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[1] Forest ecosystems in the southern United States are dramatically altered by three major
disturbances: timber harvesting, hurricane, and permanent land conversion. Understanding
and quantifying effects of disturbance on forest carbon, nitrogen, and water cycles is critical
for sustainable forest management in this region. In this study, we introduced a process-based
ecosystem model for simulating forest disturbance impacts on ecosystem carbon, nitrogen,
and water cycles. Based on forest mortality data classified from Landsat TM/ETM+ images,
this model was then applied to estimate changes in carbon storage using Mississippi and
Alabama as a case study. Mean annual forest mortality rate for these states was 2.37%. Due to
frequent disturbance, over 50% of the forest land in the study region was less than 30 years
old. Forest disturbance events caused a large carbon source (138.92 Tg C, 6.04 Tg C yr-1;
1 Tg = 1012 g) for both states during 1984–2007, accounting for 2.89% (4.81% if disregard
carbon storage changes in wood products) of the total forest carbon storage in this region.
Large decreases and slow recovery of forest biomass were the main causes for carbon release.
Forest disturbance could result in a carbon sink in few areas if wood product carbon was
considered as a local carbon pool, indicating the importance of accounting for wood product
carbon when assessing forest disturbance effects. The legacy effects of forest disturbance on
ecosystem carbon storage could last over 50 years. This study implies that understanding
forest disturbance impacts on carbon dynamics is of critical importance for assessing regional
carbon budgets.
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1. Introduction

[2] Forests are the largest terrestrial carbon (C) pool com-
pared to other land ecosystems, which remove CO2 from the
atmosphere and maintain it in soil organic matter and standing
biomass [Dixon et al., 1994; Pan et al., 2011a]. The current C
stock in tree biomass comprises half of atmospheric storage
and is continuing to increase due to environmental change
and management [Watson et al., 2000; Schimel et al., 2001;
Pan et al., 2011b; Xiao et al., 2011]. Tree mortality rates are
one of the key factors controlling long-term dynamics of forest
ecosystems. Forest disturbance (including harvest) has been
reported to significantly change forest structure, productivity,

C sequestration, hydrological cycle, and soil biogeochemistry
[Birdsey and Heath, 1995; Johnson and Curtis, 2001; Birdsey
et al., 2006; Woodbury et al., 2007; Hansen et al., 2010; Liu,
2011; Williams et al., 2012], while impact magnitudes are
determined by disturbance intensity and frequency. Many pre-
vious studies were focused on landscape- or stand-level forest
disturbance events and their impacts, with much less emphasis
on regional or continental scale events. This may be due to
several challenges including limited understanding of
governing processes and lack of large-scale high-resolution
data and accurate modeling algorithms as noted by Liu [2011].
[3] Since forest biomass increases with stand age, delaying

harvesting to the age of biological maturity may result in the
formation of a larger C sink [Alexandrov and Yamagata,
2002;DOE, 2007]. Therefore, most incident forest disturbance
events could greatly decrease forest biomass. In addition to the
impacts on biomass and productivity, disturbance could
greatly influence organic C storage in forest soils and wood
products. Covington [1981] suggested that forest floor organic
matter declines by 50% within 20 years after harvest, and this
decline was attributed to accelerated decomposition and
changes in litter inputs. The shape of Convington’s curve
was revisited by other scientists [e.g., Yanai et al., 2003],
indicating that this curve may be affected by other factors
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(e.g., soil and litter mixing, management practices, fire) except
for decomposition and litter inputs. Except for its direct
impacts on C cycle, forest disturbance also greatly affects the
ecosystem hydrological cycle and other biogeochemical
cycles (e.g., nitrogen (N) and phosphorus), which will in turn
indirectly influence the C cycle [Thiffault et al., 2011]. Forest
soil N dynamics after disturbance generally follow a paradigm
as described by Allen et al. [1990] andHeath et al. [2003]. Soil
N is generally increasing in the undisturbed forest soil due to
microbial or fungus fixation and atmospheric N deposition.
After forest disturbance, the relatively closed N cycle may be
greatly disrupted. Soil N may increase within the short-term
(such as 1–5 years) sincemore litter may be added into the soil;
however, the accumulated soil N could soon be lost through
NO3

- -N leaching, biomass removal, or denitrification (emis-
sions of N2O, NO or N2 gases) [Allen et al., 1990]. This loss
of N may cause future nutrient deficiency, thereby decreasing
productivity over the long-term period [Thiffault et al., 2011].
Considering the complexity of forest disturbance impacts and
the interactions among C, N, and water, it is necessary to apply
a process-based model with a full coupling of C, N, and water
cycles to dynamically track C cycling processes after distur-
bance [Yanai et al., 2003].
[4] Forest area and structure changes subjected to distur-

bances such as land use change, hurricane, storm, wildfire,
insects, and diseases and forest harvest for wood product de-
mands have greatly affected forest ecosystems in the southern
United States [McNulty, 2002; Birdsey et al., 2006;Woodbury
et al., 2007; Chambers et al., 2007; Hansen et al., 2010].
Forest biomass was reported to have greatly increased during
past decades, and southern forests were a major contributor
to C sinks in the United States [e.g., Han et al., 2007; Xiao
et al., 2011; Tian et al., 2012], mainly due to increased
atmospheric CO2 concentration, N deposition, and forest ma-
nagement [Allen et al., 2005; McKeand et al., 2006; Fox
et al., 2007a, 2007b; Albaugh et al., 2007; Tian et al., 2012].
However, reports also indicated that forest disturbance in this
region may significantly reduce this C sink [e.g., McNulty,
2002;Han et al., 2007].Chambers et al. [2007] estimated that
Hurricane Katrina caused a C emission of 50%~140% of the
net U.S. forest C sink in 2005. As another major forest
disturbance, forest harvests are also frequent in this region
[Birdsey et al., 2006;Woodbury et al., 2007]. Although young
forests have higher productivity, the entire ecosystems could
still be a C source due to the short rotation age, slow recovery
of biomass, loss of aboveground litter, and disturbed soil and
vegetation structure.
[5] A few studies have addressed regional C dynamics

