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Abstract. Site-specific tillage has potential in reducing fuel consumption to ameliorate subsoil 
compaction problem in many Southeastern US soils. Its success depends on accurate soil 
compaction sensing and determination of spatial variability for mapping the compacted layer 
(hardpans) attributes (magnitude and depth) and prescription tillage. In the cone index sampling for 
hardpan characterization, questions exist on how to design the sampling scheme (grid spacing, 
sampling intensity) and sampling an area of field without substantial changes in soil properties that 
influence the cone index readings. Optimization of sampling schemes was investigated using kriging 
variance analysis for four sampling grid spacing (10 m x 10 m, 20 m x 20 m, 30 m x 30 m and 40 m x 
40 m). Geo-referenced cone index measurements that were taken on an area of 2 ha at wet and dry 
soil moisture sampling periods were used for the study. The results showed that the mean kriging 
variance values for the grid spacing of 10 m x10 m and 20 m x 20 m were smaller than the sample 
mean variances of the peak cone index and depth to the peak cone index both at the wet and dry soil 
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moisture conditions. The square grid sampling of 20 m x 20 m (sampling intensity of 24 per ha) 
appeared to be more efficient sampling scheme on Pacolet sandy loam soil providing an optimal 
kriging interpolation error and less time costly than the original10 m x 10 m. 
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Introduction 

Soils in the Southeastern US have highly compacted root-restricting layers (hardpan) 

that adversely affect the crop production and the environment (Camp and Lund, 1968; Campbell 

et al., 1974; Busscher et al., 2006). The compacted layers are mechanically disrupted on annual 

or biannual basis using a sub-soiling operation to provide optimal rooting environment (Raper et 

al., 2004). Precision tillage that accounts for the spatial variability of soil hardpan has a potential 

in reducing tillage fuel consumption (Fulton et al., 1996; Gorucu et al., 2002; Raper et al. 2004).  

Precision (site-specific) tillage is a management strategy whereby deep tillage could be 

applied at variable depths according to the soil compaction needs in the field. The success of 

precision tillage depends on the availability of accurate soil compaction sensing, field 

positioning, quantifying the field variability, and controlling the application of real-time or 

prescribed tillage. A measure of soil compaction can be obtained by a cone penetrometer which 

is a standardized device that measures the penetration force required to vertically insert a 

cylindrical rode with a steel cone down into the soil (ASAE 1999a, b). The data are reported as 

cone index (penetration force / cone base area) that empirically determines soil compaction. 

Being a point measurement, the sampling designs and interpolations of point cone 

penetrometer measurements for field or landscape level requires an understanding of the 

spatial continuity of soil strength or cone penetration resistance. Due to the influences of soil 

forming factors (climate, vegetation, geologic parent materials, topography and time) and 

management practices, soil properties exhibit inherent spatial variability within fields, across 

landscapes and on a regional scale (Mulla and McBratney, 1999). Soil strength also exhibits 

spatial variability across field and within a field (Clark, 1999; Raper et al., 2005; Tekeste et al., 

2005). Among other factors, sampling issues is important for accurate representation of soil 

spatial variability in precision agriculture (Rains et al., 2001) 
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Geo-statistical techniques appropriately describe spatial variability and interpolation for 

un-sampled locations better than classical statistical methods that assume random distribution 

of residuals and spatial independence of variables (Isaaks and Srivastava, 1989). In the geo­

spatial solutions using kriging interpolation method, a sampling scheme can be defined 

depending on the grid configuration, the search radius for interpolation, the number of points to 

be used for interpolation and the grid spacing (McBratney et al., 1981; Olea, 1984). A geo­

referenced based cone index sampling design is a key procedure in precision tillage 

management for quantifying the soil hardpan variables and creating soil compaction map for 

prescribing deep tillage. Prior to cone index sampling, some important sampling issues that 

need to be considered are: 1) the sampling configuration; and 2) the number of sampling points 

or sampling intervals that would capture the spatial continuity and achieve the desired 

interpolation accuracy. Sampling should also be carried out within a time period that the soil 

moisture should not vary much to cause undesired effects on cone index readings. Square grid 

configuration is often employed for its simplicity in field operations for sampling of soil physical 

properties (Fulton et al., 1996; Raper et al, 2005; Veronese et al., 2005). Intensive sampling 

may provide detailed information on spatial continuity of a regionalized variable but it may be 

expensive and time consuming. Sparse sampling, on the other hand, could be cheap but it may 

miss important information for describing the spatial continuity of a regionalized variable.  

