
A Concise Introduction to Receiver Operating Characteristic (ROC) Curve 
Analysis:  
 

ROC curve analysis is used widely in medicine as a method for evaluating the 
performance of diagnostic tests (3,5,6,10), but has been used recently in many agricultural 
applications (2,4,5,11,12). The ROC curve provides information regarding how often a test’s 
predictions are correct, and provides a graphical method for evaluating and discriminating 
between different diagnostic tests or modifications of the same test (12). To perform the analysis, 
one starts with a diagnostic test that produces a range of values or test scores (T) in which a 
classification is decided. Decisions are arrived at by comparing the diagnostic’s output to a 
threshold value (Tthresh). The data (i.e., individuals or test subjects) are then partitioned into two 
groups: the ‘cases’—in which the disease is known to occur; and the ‘controls’—in which 
disease was absent. Those test subjects with test scores above the threshold (T>Tthresh) are 
classified as diseased (D+), and those with test scores equal to or below the threshold (T#Tthresh) 
are classified as not diseased (D-), irrespective of their true disease status.  

For various reasons, diagnostic tests are not perfect predictors of disease. This can be 
depicted graphically as two overlapping distributions of threshold values; the cases and controls 
(Figure 1)(5,10). Thus, any decision 
threshold based on this test yields one of 
four possible decisions: 1) true positive 
(TP), in which a ‘case’ was correctly 
classified as diseased; 2) true negative 
(TN), in which a ‘control’ was correctly 
classified as not diseased; 3) false positive 
(FP), in which a ‘control’ was incorrectly 
classified as diseased; and 4) false negative 
(FN), in which a ‘case’ was incorrectly 
classified as not diseased (6,7).  
 Now, say N individuals (test 
subjects) were classified under the rules of 
the diagnostic test, X of the N subjects 
were classified as ‘cases’, and Y of these as 
‘controls’. Then the true positive 
proportion (TPP) is the number of true 
positive decisions divided by the total 
number of cases. TPP is referred to as the 
‘sensitivity’ of the test.  The true negative 
proportion (TNP) is the number of true 
negatives divided by the number of 
controls. This is referred to as the 
‘specificity’ of the test. The false positive 
proportion (FPP) is the number of false positives divided by the number of controls. The false 
negative proportion (FNP) is the number of false negatives divided by the number of cases. In 
probabilistic terms, TPP is an estimate of Prob(T>Tthresh | D+) (read as ‘the probability of a test 
score above the threshold, given the presence of disease). Similarly, FNP is an estimate of 
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Figure 1.  Gaussian curves describing the distribution of a 
test score for diseased plants (‘cases’) and healthy plants 
(‘controls’).  The unshaded are to the left of the threshold 
are the true negatives (TN), the unshaded area to the right 
of the threshold are the true positives (TP).  The 
blackened area shows the false negatives (FN) cases and 
the hatched area shows the false positive (FP) cases.  
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Prob(T#Tthresh | D+), FPP is an estimate of Prob(T>Tthresh | D!), and TNP is an estimate of 
Prob(T#Tthresh | D!).  

The ROC curve is a plot of TPP (sensitivity) versus FPP (1-specificity) over the full 
range of possible threshold scores (T)(Figure 2)(4,6,7). The curve passes through the point (0,0), 
corresponding to the highest threshold value; a value that classifies all individuals as disease 
free. Under this scenario, no subject would be treated for the disease, i.e., no true positives are 
identified but, also, no false positives would be declared. The plot also passes through the point 
(1,1) which corresponds to a threshold of zero and the diagnostic test classifying every individual 
as diseased. Under this scenario, every subject is treated for the disease, thus, all true positives 
will be identified, however, at the expense of numerous false positives. 

An ROC curve that passes through the point (0,1) shows that the test has both desirable 
sensitivity and specificity characteristics. Thus, the threshold value corresponding to the point 
closest to the point (0,1), would be considered the best threshold. The straight line joining the 
points (0,0) and (1,1) is the ‘no discrimination’ line (Figure 2). If an ROC curve falls along this 
line, the test does not discriminate between cases and controls. An intuitive measure of the 
performance or accuracy of a forecaster would be to simply calculate the proportion of correct 
decisions, i.e., the ([TP +TN]/N). However, sensitivity and specificity represent two kinds of 
accuracy, respectively, for cases and controls (4). Unlike the calculations of accuracy from the 
proportions of correct decisions, and ROC curve analysis does not depend on the proportions of 
cases and controls in a data set, because sensitivity and specificity are calculated independent of 
these proportions (6).”    
 In addition to the specificity and sensitivity of a test, one can calculate the ‘the positive 
predictive value’ of a test (10). This statistic represents the probability that an the subject is 
diseased given that the test predicted disease [=Prob(D+ | T>Tthresh)]. It is possible for a test to 
have high specificity and sensitivity yet have a low positive predictive value when disease 
prevalence is low. Similarly, ‘the negative predictive value’ [=Prob(D! | T#Tthresh)], the 
probability that a tests negative result is an indicator of disease, decreases when disease 
prevalence is high, thus offsetting the gains in positive predictive value. Bayes theorem allows 
one to calculate the positive predictive value from the sensitivity and specificity, however, 
requires an estimate of that the ‘true’ level of the disease in the test population (3). The positive 
predictive value is calculated using: 
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Yuen et al. (12) has provided a simplified version of this expression based on the use of 
likelihoods and odds ratios.   

When choosing between two different tests (e.g., the open and closed symbols in figure 
2), the area under the ROC curve can be used a discriminating function. The area under the ROC 
curve measures the probability that in randomly paired subjects, one from the cases and one from 
the controls, the test will correctly classify them. Bamber (1) recognized that this probability is 
equal to the well-known Wilcoxon rank-sum statistic, W or, equivalently, the Mann-Whitney U-
statistic. This finding allows one to evaluate the performance of a diagnostic test in statistical 
framework through testing of the hypothesis H0: AUROC=0.5 (i.e., the test does not provide 
discrimination any better than chance (represented by the ‘no discrimination line’). 
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The area under the ROC curve (AUROC curve) and its standard error can be calculated 
for each according to the methods of Hanley and McNeil (3). In short, the calculations are based 
on the generalization that the AUROC curve is derived by dividing the Mann-Whitney U-
statistic by the product of the two sample sizes. The Mann-Whitney U-statistic is defined 
as∑ ∑ , where U
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jth case is larger than, equal to, or smaller than 
the ith control, respectively, m and n are the 
number of cases and controls, respectively, 
and i and j are indexing variables (8). The 
distribution of the Mann-Whitney U-statistic 
tends towards normality as the sample size 
increases, permitting the derivation of a z 
statistic and a test of the hypothesis that the 
AUROC curve is no different than the area 
under the line of ‘no discrimination’, i.e., 0.5. 
The z statistic here is calculated with a 
continuity correction factor: (|U – E(U)| – 0.5) 
/√Var(U), where E(U) = mn/2 and Var(U) = 
(mn/12)·[(m + n +1) – 

] is the ties-
corrected variance of U (t
∑ −++−
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i is the number of 
tied values in the ith set of ties). For a two-sided test the p-value is calculated as 2·Pr(|Z| > z). A 
95% confidence interval about the AUROC curve can be calculated according to method 5 of 
Newcombe (9). This can be done using the spreadsheet ‘generalisedmw1.xls’ provided at the 
author’s website 
(http://www.cardiff.ac.uk/medicine/epidemiology_statistics/research/statistics/newcombe).   
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Figure 2. ROC curves for two competing algorithms. 
Each symbol represents a value for a different 
threshold 
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