after forest disturbance in the United States; however, these
studies are limited either by a high spatial resolution and
long-term forest disturbance data or a fully coupled pro-
cess-based ecosystem model [e.g., Houghton and Hackler,
2000; McNulty, 2002; Chambers et al., 2007; Liu, 2011].
With its advantages of high spatial resolution, short-time
gapping, and long-term observations, Landsat TM/
ETM+ images were used widely to quantify forest mortality
rate due to disturbance events at a landscape scale and even
expanded to a larger scale such as regional or continental
scales due to the recent technology advances in computation
and modeling algorithms [Huang et al., 2009a, 2009b;
Goward et al., 2004; Masek et al., 2008; Williams et al.,
2012; Zheng et al., 2011]. Based on the vegetation change

tracker model, Huang et al. [2009a, 2009b, 2010] and Li
et al. [2009a, 2009b] generated large-scale forest distur-
bance maps from Landsat TM/ETM+ images for many
states in the southeastern United States. The dynamic land
ecosystem model (DLEM) is a highly integrated process-
based model, which fully couples C, N, and water cycles.
DLEM has been widely used to estimate the impacts of
multiple environmental factors on C, N, and water cycles
[e.g., Ren et al., 2011; Zhang et al., 2010, 2012; Liu
et al., 2008, 2012; Lu et al., 2012; Chen et al., 2012;
Tian et al., 2010a, 2010b, 2011a, 2011b, 2012]. Based
on the main DLEM framework, we further developed a
forest management and disturbance module to specifically
address the impacts of forest management and disturbance
on ecosystem dynamics. In this study, we integrated these
high-resolution forest mortality data and the DLEM model
to estimate changes and recovery of forest C storage after
disturbance using Mississippi and Alabama as a case
study. As a central location in the southern United
States, Mississippi and Alabama are typical states with
high forest coverage and frequent disturbance events.
Therefore, this study may have important implications to
the future estimation of C budgets as influenced by differ-
ent forest disturbance events in the United States and
North America.

2. Methods

2.1. Study Region

[6] In this study, we selected two states, Mississippi and
Alabama, in the southern United States as an example to es-
timate the impacts of forest disturbance on the terrestrial C
cycle. These two states have high forest coverage and a large
area of forested wetland (Figure 1). Any disturbances to the
wetland could significantly change the C and N cycles in this
region. Most forests in the two states are young forest (i.e.,
<60 years old) because forests are frequently disturbed by
hurricane/storm, insect/disease, and harvest events [Pan
et al., 2011b].

2.2. Data Description

[7] Based on a large collection of many scenes of Landsat
TM/ETM+ images and a vegetation change tracker (VCT)
model, which is an automated forest change mapping algo-
rithm designed for analyzing dense time series stacks of
Landsat images, Li et al. [2009a, 2009b] and Huang et al.
[2009a, 2009b] derived the forest change information for
Mississippi and Alabama. Huang et al. [2009a, 2009b] fur-
ther identified the forest disturbance area in each investiga-
tion year (a map for every 2 years during 1984–2007).
Seven categories were classified (Figure 2). The category
“disturbed in this year” (Figure 2) was treated as the
disturbed grid cells. The forest mortality defined here was
the forest area that disappeared during the 2 years’ obser-
vations. Landsat images can identify patched forest mortality
with a minimum disturbed area of 30� 30m but difficult to
monitor the mortality of a few trees (e.g., natural turnover
or background mortality). If disturbance occurs in a 30m grid
cell, then all the trees in that grid cell is cleared (i.e., forest
age = 0). Thus, the generated VCTmortality rate for each grid
cell has only an attribute with either 0 (no disturbance) or 1
(forest is cleared). Due to too many grid cells to compute in
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our current model version, the 30m resolution data were
scaled up to 1 km forest mortality rate. The 30m VCT prod-
ucts were first translated into percentage mortality data at
1 km (represented as the ratio of disturbed 30m grid cell
numbers to total 30m grid cell numbers within a 1 km grid
cell). For example, if there is only a 30m disturbed grid cell
in a 1 km grid cell range, the aggregated mortality rate for the
1 km grid cell is 1/33. Since percentage mortality rate in each
grid cell indicates a partial disturbance, it can no longer re-
flect the patched forest disturbance information such as stand
age and canopy coverage. To preserve more accurate forest
age information, the percentage forest mortality rate at 1 km
resolution was then transformed to attribute data of 0 and 1,
with a mortality rate higher than the determined threshold
value being disturbed (assigned attribute 1) and lower than
the threshold value being not disturbed (0). The threshold
value was determined by meeting the total disturbed area.
This transformation might lose some spatial accuracy for
representation of disturbance effects but more accurate for
ecosystem models to simulate forest recovery for the
biogeochemical (e.g., C, N, and water cycles) and biophysical
(e.g., canopy and age structure) processes. These Landsat
images were able to estimate mortality rate but not able to
identify the exact reasons for tree mortality, which could be
caused by forest harvest, wildfire, hurricane, or other factors.
In our modeling studies, we defined two general groups for
causes of mortality: forest harvest and natural disturbance
events. Based on Forest Inventory and Analysis (FIA) data,
Zheng et al. [2011] found that forest harvest was the major
disturbance type in Mississippi and Alabama. Forest harvest
(including salvage harvest) resulted in human interventions
to the ecosystems, and most of the harvested wood biomass
can be removed as products.
[8] Other model input data include daily air temperature

(maximum, minimum, and average temperature) and precip-
itation, annual land use, N deposition, atmospheric CO2 con-
centration, and non-time-step soil properties (e.g., soil
texture, pH value, etc.), as well as topography data (e.g., dig-
ital elevation map, etc.). The generation methods for these

data were described in Tian et al. [2010a, 2012], Zhang
et al. [2010], and Chen et al. [2012].