Researchers have studied spatial variability of penetration resistance (cone index) for 

mapping soil compaction using grid sampling procedure of 30 m x 30 m (Fulton et al., 1996) on 

7.06 ha field of Maury silt-loam soil; 30 m x 11 m (Raper et al., 2005) on silt loam upland soils of 

Southeastern US on 2-3 ha field size; and 10 m x 10 m (Veronese et al., 2005) on 6.5 ha field 

size of Ferralsol clay soil. The sampling scheme employed by many of the researchers 

depended on experiences with soils, topography, costs and resource availability. Their sampling 

schemes were not designed based on quantitative methods prior to actual sampling.  Efforts 

that use a statistical method (ASAE 1999b) have been defined to determine minimum sample 

3 



 

 

size; however, such method could not be applied for spatial dependent variables. Quantitative 

method of optimization of sampling design is proposed in this study for mapping of soil 

compaction. The method is based on the ordinary kriging variance analysis from point samples 

of cone index collected on 10 m x 10 m grid system. A sampling design that has acceptable 

kriging estimated errors was considered as an optimal scheme with reduced sampling costs and 

enables to achieve the desired accuracy of soil compaction mapping for precision tillage 

applications. The objectives of the study were: 1) to determine kriging variance for four grid 

spacing systems; and 2) to develop a method for sampling optimization scheme using kriging 

variance analysis. 
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Materials and Methods 

Ordinary Kriging Analysis 
Analysis and modeling of spatial variability involves estimation of semivariances, fitting 

theoretical variogram models and kriging for spatial interpolations (Isaaks and Srivastava, 1989; 

Mulla and McBratney, 1999; Donald and Ole, 2003). Estimation of the semivariances were 

obtained using equation 1 (Isaaks and Srivastava, 1989).  

N(h)1 2Z(x ]
i 1 
[∑

= 

⎧
⎨
⎩ 

⎫
⎬
⎭
 

γ(h) h) −
 (1)
+
=
 i Z(xi )2N(h) 

Where γ(h) is the semivariance for interval class h, N(h) is the number of pairs separated by lag 

distance, Z(xi) is a measured variable at spatial location xi, Z(xi + h) is a measured variable at 

spatial location of xi + h. The semivariogram models are used to define the distribution of 

semivariances. The spatial structure (γ(h) =Co +C) of a semivariogram comprises three basic 

parameters: nugget effect (Co), sill (Co +C), and range. The nugget effect is the variation due to 

sampling errors, micro-scale variability, or measurement errors that occurs at a scale smaller 

than the sampling interval. The sill is the asymptote of the semivariogram model. The range is a 

separation distance at which the semivariogram levels off at the sill and it indicates the distance 

over which the pairs of values of the variable exhibit spatially dependent. The theoretical 

semivariogram models that best fits the estimated semivariances distribution can be determined 

using non-linear fitting techniques. Theoretical models of the spherical, exponential, Gaussian, 

linear, or power forms could be considered in model fitting. 

The kriging technique uses the optimal theoretical semivariogram model to predict 

values of the variable at the un-sampled locations. Ordinary kriging is the most widely used 

interpolation method in geo-statistical analysis of a regionalized variable (Van Groenigen, 2000). 
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The ordinary kriging system is an unbiased linear estimator that uses a weighted linear 

combination of the measured values (eq. 2) to predict the values at the un-sampled locations 

(Donald and Ole, 2003). The ordinary kriging system (eq. 3) is determined by minimizing the 

⎛ − ⎞
2 

mean square estimate error,E⎜z
^

o ( )z xo ⎟ , and applying the constraint condition for the sum of 
⎝ ⎠ 

n 

kriging weight coefficients, ∑λi =1. 
i 

n^ 
zo =∑λiz(xi )     (2)  

i 

Using the Lagrange multiplier optimization method (Kitanidis, 1997), the expression of minimum 

mean square estimation error and the constrain expression are solved to produce kriging 

system. 

n 

( ( )− z( )x + ν = ( ( )  ( )z x )∑λ jγ z xi j ) γ z xi − o     (3)  
j=1 

where υ is a Lagrange multiplier; λ is weighing coefficients; γ(z(xi )− z(xo )) is the 

semivariogram model and x is location vector (Kitanidis, 1997). The kriging variance (σ2
k) which 

is a measure of the estimation error is defined as; 

σk = +∑ 
n 

( ( ) z( )x j )2 ν λ jγ z xi −     (4)  
j=1 

The kriging system (eq. 3) and the kriging variance (eq. 4) equations comprise the 

semivariogram model, the number of observations and the location of the prediction points. 

