1.398724 0.301712 
T*ΔT 1 33  -0.052799 0.009247 
R 1 13  0.021001 0.005840 
ΔR 1 37  -0.300171 0.049659 
R*ΔR 1 73  -0.000075 0.000009 
E 1 129  20.351762 1.793082 
ΔE 1 10  -5.131820 1.602032 
E*ΔE 1 5  -0.685443 0.293896 
Pa*SOIL 4 15 A -0.032987 0.010837 
Pa*SOIL   B -0.024888 0.010698 
Pa*SOIL   C -0.019167 0.010598 
Pa*SOIL   D -0.017178 0.010581 
Pa*E 1 26  -0.034492 0.006779 
Pa*T 1 44  0.003171 0.000477 
Pa*ΔR 1 66  0.000534 0.000066 
a See LIST OF SYMBOLS for definition of abbreviations 854 
b Ratio of effect mean square to residual error mean square; all statistical tests were made using partial 855 
sums of squares, which represent the contribution of each term to the model after considering all other 856 
terms so that the order of term addition does not influence the result. 857 
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Table 6.  Numerator degrees of freedom, F statistic, regression coefficients, and standard error 858 
estimates for predicting the scale parameter (σ) of a gamma distribution describing runoff event 859 
depth (mm) from the RUSLE2 databases. The resulting regression relationship for each month i 860 
is of the form σ = C1 * X1 + C2 * X2 + ... + C16 * X16, where Cj is the listed coefficient for effect 861 
j, Xj, for j = 1 to 16.  When part of the effect is SOIL, the coefficient value used depends on the 862 
soil hydrologic group, so there are really 4 choices each for C2 and C4. 863 
Effecta DF Fb Soil Estimate SE 
Pa*Pa 1 179 0.000025 0.000002 
SR*SOIL 4 12 A 0.002422 0.001617 
SR*SOIL   B -0.002653 0.001646 
SR*SOIL   C -0.004349 0.001842 
SR*SOIL   D -0.008028 0.002239 
Pa*SR 1 68 -0.000014 0.000002 
Pa*SOIL 4 58 A -0.004704 0.001673 
Pa*SOIL    B -0.003509 0.001667 
Pa*SOIL   C -0.002527 0.001660 
Pa*SOIL   D -0.001820 0.001656 
P10y,24h 1 68 -0.126194 0.015254 
R 1 58  0.009064 0.001186 
E 1 202  6.696958 0.471168 
Pa*E 1 87  -0.014316 0.001531 
P10y,24h* ΔR 1 56  0.000801 0.000107 
ΔR*ΔT 1 27 0.001534 0.000294 
R*ΔT 1 16 -0.000038 0.000009 
ΔT 1 80 0.323581 0.036278 
ΔR 1 7 0.027311 0.010691 
Pa*ΔR 1 108 -0.000166 0.000016 
ΔE 1 150 -4.518450 0.368641 
E*ΔE 1 89 0.762431 0.080661 
a See LIST OF SYMBOLS for definition of abbreviations 864 
b Ratio of effect mean square to residual error mean square; all statistical tests were made using partial 865 
sums of squares, which represent the contribution of each term to the model after considering all other 866 
terms so that the order of term addition does not influence the result. 867 
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Table 7.  Thirty-year average AnnAGNPS averages and RUSLE2 regression predictions of CN, 868 
annual runoff, the gamma distribution scale factor, and the number of runoff events per for 869 
spring plow maize yielding 7 Mg ha-1 on a hydraulic class C soil at four locations that were not 870 
in the calibration data set.  871 

County Dare Tulsa Ingham Spokane (R16-18) 
State NC OK MI WA 

 AnnAGNPS averages 
annual rainfall (mm) 1284 1078 739 433 
average CN 86 80 82 79 
annual runoff (mm) 292 180 68 28 
Gamma distribution σ (mm) 11.5 12.2 5.1 4.5 
events per year (y-1) 50.7 29.7 26.0 12.5 
     
 RUSLE2 storm sequence approach 
annual rainfall (mm) 1316 988 786 435 
average CN 87 85 83 77 
annual runoff (mm) 311 192 72 35 
Gamma distribution σ (mm) 11.6 9.9 3.6 3.7 
events per year (y-1) 57.0 31.8 25.1 9.9 

 872 

 873 

874 
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Table 8.  Input climate data derived from RUSLE2 databases for Marshall County, MS, USA, 875 
and Pa, the RUSLE2 rainfall adjusted for snowpack accumulation and melting. See LIST OF 876 
SYMBOLS for definition of abbreviations. 877 