2.3. Model Description

[9] The DLEM model is a highly integrated process-based
terrestrial ecosystem model that simulates daily C, N, and
water cycles driven by changes in tropospheric ozone concen-
tration, atmospheric N deposition, CO2 concentration, climate,
land use and land cover, and disturbances (i.e., fire, hurricane/
storm, and harvest) (Figure 3). The DLEM has been exten-
sively used in studying terrestrial C, water, and N cycles
over Monsoon Asia, the continental United States, and
North America [e.g., Tian et al., 2010a, 2010b, 2011a,
2011b, 2012; Xu et al., 2010; Chen et al., 2012; Ren et al.,
2007a, 2007b, 2011; Liu et al., 2008, 2012; Zhang et al.,
2010, 2012; Schwalm et al., 2010; Sulman et al., 2012;
Huntzinger et al., 2012].
[10] The DLEM includes five core components (Figure 3):

(1) biophysics, (2) plant physiology, (3) soil biogeochemis-
try, (4) dynamic vegetation, and (5) disturbance, land use,
and management. The biophysical component includes the
instantaneous exchanges of energy, water, and momentum
with the atmosphere, which involves micrometeorology,
canopy physiology, soil physics, radiative transfer, water
and energy flow, and momentum movement. The plant phy-
siology component in DLEM simulates major physiological
processes such as photosynthesis, respiration, carbohydrate
allocation among various organs (root, stem, and leaf), N
uptake, transpiration, and phenology. The component of soil
biogeochemistry simulates mineralization, nitrification/deni-
trification, decomposition, and fermentation so that DLEM is
able to estimate simultaneous emission of multiple trace
gases (CO2, CH4, and N2O). The dynamic vegetation com-
ponent simulates two kinds of processes: the biogeographic
redistribution of plant functional types under environmental
change, and plant competition and succession during
vegetation recovery after disturbances. Like most dynamic
global vegetation models (DGVMs), DLEM builds on the
concept of plant functional types (PFT) to define vegetation

Figure 1. Boundary and land cover and land use map for Alabama and Mississippi states. TNF: temperate
needleleaf forest; TBD: temperate broadleaf deciduous forest; MF: mixed forest; SHR: temperate deciduous
shrubland; GRA: grassland; WET: wetland; CRO: cropland; BAR: barren land; URB: urban and built-up
land; WAT: water (Source: MODIS 2005 land cover map, http://www.cec.org).
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Figure 2. Forest disturbed areas (Red-colored areas) at 30 m resolution in (a) 1986 and (b) 2007 (including
five scenes of images from 2005 and 2006) and other land cover characters in (c and d) the 2 years (1986 and
2007) based on classification of Landsat TM images [Li et al., 2009a, 2009b; Huang et al., 2009a, 2009b,
2010], as well as aggregated (e) mean annual mortality rate (%) and (f) disturbance frequency (times) at 1
km resolution. Note: Major categories of land cover characters include the following: 0—background area,
1—persisting nonforest, 2—persisting forest, 4—persisting water, 5—previously disturbed but looked like
forest by this year, 6—disturbed in this year, and 7—post-disturbance nonforest.
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distributions. The disturbance, land use, and management
component in DLEM simulates the impacts of anthropogenic
and natural disturbance, land use change, and land manage-
ment on C, N, and water cycles. We described the DLEM for-
est disturbance and management module in detail as follows.
2.3.1. Forest Management and Disturbance Module
in DLEM
[11] In DLEM, we have developed a module for tracking

impacts of forest management and disturbance. The C and
N flows following forest disturbance are shown in Figure 4.
After forest disturbance, parts of the biomass are removed
from the ecosystem through slash burning and wood
products, while others either enter into the litter pools
[including slash, coarse woody debris (CWD), and residues
after burning or wood processing] or become dead standing
biomass. Some of the dead standing biomass will enter into
the removed biomass through salvage harvest or litter pool
through treefall. The removed biomass will be used as wood
products or biofuel, which may partly replace fossil fuel
as energy. There were four wood product pool groups:
sawnwood, wood-based panels, paper/paper board, and
others. These wood product pools are further classified as
long-term (40 years half-life span), medium-term (10 years),
and short-term (1 year) end-use products in terms of their
decay rates. The end-use products will finally be recycled or
enter into landfill or soil organic matter pools. The litter pool
will be partly burned (i.e., site preparation) while the
remaining enters into the soil organic matter pool through
humification processes. The detailed C flows after forest dis-
turbance are quantified as follows.

2.3.2. Biomass Losses Due to Forest Disturbance
[12] In this module, forest disturbance may be caused by

both natural (i.e., wildfire, hurricane/storm, insect/disease,
etc.) and anthropogenic (i.e., harvest, prescribed burning,
etc.) events. Living forest biomass will be lost due to distur-
bance, with the impact level being dependent on the mortality
rate and living biomass size:

DBi ¼ LBi �Morti: (1)

where DBi, LBi, and Morti are dead vegetation biomass

Figure 3. Framework of the dynamic land ecosystem model (DLEM). Note: ET: evapotranspiration;
LAI: leaf area index; PFT: plant functional type [Tian et al., 2010a, 2010b, 2011a, 2011b, 2012].
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Figure 4. Carbon and nitrogen flows in DLEM forest man-
agement and disturbance module (CWD: coarse woody debris).
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(g C/m2), living vegetation biomass (g C/m2), and mortality
rate (%) for plant organ i (i.e., 1: leaf, 2: fine root, 3: coarse
root, 4: stem), respectively. The remaining standing live
biomass is calculated as the difference between the total
and dead biomass.
2.3.3. Changes in Forest Structure and Recovery
[13] In DLEM, the magnitude of leaf area index (LAI) is dy-

namically simulated according to photosynthetic product
allocation to the leaf, while the daily LAI pattern is controlled
by the daily leaf phenology data averaged over 10-year
Moderate Resolution Imaging Spectroradiometer (MODIS)
LAI products. When forest mortality occurs, the canopy cover-
age (or crown density) and LAI will be changed in the mean-
while. The effect of disturbance on LAI is calculated as follows:

LAI ¼ LAI0 � 1�Mort1ð Þ: (2)

where LAI0 is the LAI before forest disturbance andMort1 is
leaf mortality rate due to disturbance. The stand age was
estimated using the following equations:

Age ¼ INT Age0 � 1�Mort4ð Þ:ð (3)

where Age0 is the overall forest age before disturbance,Mort4
is the forest stem mortality rate due to disturbance, and INT is
the function to round the age to the nearest integral value. If
the existing fraction of stems after disturbance is less than
10% (default), this forest ecosystem will be restarted at forest
age 0 with the forest type being the same as the previous one.
Otherwise, forest age will be proportionally decreased with
mortality rate.
[14] Changes in structure will in turn instantly influence

canopy light and water interception, photosynthesis, litter
quality, and thus ecosystem C, N, and water cycles. Except
for instant impacts, the legacy effects (or footprints) of forest
disturbance on C, N, and water cycles may last for a long pe-
riod (e.g., 50 or 100 years) [Houghton and Hackler, 2000].
The LAI recovery after disturbance is estimated based on
the DLEM allocation mechanisms for photosynthetic C prod-
ucts. The C allocation to different organs of tree is dynami-
cally determined by the available water, light, and labile N
(including N uptake from soil and labile/storage N within
the tree). One of the advantages of a process-based model,
such as DLEM, is its capability to dynamically track the foot-
prints of disturbance effects and at the same time consider the
interactive effects between forest disturbance and multiple
environmental factors (e.g., land use change, climate change,
changes in atmospheric composition).
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Table 2. Parameters for the Fates of Different Tree Components
After Tree Mortality

Tree
Components

Fatesa

Removed Fraction Slash Burning Remaining on the Site

Leaf 0 0.4 0.6
Root 0 0.1 0.9
Stemb 0.6 0.1 0.3

aSource: Data are reorganized based on Smith et al. [2006, 2009].
bStem includes branches, boles, and barks.
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2.3.4. Age-related NPP Decline and Forest Coverage
[15] Many observations and field experiments indicated that

the net primary productivity (NPP) and gross primary produc-
tivity (GPP) may decline with increasing forest age [Gower
et al., 1996; Bellassen et al., 2010]. In the DLEMmanagement
and disturbance module, we adopted the same modeling algo-
rithms as the ORCHIDEE model [Bellassen et al., 2010] to
simulate impacts of forest age on photosynthesis.

If Age > Dstart : Vcmax ¼ Dfactor � Vcmax0: (4)

Dfactor ¼ max Dmax;
Age� Dstart

Dend � Dstart

� �
: (5)

where Vcmax is the maximum rates of carboxylation, Dfactor is
the age-related decline factor for GPP, Vcmax0 is the standard
parameter value for Vcmax, Age is the age of the stand,Dmax is
the maximum age-related decline factor, Dstart is the age at
which age-related decline starts, and Dend is the age at which
age-related decline ends. The parameter values are listed in
Table 1.
[16] In addition to LAI, forest canopy coverage will also

increase with forest age and arrives at maximum canopy cov-
erage at the midrotation forest age [Hurtt et al., 2004]. The
previous version of DLEM assumes that trees can use all
the resources (e.g., light, water and nutrients) in a grid cell,
which may be correct for a mature forest stand. However,
during the recovery of disturbed forest stands, the
regenerated trees can only use part of the available resources
in a grid cell since the trees cannot occupy all the land area in
a grid cell (i.e., large bare land without tree establishment)
before a certain age. After the stand development arrives at
a stage (e.g., midrotation age), the trees can occupy all the
bare land area, and the resources become available for trees.
Therefore, a scalar (Forcov; ranges from 0.1 to 1.0) is added
in DLEM to constrain the resource use by forests. DLEM
simulates changes in forest canopy coverage with age using
a modified modeling mechanism from the ORCHIDEE
model [Bellassen et al., 2010]:

Forcov ¼ max 0:1;min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Age

Midage

s
; 1

 ! !
: (6)

where 0.1 is a default minimum forest coverage (initial forest

coverage), Age is the stand forest age, and Midage is the
midrotation age for a specific PFT, at which the forest stand
has the highest canopy density (can be adjusted for different
PFTs) (Table 1).
2.3.5. Natural Mortality
[17] In addition to the mortality induced by disturbance,

DLEM also calculates the natural/background forest turn-
over/mortality (Mortnat) due to increasing forest age. The mor-
tality induced by natural turnover is generally a small portion
of the forest stand and thus is not monitored by the Landsat im-
ages, which is estimated with equation (7):

Mortnat ¼ 0:2�Mortmax �
1� Vegmax�Veg

VegmaxþVeg

365
þ 0:8� Age

� 1

Agemax
�Mortmax �

1� Vegmax�Veg
VegmaxþVeg

365
: (7)

where Mortmax is the maximum tree natural mortality rate
(Table 1), Vegmax is the maximum vegetation C of a forest
type, and Veg is the current vegetation C.
2.3.6. Disposition of Harvested Biomass
[18] The dead biomass will be partly removed from the

local ecosystem by man (Figure 4). Removed biomass due
to regular or salvage harvest is first allocated to three pools:
slash, roundwood, and fuelwood. The roundwood will then
be disposed to different wood product pools, the slash will
be allocated to different litter pools, and fuelwood will be
burnt as energy with C and N being emitted immediately into
the atmosphere. The fuelwood may be used to replace fossil
fuel as energy, thereby partially reducing C emissions from
fossil fuel. The fates of wood products are tracked in detail
in the DLEM wood products module, while the slash will
be added into different existing litter pools as defined by
DLEM (Figure 3):

When 1 ≤ k ≤ 3;LTijk ¼ ∑i;j;k HBik � fLTijk : (8)

When k ¼ 4;CWD ¼ ∑i;j;k HBik � fLT ijk : (9)

where i denotes the litter pool from two sources (1: above-
ground litter, 2: belowground litter pool), j denotes the litter
pools with different decomposition rate (1: labile, 2: middle,
and 3: resistant litter pools), k denotes the disposition fraction
of different components of removed tree biomass (1: leaf; 2:
fine root; 3: coarse root; 4: stem) to litter pools with different
decomposition rates, HBik is the disposition proportion of
harvested biomass of component k to litter pool i, and

Table 3. Disposition Parameters for Harvested Softwood and
Hardwood to Different Middle Uses

Productsa Logwood Pulpwood Fuelwood Others Processing Losses

Softwood 0.56 0.37 0.01 0.06 0.05
Hardwood 0.43 0.42 0.13 0.02 0.18

aData source: Values for the south-central region in Smith et al. [2009].

Table 4. Disposition Parameters for Harvested Biomass to
Different Middle Product Uses

Materials

Middle Product Usesa

Sawnwood Boards Paper Fuelwood

Logwood 0.8 0.15 0.05 0
Pulpwood 0 0.1 0.9 0
Removed slash 0 0 0 1

aSource: Skog and Nicholson [2000] and Skog [2008].