Having a predetermined optimal semivariogram model, the kriging estimates and the kriging 

variance are, therefore, uniquely related to the spacing of the sampled points provided the 

sampling configuration and location of the prediction points are same.  
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The kriging system of equations indicated that once the semivariogram model and the sampling 

configuration is predefined, the kriging estimates and the kriging variance will be uniquely 

related the spacing of point samples. The kriging variance (eq. 4) obtained for different grid 

spacing systems can provide a comparative assessment of the kriging performance. The main 

focus in this study was how would the kriging prediction affected for sampling spacing grid 

systems that are related to optimal sampling scheme associated with sampling time, cost and 

the desired accuracy of soil compaction mapping.  

Experimental Site Description  
The data for the kriging analysis was obtained from an experiment conducted on an area of 

2 ha at the experimental station of Auburn University in Auburn, AL on Pacolet sandy loam 

(Fine, kaolinitic, thermic Typic Kanhapludults) soil. The soil physical and chemical properties of 

the site are shown in Table 1. 

Cone index measurements were collected in two replicates on each of a 10 m x 10 m grid 

cell covering an area of 2 ha using a tractor mounted Multiple Probe Soil Cone Penetrometer 

(MPSCP) equipped with GPS for field positioning (fig.1) (ASAE, 1999 a, b; Raper et al., 1999). 

The cone index data was acquired at 25 Hz to a depth of 60 cm. A dual-frequency RTK, 

AgGPS® 214, GPS receiver was also used to obtain elevation data across the field. The 

measurements were obtained on June 29, 2004 and August 25, 2004 representing ‘wet’ and 

‘dry’ sampling periods with soil moisture contents (0 - 35 cm) of 11.25% (d.b.) and 9.83% (d.b.), 

respectively. Sampling of the cone index data in two replicates on 200 grid points (400 sets of 

cone index data) took a full working day (8hrs). Within each sampling date there were no rainfall 

events that would cause undesired variations in cone index data due to soil moisture variations. 

The hardpan parameters, the magnitude of the peak cone index and the depth to the peak 

cone index, were determined by analyzing the fluctuation of cone index in the layered soil profile 

(Tekeste et al., 2005).  Exponential and spherical theoretical semivariogram models fitted to the 
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semivariances distributions of the hardpan parameters on the wet and dry sampling periods 

were used for the kriging variance analysis. Geo-referenced sampling points on the10 m x 10 m 

grid systems were used for computing the semivariances and theoretical semivariogram models 

(Tekeste et al., 2005). New sets of hardpan parameters values that were collected at geo­

referenced sampling points on 20 m x 20 m; 30 m x 30 m; and 40 m x 40 m grid spacing 

systems were selected from the data on the original grid spacing system (10 m x 10 m). The 

kriging procedures and statistical comparisons of the kriging variances for the four grid systems 

(10 m x 10 m; 20 m x 20 m; 30 m x 30 m; and 40 m x 40 m) were performed using the SAS 

procedures PROC KRIGD2D and PROC GLM (SAS. Release 8.02 SAS Institute Inc., Cary, NC, 

2001). Means were compared using the Fisher’s protected LSD at an alpha (α) level of 0.05.   

Results and Discussions 

The peak cone index and the depth to the peak cone index that characterize the 

hardpan of Pacolet sandy loam soil are shown in Table 2. The peak cone index was significantly 

higher (28% increase) under the dry soil condition than it was under the wet soil condition (P < 

0.0001). The depth to the peak cone index appeared to be less affected by soil drying that the 

depth decreased only 5% (Table 2). 