Annual Data  
P10y,24h 

(mm) 

T 
 (oC) 

P  
 (mm) 

R 
(MJ mm ha-1 h-1) 

E  
(MJ ha-1 h-1) 

Pa 
 (mm) 

 

145 15.5 1390 6360 4.7 1390  
Monthly Data 

Month Ti 
 (oC) 

Pi 
 (mm) 

EI30i 
(MJ mm ha-1 h-1) 

Ei 
(MJ ha-1 h-1) 

Pai 
(mm) 

predicteda 
Si/SA 

Jan 3.1 110 292 2.6 109 0.57 
Feb 5.5 118 358 3.0 126 0.50 
Mar 10.7 145 563 3.9 145 0.60 
Apr 15.9 135 616 4.6 135 0.83 
May 20.2 138 725 5.3 138 1.13 
Jun 24.3 93 611 6.5 93 1.41 
Jul 26.3 107 792 7.4 107 1.50 

Aug 25.6 85 557 6.6 85 1.55 
Sep 22.2 94 525 5.6 94 1.51 
Oct 15.9 84 384 4.6 84 1.24 
Nov 10.6 137 550 4.0 137 1.02 
Dec 5.5 144 387 2.7 138 0.63 

 ΔT   ΔE ΔP  
 23.2   4.8 61  

a predicted antecedent soil water content adjustment to storage index based on the regression 878 
model reported in Table 2. 879 
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Table 9.  Runoff storm sequence parameter estimates based on normal RUSLE2 climate files or 880 
the 7-year average monthly rainfall measured during the study, measured 7-y annual average 881 
runoff and erosion, and monthly storm sequence runoff predictions for conventional-till (CT) and 882 
no-till (NT) cotton on hydraulic class C soil on a 5%, 22.1 m long plot in Marshall County, MS. 883 

  Annual Results 
Tillage system CT Cotton NT Cotton 
Precipitation Record RUSLE2 7 yr RUSLE2 7 yr 
Average RUSLE2 CN 84 84 77 77 
Storage Index SR (mm) 49 47 78 76 
Gamma distribution σ (mm) 14.9 19.6 14.2 18.9 
Runoff events per year (y-1) 48 37 43 32 
Predicted Q1y,24h (mm) 40 49 37 45 
Gully Events per year (y-1) 17 18 16 17 
Period between gully events (d) 21.5 20.3 22.8 21.5 
Day of peak runoff 12-Dec 17-Mar 9-Dec 9-Apr 
RUSLE2 Runoff (mm y-1) 349 293 290 230 
RUSLE2 Erosion (Mg ha-1 y-1) 44.5 63.4 6.1 9.2 
RUSLE2 concentration (ppm) 13000 21600 2110 3980 
Measured Runoff (mm y-1) 619 378 
Measured Erosion (Mg ha-1 y-1) 61.1 5.9 
Measured concentration (ppm) 9870 1570 

 Monthly Predicted Results for normal RUSLE2 climate input 
 CT Cotton  NT Cotton 

Month SRi  
(mm) 

SRiSi/SA 
(mm) 

qi  
(mm) 

Runoff 
(mm) 

 SRi 
(mm) 

SRiSi/SA 
(mm) 

qi 
(mm) 

Runoff 
(mm) 

Jan 43 25 93 39  85 49 81 34 
Feb 42 21 110 50  86 43 100 44 
Mar 41 24 130 56  87 51 110 48 
Apr 38 31 110 40  86 71 84 30 
May 67 75 71 21  76 86 65 20 
Jun 60 85 25 11  73 100 20 11 
Jul 53 79 35 11  71 110 24 9 

Aug 47 74 22 12  68 110 12 11 
Sep 45 69 31 11  71 110 17 9 
Oct 44 55 35 14  77 95 20 11 
Nov 43 44 95 31  82 84 70 23 
Dec 44 27 120 51  86 54 100 44 

884 
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Table 10.  Illustration of the predicted runoff event sequence for CT cotton grown on a hydraulic 885 

class C soil with a 5%, 22.1 m long slope in Marshall County, MS, USA: runoff depth (open 886 

triangles in Fig. 2C), duration, and rate (filled triangles in Fig. 2C); corresponding event 887 

precipitation (Pev), disaggregated erosivity density (Eev), erosivity density multiplier (edmev); and 888 

resulting rainfall erosivity (EI30ev), event sheet and rill erosion, and apparent sediment 889 

concentration in runoff. See LIST OF SYMBOLS for definition of abbreviations. 890 

Date 
Event 
Runoff 
(mm) 