Table 5. Harvested Wood Disposition to Different Half-Life Span
Product Poolsa

Products
Long Term
(40 years)

Medium Term
(15 years)

Short Term
(1 year)

Sawnwood 0.5 0.3 0.2
Boards wood 0.3 0.5 0.2
Paper and fuelwood 0 0.1 0.9

aNote: The disposition parameters were modified from Schelhaas et al.
[2004] and Skog [2008].
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fLTijk is the total disposition proportion of organ k to below-
and above-ground litter pool i with a different decomposi-
tion rate j.
[19] The DLEM classifies three types of litter pools in

terms of decomposition rates: labile (decomposes very fast),
middle (decomposes relatively fast), and resistant (decom-
poses slowly) litters. Leaves and fine roots are disposed to
these three types of litter pools according to a fixed propor-
tion, coarse roots are only disposed to middle and resistant
pools, and stems (including branches) that are not disposed
to product pools will be allocated to coarse woody debris
(CWD). In DLEM, two types of CWD pools are further
differentiated according to their decomposition rate: fast
decomposing CWD (CWD_fast; including small size
branches and barks) and slow decomposing CWD
(CWD_slow; including boles and large size branches).
[20] The harvested roundwood will enter into different

product pools:

PRODij ¼ HBij � 1� fLTið Þ: (10)

where PRODij is the disposition of harvested tree organ i to
product pool j (three half-life end-use product pools: long
term, medium term, and short term), HBij is the disposition
proportion of harvested biomass of component i to product
pool j, and fLTi is the total disposition proportion of organ i
to litter pools.
2.3.7. The Life Cycle of Wood Products
[21] The products module of DLEM tracks the C and N

fates after the removed biomass is disposed into product
pools. This module was developed based on the CO2FIX
Model [Schelhaas et al., 2004] and the concept models of
Skog and Nicholson [2000] and Heath et al. [2003]. In the
same year as forest disturbance events take place, the wood
products will be first disposed to different usages, then to cor-
responding end product pools, and finally, part of them will
be released to the atmosphere. The product module distin-
guishes three categories of end products: long-term, me-
dium-term, and short-term products. The wood product is
distributed over these end product categories. When the end
products are discarded at the end of their lifespan, they may
be either recycled, or deposited in landfills, or used for
energy [Schelhaas et al., 2004].

[22] The half-life span could be different when used in dif-
ferent regions. Generally, the simple exponential decay func-
tion is used to track the decay processes of different end
products (including end products at landfill and mill site)
[Skog and Nicholson, 2000; Schelhaas et al., 2004; Heath
et al., 2003; UN FCCC, 2005].

Pi;tþ1 ¼ Pi;t � 1� ln2÷HLið Þ: (11)

where Pi,t is the amount of C or N in product types i at time t
(years), Pi,t+1 is the amount of C or N in product types i at
time t + 1, and HLi is the half life for product type i.
[23] The parameter values of roundwood dispositions to

different middle wood products and end-use products are
listed in Tables 2–6.
2.3.8. Site Preparation
[24] After harvest and before regeneration of new seed-

lings in many forests, the harvested sites will be prepared to
establish new plant species. Slash burning, fertilization, and
slash fragmentation are often used before new vegetation
establishment. The C and N in the aboveground litter, soil
organic matter, and even the belowground litter will be
released to the soil or the atmosphere. Burnt C and N for
different pools resulting from slash burning are calculated
as follows:

BCi ¼ ∑4
j¼1 LTij � BRij

� �
: (12)

BNi ¼ ∑4
j¼1 LTij � BRij

� �
: (13)

BC ¼ ∑3
i¼1BCi: (14)

BN � ∑3
i¼1BNi: (15)

whereBCi andBNi are the burnt C andN from source i, respec-
tively (three sources: aboveground litter, belowground litter,
and SOM). LTij is the litter biomass for j litter pool subject to
decomposition (four litter pools: CWD, labile litter, middle lit-
ter, and resistant litter pools). BRij is the burning intensity (per-
cent of the burnt litter) for litter pool j. Litters include both
previous litters on the forest floor or in the belowground soil
and the slash left on the site after disturbance/harvest/thinning.
[25] Some of the burnt C and N can be released as trace

gases (e.g., CH4, CO2, CO, N2O, and NO) or returned back
to the soil C and N pools through ash deposition. The

Table 6. Disposition Parameters for the End Products

Products Recycling Energy Landfill

Long term 0.1 0.8 0.1
Medium term 0.1 0.8 0.1
Short term 0.2 0.75 0.05

Table 7. The C and N Gas Emission Factors After Slash Burning for Forestsa

Litters or
Residues

C Gas Emission Factors After Burning N Gas Emission Factors

ECO2 ECH4 ECO ENMHC EN2O ENOy ENH3 EN2

Hardwood 3484 10.7 236 12.7 0.26 3.0 1.4 3.1
Softwood 3484 10.7 236 12.7 0.26 3.0 1.4 3.1

aFrom Andreae and Merlet [2001].
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allocations of burnt C to different pools are calculated as
[referenced from Andreae and Merlet, 2001]

BCm ¼ BC � Em� 12

Wm
: (16)

BNn ¼ BC=0:45� En: (17)

LEFTC ¼ BC � ∑4
m¼1BCm: (18)

LEFT ¼ BN � ∑4
n¼1BNn: (19)

where m is the C-related gas type emitted from slash burning
(four types of C-related gases: 1, CO2; 2, CH4; 3, CO; and 4,
NMHC); Wm is the molecular weight of C-related gas m; Em

is the C emission factor for species m (g kg-1 C); n is the N-
related gas type from slash burning (four types: 1, N2O; 2,
NOy; 3, NH3; and 4, N2); and En is the emission factor for
N-related gas n. N-related gas emissions are related to the
burnt dry matters (BC/0.45, DLEM assumes that C concentra-
tion in dry matter is 45%) as suggested by Andreae andMerlet
[2001]; BCm and BNn are released C and N for gas typesm and
n, respectively; LEFTC and LEFTN are C and N that have not
been emitted into the atmosphere but return to the soil or litter

pools. LEFTC will enter the resistant litter C pool, while
LEFTN will enter the soil available N pools.
[26] The N that has not been emitted as N gases (LEFTN)

returns to the soil as ashes with a format of NH4-N. Therefore,
the soil available N pools are changed to the following:

AVNH4þ ¼ LEFTN : (20)

where AVNH4 is the soil available NH4-N. According to this
equation, site preparation will cause a sudden increase in soil
available N. However, due to lower vegetation coverage,
higher leaching, and accelerated N immobilization due to in-
creased litter inputs, soil available N may decrease soon.
[27] The parameter values related to site preparation were

listed in Table 7.

a

b

Figure 5. Sensitivities of (a) soil organic C storage and (b)
soil + in-use product C pool to different wood salvage rates
(i.e., salvage harvest after disturbances) after a disturbance
event (50% mortality rate). Different wood salvage rates
s0%, s20%, s40%, s60%, s80%, and s100% indicate that
0%, 20%, 40%, 60%, 80%, and 100% dead stems are re-
moved as wood products after a disturbance event, respec-
tively. The lower the wood salvage rate, the faster is the
soil organic C to restore to its predisturbed status.

a

b

c

Figure 6. Sensitivities of (a) ecosystem vegetation C, (b)
soil organic C, and (c) total C (i.e., soil organic C + vegeta-
tion C + litter C + in-use product C) to different disturbance
rates. Disturbance rates m10%, m40%, m70%, m100%, and
m2%continuous indicate 10%, 40%, 70%, 100% (only one
time in 1986), and 2% (per year since 1986) mortality rates,
respectively.
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2.4. Model Sensitivity to Forest Disturbance

[28] To evaluate the model behaviors to forest disturbance,
model sensitivity to key variables was tested. The two most
important variables were selected: wood salvage rate after
disturbance and forest disturbance rate.
2.4.1. Sensitivity to Wood Harvest/Salvage Rates
[29] Wood salvage (i.e., the disposition proportion of

harvested biomass to different wood products) rates after for-
est disturbance could greatly influence forest floor litter C
and soil C. Six levels of wood salvage rates (i.e., 0%, 20%,
40%, 60%, 80%, and 100%) were designed to evaluate
model sensitivity to wood salvage harvest. Under all salvage
rates, soil C increased right after a disturbance event (50%
mortality rate) and then soon decreased (Figure 5a). After a
certain time span, soil organic C began to increase. This time
span for soil C recovery was influenced by wood salvage
rates. The less wood salvage, the faster the restoration of
the soil C to predisturbance level. However, combining total

C storage in soil and wood products, higher wood salvage
rates could maintain forest sector C stock for a longer period
and even elevate it (Figure 5b). This is because products
decay more slowly than the effective average turnover time
for C molecules in the forest.
2.4.2. Sensitivity to Mortality Rates
[30] Forest disturbance, such as partial harvest, hurricane,

and insect disturbance, can cause partial tree mortality in a
stand. To test DLEM sensitivity to different mortality rates
and frequency at stand level, five forest mortality rates were
designed: 10%, 40%, 70%, 100% (only once), and continu-
ous 2% (2% mortality per year). The results indicated that
vegetation C gradually recovered to its predisturbance level,
and recovery rate was faster for smaller disturbance
rates (Figure 6a); however, if repeated disturbance occurred
(e.g., 2% mortality per year), vegetation was not able to
recover to its predisturbed level in the short term, implying
that repeating disturbance events could result in more C
losses in vegetation in the long term. Soil C storage decreased
faster for higher disturbance rates and took longer to recover
(Figure 6b). One-time smaller disturbance events (e.g., 10%)
did not significantly change total ecosystem C storage, while
higher disturbance rates could significantly decrease total
ecosystem C storage. Even after as long as 100 years, the
clear-cut forests could not recover to its predisturbed level.
Consecutive partial disturbance events could reduce ecosys-
tem C storage more than that of a 100% one-time disturbance
rate (Figure 6c), suggesting that repeated disturbance events
on stand scale could result in larger C emissions and thus
should not be ignored in simulating ecosystem C storage.
The repeating repeated disturbance events caused the forests
to reach a quasi-static status with relatively lower total C
storage in the long term.

2.5. Model Evaluation

[31] The DLEM-simulated net carbon exchange (NCE)
rate, C stocks, and GPP for different types of forests with
various stand ages have been compared to multimodel
simulations and observational data in North America [see
Schwalm et al., 2010; Sulman et al., 2012; Huntzinger
et al., 2012; Schaefer et al., 2012; Tian et al., 2010a,
2010b, 2012; Zhang et al., 2010; Chen et al., 2012] and
China [Tian et al., 2011a, 2011b; Ren et al., 2011; Lu
et al., 2012]. These previous evaluations indicated that
DLEM could better model the daily, seasonal, and
interannual patterns of ecosystem GPP and NPP dynamics
but slightly underestimated the net ecosystem production

a

b

c

Figure 7. Model performance evaluations for estimating
(a) state-level forest C storage (observational data from
Birdsey and Lewis [2003]) and species-level (b) Loblolly
and shortleaf pine and (c) oak-gum-cypress (observation
data from Smith et al. [2006]) biomass accumulation with
stand age after disturbance.

Figure 8. Mean forest disturbance rate (%) for Alabama
and Mississippi during 1984–2007.
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(NEP) as compared to site and regional observations. During
these site simulations, DLEM did not use the disturbance in-
formation as input, which may be one of the reasons for
lower NEP. In this study, we further evaluated DLEM-simu-
lated state-level total forest C storage (vegetation + soil + lit-
ter C) in 1997 with the observational data from FIA
[Birdsey and Lewis, 2003] for the southern United States
(see Figure 7a). The results indicate that DLEMwell matched
(slope = 1.13; R2 = 0.73; P< 0.01) the state-level forest eco-
system C storage in the southern United States but slightly
underestimated this for Mississippi. Based on the inventory
data from Smith et al. [2006], we evaluated DLEM-simulated
forest biomass accumulation with stand ages for evergreen
needleleaf forest (loblolly and shortleaf pines, two major pine
species in the region) and deciduous broadleaf forest (Oak-
gum-cypress). The comparison indicated that DLEM could
capture (slope = 1.103, R2 = 0.98 for pine forest; slope = 1.19,
R2 = 0.98 for broadleaf forest; P< 0.01) the annual accumu-
lation pattern for biomass after clear-cut harvests
(Figures 7b and 7c). DLEM simulation tend to bias more
compared to observed biomass after tree maturity (i.e., after
50 years for pine and 70 years for broadleaf forests), which
might be because of the model mechanisms for increasing
natural turnover rate and declining NPP with stand age in

DLEM. This suggested that current model mechanisms
might slightly underestimate C storage for old growth forests.
The FIA-observed [Smith et al., 2006] forest biomass
relationships with stand age were based on stands at different
locations and using the method of space-for-time substitution,
which might also result in some uncertainties. Nonetheless, the
model evaluation, although not very thorough, does lend
confidence to its utility for C balance assessments as reported
in this work.