The sampled observation points for 10 m x10 m; 20 m x 20 m; 30 m x 30 m; and 40 m x 

40 m grid systems are shown in figure 3. Kriging estimates and the kriging variances were 

computed for the 10 m x10 m; 20 m x 20 m; 30 m x 30 m; and 40 m x 40 m grid systems using 

the exponential and spherical semivariogram models (Table 3). Kriging estimates and the 

kriging variances computed for the wet and dry sampling periods are shown in Table 4 and 

Table 5. The kriging variances for the peak cone index and the depth to the peak cone index 

increased as the grid spacing increased (fig. 4). In all conditions of grid spacing, semivariogram 

model and the variable studied, the increase in the kriging variance (σ2
k) with grid spacing 

appeared to level off from the 30 m x 30 m with the variance gets close to the sample variance 
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(σ2
sample). In Figure 4A, for example, the sample variance for peak cone index on wet sampling 

period was σ2
sample = 0.77. The change in kriging variances (σ2

k) per the grid spacing increased 

linearly up to 30 m x 30 m grid spacing. 

For the peak cone index on the wet sampling period, the kriging variance were 

significantly affected by the type of semivariogram model, the grid spacing and their interactions 

(P < 0.0001) with smaller variance when the exponential model was used. The effects of the 

type of semivariogram model, the grid spacing and their interactions on the kriging variance of 

the depth to the peak cone index were also statistically significant (P < 0.0001). The kriging 

variances for the depth to the peak cone index were higher than the peak cone index. 

On the dry soil moisture conditions (fig. 5), the kriging variances for both the peak cone 

index and the depth to the peak cone index also increased as a function of grip spacing. The 

values at the dry soil conditions were higher than the wet soil conditions. Notice in all conditions, 

the kriging variances for both the peak cone index and the depth to the peak cone index for the 

10 m x 10 m and 20 m x 20 m grid spacing were smaller than the sample variance.  

The precision of kriging interpolation method when sampling of cone index at 20 m x 20 

m instead of the 10 m x 10 m does not seem to be affected when compared to averaging the 

sampled values of peak cone index and the depth to the peak cone index. Sparse sampling at 

30 m x 30 m and 40 m x 40 m grid spacing does not seem to provide precise kriging 

interpolation at the un-sampled points for soil compaction mapping. 

Conclusion 
The following conclusions can be drawn from this study. 


(1). A method was developed to analyze the kriging variance for the hardpan variables under 


wet and dry soil moisture conditions for different grid spacing systems having a predetermined 


semivariogram models. 
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(2). Analysis of the kriging variance for the hardpan variables of the peak cone index and the 

depth to the peak cone index showed that cone index sampling at grid spacing of 20 m x 20 m 

on Pacolet sandy loam soil was an efficient sampling design providing an acceptable kriging 

precision. 

(3). Future cone index sampling on 20 m x 20 m grid spacing has a potential in reducing the 

sampling time and cost as compared to the 10 m x 10 m grid spacing. 
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List of tables 
Table 1 

Descriptive statistics for the soil physical and chemical properties of a Pacolet sandy loam soil  
Soil parameters Depth Mean Median Standard Coefficient Minimum Maximum 95 % Kurtosis Skewness 

-cm- deviation of variation  Confidence 
interval 

Soil moisture (%) 
June 29,2004 0-35 11.25 11.01 2.30 20.40 8.54 17.52 10.42-12.08 2.57 1.59

 35-65 15.80 15.51 3.39 21.46 14.58 17.03 10.71-22.02 0.36 -0.72 
August 25,2004 0-35 9.83 9.11 2.17 22.08 7.36 14.84 9.05-10.61 0.40 1.02

 35-65 17.82 17.09 4.43 24.88 16.22 19.42 11.13-23.23 -0.08 -1.58 
Cone Index (Mpa) 

June 29,2004 0-35 2.61 2.63 0.54 20.56 1.75 4.00 2.42-2.81 0.74 1.11
 35-65 3.93 3.86 0.76 19.25 2.86 5.78 3.65-4.20 0.91 0.65 