Event 
Duration 

(min) 

Runoff 
Rate 

(mm h-1)

Pev 
(mm)

Eev  
(MJ 

ha-1 h-1)
edmev 

EI30ev 
(MJ mm 
ha-1 h-1) 

Sheet/rill 
Erosion 

(Mg ha-1) 

Conc. 
 (g m-3) 

1/7 27 110 15 48 2.7 2.1 270 1.2 4420 
1/31 31 97 19 52 2.8 1.6 240 1.1 3570 
2/25 37 81 27 58 3.3 1.9 370 1.9 5120 
3/21 40 73 32 61 4.0 1.8 450 2.2 5550 
4/14 31 61 30 56 4.5 2 500 4.9 16100 
5/9 19 57 20 62 5.3 1.8 590 7.4 40100 
6/2 10 47 13 51 6.2 2 650 8.1 80900 

6/26 9.9 41 14 51 6.6 1.4 490 4.3 43300 
7/21 9.8 38 15 48 7.4 1.8 640 3.2 32300 
8/14 9.8 44 13 47 7.1 1.5 500 1.7 17000 
9/7 10 48 12 46 5.7 1.5 380 2.4 23900 

10/2 11 58 11 43 5.0 1.8 390 2.5 22800 
10/26 11 65 10 41 5.2 1.5 330 1.4 12400 
11/19 26 69 23 58 4.3 1.8 440 2.8 10700 
12/14 41 110 22 64 2.6 1.8 290 1.7 4130 

 891 
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Table 11.  Predicted ephemeral gully erosion for a 1130 m channel with various thalweg 892 
gradients (s) with conventional-till (CT) and no-till (NT) cotton on hydraulic class C soil and 5% 893 
slope, 22.1 m long hillslopes on both banks in Marshall County, MS, USA. 894 

             Input Parameters  
  CT Cotton   NT Cotton  
Assumed erodibility (g N-1 s-1) 21   2.3  
Assumed τc (Pa)  2.1   11  
Non-erodible layer depth (m) 0.05   0.05  
Initial top width (m) 0.03   0.03  
  Annual Channel Erosion  
Gully, s=0.005 (Mg ha-1 y-1) 70.6   4.3  
Gully, s=0.01 (Mg ha-1 y-1) 85.3   12.0  
Gully, s=0.02 (Mg ha-1 y-1) 93.8   17.1  
Gully, s=0.05 (Mg ha-1 y-1) 103   21.9  

 895 

 896 

897 
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 898 

899 

Figure 1. Daily maximum rainfall (A) in a 30-year GEM synthetic record for Panola County, 
MS and (B) comparison of measured (1981 to 2003) average monthly rainfall at Goodwin 
Creek Station #1, the 30-yr monthly mean of the GEM record, and input values from the 
RUSLE2 database.  
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Figure 2. Maximum daily runoff (A) during a 30-y simulation predicted by AnnAGNPS 
from the precipitation shown in Fig. 1A falling on conventional tillage maize grown on a 
hydraulic class “C” soil in Panola County, MS; and (B) mean monthly runoff calculated 
from the AnnAGNPS record, calculated from RUSLE2 regression relationships (Table 3), 
and measured runoff determined by hydrograph separation at Station #1 of the Goodwin 
Creek experimental watershed (Kuhnle et al., 2008).  
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Figure 3. Monthly rainfall, measured average monthly runoff (solid lines), and predicted  
monthly runoff (dotted lines) at Holly Springs, MS for conventional till (CT, square markers) 
and no-till  (NT) cotton: (A) predicted runoff based on RUSLE2 long-term average rainfall; 
(B) predicted runoff based on measured rainfall; (C) predicted runoff based on RUSLE2 
rainfall with SRiSi/SA adjusted  using Sei from equation [6]; and (D) predicted runoff based on 
measured rainfall with SRiSi/SA adjusted using Sei from equation [6].  
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Figure 4. RUSLE2 disaggregated input erosivity density and predicted 
daily runoff with and without the Sei (equation [6]) adjustment (A), and 
the representative event sequence runoff amounts and rates (B) for CT 
cotton grown on hydraulic class C soil in Marshall County, MS, USA. 
The maximum runoff event depth is equal to Q1y,24h (40 mm, Table 9). 
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Figure 5. RUSLE2 predicted event sheet erosion for conventional-till 
(CT) and no-till (NT) cotton and predicted ephemeral gully erosion for 
channel grades of 0.005 to 0.05. Tillage events that refill the ephemeral 
gully in CT management are also shown. 
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