2.6. Model Parameterization, Initialization, and
Simulation Experiments

[32] Before running DLEM, the parameters related to the
forest management and disturbance module were calibrated
against field measurement or observational data for each
forest type in Mississippi and Alabama (see Tables 1–7).
The major forest types in this region include temperate
needleleaf evergreen forest (TNEF), temperate broadleaf
deciduous forest (TBDF), mixed needleleaf and deciduous
forest (MF), and forested wetland (Figure 1). We further
classified all four types of forests into two groups (i.e.,
TNEF/softwood and TBDF/hardwood) for the disturbance-
specific calibration. DLEM was first run to an equilibrium
state using 30 year mean (1895–1924) climate data and other

a b

c d

Figure 9. Spatial distribution of forest mortality rate (%) for different periods during 1985–2007: (a)
1985–1989, (b) 1990–1994, (c) 1995–1999, and (d) 2000–2007.
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input data (i.e., land use, N deposition, and atmospheric CO2

concentration) in 1895 to develop the simulation baseline for
C, N, and water pools. Then, a 90 year spin-up simulation
was conducted using the detrended climate data to stabilize
unusual fluctuations caused by simulation mode shifts from
equilibrium to transient. Due to lack of forest disturbance
information before 1984, we used the average forest rotation
age (50 years for TBDF and 40 years for TNEF according to
Winjum and Lewis [1993] and Foley [2009]) to clear-cut all
forest in each grid cell. A random scheme was implemented
to select grid cells for harvest during 1895–1984. After
1984, the random harvest scheme was closed and replaced
by the transient forest mortality data.
[33] For model transient runs during 1984–2007, three

simulation experiments were designed to achieve the

objectives: (a) no forest disturbance—only transient environ-
mental data (i.e., nitrogen deposition, climate, and atmo-
spheric CO2 concentration) drive the model, while keeping
other input data as constants; (b) forest disturbance and envi-
ronment—both transient environmental data and forest mor-
tality data were used to drive the model, while keeping other
input data as constants; and (c) forest disturbance only—only
transient forest mortality data were used, while average envi-
ronmental data in 1984 was used and kept constant during

State boundary
Non-forest

Forest age (yr)
0 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 162

c

ba

Figure 10. (a) Simulated (unit: years) and FIA observed [Pan et al., 2011a] (b) forest age structure and
(c) frequency distributions (unit: grid cell numbers) in 2002 at a spatial resolution of 1 km.

Table 8. Changes in Different C Pools Caused by Forest
Disturbance in Alabama and Mississippi From 1983 to 2007 (Tg C,
1 Tg= 1012 g)

Carbon Pools Litter C SOC Vegetation C Product C Total

1984 260.51 2362.08 1765.62 423.48 4811.69
2007 265.84 2380.10 1510.63 516.20 4672.77
2060 254.67 2357.70 1755.13 447.14 4814.64
Difference
(2007–1984)

5.33 18.02 �255.00 92.73 �138.92
(2.04%a) (0.76%) (�14.44%) (21.90%) (�2.89%)

Difference
(2060–1984)

�5.84 �4.38 �10.50 23.66 11.59
(�2.24%) (�0.19%) (�0.59%) (5.59%) (�0.79%)

aChange rate compared to C pools in 1984.

Figure 11. Changes in different C storage pools (Tg C, 1
Tg = 1012 g) caused by forest disturbance in Alabama and
Mississippi from 1984 to 2007. Positive values indicate a C
sink, whereas negative values indicate a C source. ProdC:
Wood product C; VegC: Living vegetation C; SOC: soil
organic C; LitterC: litter C including fine litters and coarse
woody debris (CWD).
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the simulation period. The difference between these two simu-
lation experiments (b� a) was the effects of forest disturbance
on C fluxes. Experiment c (i.e., forest disturbance only) was
used to represent the C pools under the influence of distur-
bance alone.

3. Results and Analyses

3.1. Forest Mortality Rate and Resultant Forest Age
During 1984–2007

[34] Annual mean forest mortality rate induced by distur-
bance was about 2.37% in Alabama and Mississippi, and
the highest was 3.40% during 1999–2000 (Figure 8). Forest
mortality showed an increasing trend from 1980s to 2000s,
indicating that forest disturbance accelerated during the
recent period. At the spatial scale, the highest mortality was
seen in the coastal area, with smaller disturbance in the north
of the study region (Figure 9). The maximum forest mortality
rate occurred during the period of 2000–2007, which could
be upward to 50% in some areas. The study region is located
in the Gulf of Mexico and suffers from severe impacts of hur-
ricanes and storms, such as Hurricane Ivan in 2004 and
Hurricane Katrina in 2005, causing tremendous forest mor-
tality during this period.
[35] The disturbance events created fragmented landscapes

and thus a complex forest age structure in Alabama and
Mississippi (Figure 10). The oldest forest stands (>60 years)
were generally located in the northern region (Figure 10a).
Age for most forests was less than 15 years and showed a
decreasing tendency in distribution frequency with increas-
ing forest age (Figure 10c). The spatial and frequency distri-
bution patterns of forest age derived from Landsat TM/ETM+

disturbance data were generally consistent with FIA-ob-
served forest age [Pan et al., 2011a] in the study region
(Figures 10b and 10c). Less younger (i.e., 0–15 years old)
forest stands but more older (i.e.,>15 years old) forest stands
were estimated using the disturbance data.