August 25,2004 0-35 2.87 2.83 0.72 25.15 1.62 4.56 2.61-3.13 0.50 0.38
 35-65 2.97 2.91 0.90 30.23 1.48 4.72 2.64-3.29 0.20 -0.40 
Bulk density (Mg m-3) 0-35 1.39 1.41 0.04 3.11 1.29 1.48 1.38-1.41 -0.67 -0.03
 35-65 1.36 1.37 0.08 6.01 1.22 1.50 1.33-1.39 0.06 -1.07 
Soil Organic Carbon (%) 0-35 0.70 0.72 0.13 19.01 0.42 0.90 0.65-0.75 -0.24 -1.21
 35-65 0.37 0.31 0.14 36.89 0.23 0.71 0.32-0.42 0.94 0.06 
Clay (%) 0-35 8.63 6.79 5.36 62.11 2.14 26.07 6.70-10.56 1.20 1.90
 35-65 25.74 27.29 12.80 49.74 3.33 45.83 21.12-30.36 -0.30 -0.87 
Silt (%) 0-35 14.76 14.73 2.01 13.62 10.18 18.21 14.03-15.48 -0.40 0.17
 35-65 13.08 12.92 3.86 29.49 5.00 18.96 11.67-14.47 -0.33 0.03 
Sand (%) 0-35 76.61 77.86 5.92 7.73 59.11 84.11 74.48-78.75 -0.80 0.71
 35-65 61.18 59.27 12.96 21.19 42.71 91.67 56.51-65.85 1.00 0.97 

Table 2 

Descriptive statistics of the peak cone index and the depth to the peak cone index for the two 
measurement dates of June 29, 2004 and August 25, 2004 

Number Mean Median Standard Coefficient Variance Minimum Maximum 95% Confidence Kurtosis Skewness 
of values deviation of variation interval 

June 29, 2004 

August 25, 2004 

Peak cone index (MPa) 
Depth to the peak cone index (cm) 
Peak cone index (MPa) 
Depth to the peak cone index (cm) 

198 
198 
200 
200 

3.29 
21.08 
4.12 
20.08 

3.2 
21 

3.99 
20 

0.88 
3.36 
1.36 
3.56 

0.27 
0.16 
0.33 
0.18 

0.78 
11.29 
1.84 
12.65 

1.23 
13.5 
1.68 
10 

5.86 
28 

8.69 
28 

3.23-3.36 
20.84-21.31 
4.03-4.23 

19.83-20.33 

0.11 
-0.7 
0.81 
-0.04 

0.42 
0.14 
0.78 
-0.06 

Table 3 

Descriptive semivariogram properties for the peak cone index and the depth to the peak cone 
index for the two measurement dates of June 29, 2004 (‘Wet Sampling Period’) and August 25, 
2004 (‘Dry Sampling Period’). 

Sampling Variable  Model Nugget Sill Range Regression ⎛
⎜
⎝

Sill − Nugget ⎞
⎟
⎠

WSS 
Date Sill 

-----MPa2----- ---m--- coefficient 

29 Jun 04 Peak CI* (Mpa) Spherical 0.26 0.40 43.70 0.98 0.36 322 
Exponential 0.29 0.43 150.48 0.98 0.32 300 

Depth to Peak CI (cm) Spherical 0.81 5.83 16.67 0.99 0.86 248 
Exponential 0.00 5.73 15.75 0.99 1.00 259 

25 Aug 04 Peak cone index (Mpa) Spherical 0.15 0.93 26.09 0.97 0.84 505 
Exponential 0.59 1.07 168.91 0.98 0.44 411 

Depth to Peak CI (cm) Spherical 5.45 6.72 95.09 0.98 0.19 283 
Exponential 5.26 6.86 125.02 0.98 0.23 290 

*CI = Cone Index 
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Table 4. Kriging estimates and kriging variances for the peak cone index June 29, 2004 (‘Wet 
Sampling Period’) and August 25, 2004 (‘Dry Sampling Period’). 

Grid Theoretical Kriging ‘Wet’ Sampling Period ‘Dry’ sampling period 
Spacing variogram Variables 

(m2) 
Mean SD 95% 95% Max Mean SD 95% 95% Max 

LL UL LL UL 
--------------------cm----------------------­ ------------------------cm-------------------­

10x10 Spherical S E* 0.80 0.01 0.80 0.80 0.79 0.90 0.16 0.88 0.92 0.74 
Estimate 3.28 0.22 3.24 3.30 2.70 4.07 1.00 3.94 4.20 2.15 

Exponential S E 0.09 0.04 0.09 0.10 0.05 1.15 0.02 1.14 1.15 1.14 
Estimate 3.35 0.71 3.25 3.44 1.54 4.10 0.49 4.03 4.16 2.73 

20x20 Spherical S E 0.85 0.02 0.85 0.85 0.82 1.16 0.17 1.14 1.18 0.76 
Estimate 3.24 0.28 3.21 3.28 2.59 4.03 0.66 3.94 4.11 2.16 

Exponential S E 0.82 0.01 0.82 0.82 0.81 1.19 0.03 1.18 1.19 1.16 
Estimate 3.23 0.15 3.21 3.25 2.92 4.02 0.43 3.96 4.07 3.05 

40x40 Spherical S E 0.89 0.02 0.89 0.90 0.85 1.33 0.13 1.31 1.35 0.76 
Estimate 3.01 0.11 3.00 3.03 2.58 3.71 0.35 3.66 3.75 2.12 

Exponential S E 0.85 0.01 0.85 0.85 0.83 1.24 0.03 1.23 1.24 1.20 
Estimate 3.01 0.10 3.00 3.03 2.78 3.72 0.32 3.67 3.76 3.14 

*S E = Standard Error 

Table 5. Kriging estimates and kriging variances for the depth to the peak cone index June 29, 
2004 (‘Wet Sampling Period’) and August 25, 2004 (‘Dry Sampling Period’). 

Grid Theoretical Kriging ‘Wet’ Sampling Period ‘Dry’ sampling period 
Spacing variogram Variables 

(m2) 
Mean SD 95% 95% Max Mean SD 95% 95% Max 

LL UL LL UL 
--------------------cm----------------------­ ------------------------cm-------------------­

10x10  Spherical S E* 2.42 0.45 2.36 2.48 1.79 1.56 0.06 1.55 1.57 1.87 
Estimate 21.10 2.38 20.80 21.41 15.10 20.03 1.31 19.86 20.20 22.87 

Exponential S E 1.60 0.62 1.52 1.68 0.43 1.17 0.05 1.17 1.18 1.44 
Estimate 21.18 2.74 20.83 21.54 14.19 20.02 1.34 19.85 20.19 23.04 

20x20 Spherical S E 3.13 0.49 3.07 3.19 1.82 1.68 0.10 1.68 1.70 2.08 
Estimate 21.43 1.33 21.26 21.60 15.92 19.37 1.05 19.23 19.50 22.25 

Exponential S E 2.46 0.66 2.37 2.54 0.53 1.28 0.09 1.26 1.29 1.66 
Estimate 21.43 2.00 21.17 21.69 15.23 19.37 1.00 19.24 19.50 22.30 

40x40 Spherical S E 3.42 0.31 3.38 3.46 1.83 1.84 0.09 1.82 1.85 2.16 
Estimate 19.29 0.58 19.21 19.37 15.49 19.27 0.76 19.17 19.37 20.96 

Exponential S E 3.04 0.49 2.97 3.10 0.53 1.39 0.09 1.37 1.40 1.73 
Estimate 19.21 1.07 19.07 19.35 14.78 19.33 0.83 19.22 19.44 21.26 

*S E = Standard Error 
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List of figures 

Figure 1. Multiple-probe soil cone penetrometer (MPSCP) with five probes and GPS system for cone index 
measurement at Pacolet sandy loam soil in Auburn, AL.   

Figure 2. Elevation of the sampling field of Pacolet sandy loam soil. The marks indicate the sampling points 
for cone index measurement.  
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Figure 3. The sampling observation points in the field of Pacolet sandy loam soil for grid spacing of 10 m x 
10 m (A); 20 m x 20 m (B); 30 m x 30 m (C);  and 40 x 40 (D) m.  

Figure 4. Mean Kriging variance (σk 
2) of peak cone index (A) and the depth to peak cone index (B) as a 

function of grid spacing (m) for Wet Sampling Period (June 29, 2004) in the field of Pacolet sandy loam soil. 
Letters of the same type within each plot indicate no statistical differences (α=0.05). 

Figure 5. Mean Kriging variance (σk 
2) of peak cone index (A) and the depth to peak cone index (B) as a 

function of grid spacing (m) for dry sampling period (August 25, 2004) in the field of Pacolet sandy loam soil. 
Letters of the same type within each plot indicate no statistical differences (α=0.05). 
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