3.2. Changes in C Storage Following Disturbance

[36] All the forest disturbance events totally resulted in C
emission of 138.92 Tg (6.04 Tg C yr-1, Table 8; 1

Tg = 1012 g) during 1985–2007, which was about 2.89% of
the total forest C storage in 1984 (predisturbed year). If prod-
uct C is disregarded (since it is removed from the local eco-
system), the total C storage in the forest ecosystem
decreased by 231.65 Tg C (10.07 Tg C yr-1), accounting for
4.81% of the total ecosystem C storage. From 1985 to
2007, in-use wood product, soil, and litter (including both be-
low- and above-ground litter) C continuously increased,
while vegetation C continuously decreased (Figure 11).
Among four C pools, wood product, soil, and litter C pools
were C sinks of 92.73, 18.02, and 5.33 Tg, respectively.
Vegetation C pool was a C source of 255.0 Tg during
1984–2007 (Table 8). Wood product became the largest C
sink under the impacts of forest disturbance, implying a sig-
nificant role of wood salvage in preserving ecosystem C stor-
age after forest disturbance events. The results indicate that
disturbance events had much larger negative effects on forest
biomass compared to other C pools.

3.3. Legacy Effects of Forest Disturbance

[37] Forest disturbance may have a strong legacy effect on
the forest ecosystem C dynamics due to its long-term impacts
on forest structure, C allocation, and nutrient cycles. In this
study, a “what-if” simulation experiment was designed to
assess the legacy effect of disturbance events on forest C
storage. The results indicate that soil organic C, litter C,
and in-use wood product C pools will become C sources,
while vegetation C will increase quickly after disturbance
events stopped (Figure 12). The cumulative changes of soil C
storage from 1984 to 2060 is a small C source (14.68 g C/m2),
indicating that disturbance first increases C storage but will
decrease it in the long term. Vegetation C pool could only
recover to ~94% of the predisturbed level (1984) even after
disturbance events stop for 53 years (2060). It is notable that
litter C pool recovered very slowly, and it is a C source dur-
ing 1984–2060. Adding up all four C pools, forest ecosys-
tems in this region will be a small C sink (9.88 g C/m2)
after ~50 years, mainly owing to the increased wood
product C; however, if only accounting for local ecosystem
C storage (no wood product C), the forest ecosystems will
still be a C source (69.36 g C/m2), indicating a long-term
legacy effect or recovery trajectory after forest disturbance,
especially for vegetation C.

3.4. Spatial Heterogeneity in C Fluxes Caused by
Forest Disturbance

[38] The mean annual mortality rate induced by forest dis-
turbance varied spatially and temporally (Figures 9, 2e, and
2f), resulting in a large spatial variation in total net C ex-
change during 1984–2007. Generally, higher forest mortality
resulted in larger C emission. The cumulative C emission in
some 8 km resolution grid cells could be up to 1900 gm-2,
which means that about 13% of the total ecosystem C storage
(i.e., biomass + litter + soil C pools) was released to the atmo-
sphere during the past 23 years. The largest releases of C oc-
curred in the southern coastal region, where both forest
harvest and hurricane events occurred frequently, and the
least in the northern Alabama area, where the major distur-
bance was forest harvest (Figure 13b). Carbon sinks were
found in some areas of the north if the wood product C pool
is considered as a component of local forest ecosystem C
storage (Figure 13a), while most areas were C sources

Figure 12. Legacy effects of forest disturbance on different C
pools (g C/m2) inMississippi and Alabama. Note: Total ecosys-
tem C includes vegetation, litter, soil organic, and in-use wood
product C, while local ecosystem C excludes wood product C.
We assume that no forest disturbance occurred after 2007.
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without wood product C pool (Figure 13b). Comparing
Figures 13a and 13b with disturbance intensity data
(Figures 2e and 2f), we generally found that the higher mor-
tality rate inducedmore C emission, which further implied that
the forest ecosystem C could not be recovered in the short term
especially after consecutive forest disturbance events.

4. Discussion

4.1. Long-term Disturbance Events and Forest
C Dynamics

[39] Due to lack of high resolution data, it is difficult to
study the impacts of forest disturbance on C fluxes at a large
scale. However, many researchers have recognized the im-
portant role of local-scale disturbance in C fluxes [e.g.,
Woodbury et al., 2007; Goward, 2004; Birdsey et al., 2006;
Pan et al., 2011b]. On a large scale such as national or conti-
nental, forest disturbance is generally assumed to occur to a

large extent and has a long returning interval (e.g., 20 or
30 years), but under most situations, forest disturbance may
frequently occur on a local scale, with only a small part of
the forest ecosystem that is disturbed. So generally, model
simulations with aggregated large-scale forest disturbance
data could either underestimate or overestimate C fluxes.
The USDA Forest Resource Assessment [Smith et al.,
2006, 2009] estimated that the annual timberland harvest
proportion was about 3% during 1980–1990 in the south-
central United States. If this is transformed to forestland
(timberland accounts for about two thirds of forestland;
http://www.fs.fed.us/pl/rpa/timber89.htm), about 2% propor-
tion of forests were harvested, which is slightly lower than
our reported forest mortality rate (2.37%) in Alabama and
Mississippi. Other types of forest disturbance (e.g., fire and
hurricane) might explain this difference.
[40] Our estimation found that long-term disturbance

events in Mississippi and Alabama could result in a C source

Figure 13. Accumulated net carbon exchange (negative indicates C source, g C m-2) (a) with and (b)
without wood product C at a spatial resolution of 8 km in Mississippi and Alabama during 1984–2007.
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of 231.65 Tg or 10.07 Tg yr-1(without wood products).
Based on the USDA Forest Service inventory biomass data,
Han et al. [2007] estimated that annual forest biomass C sink
in Mississippi and Alabama was 16.5 Tg C yr-1 during recent
years. This implied that forest disturbance had largely re-
duced forest biomass accumulation rate in these states. We
also found that in-use wood product was the largest C pool
after disturbance. In some areas of the northern Alabama
and Mississippi, disturbance (primarily forest harvest) could
result in a C sink if the wood product C was regarded as one
of the local ecosystem C pools due to the slow decay rate and
long residence of wood product C pool. This implied that
wood product C pool should be taken into consideration to
make a full accounting in forest C cycles. Heath et al.
[1996] also noted that wood products should be included in
C budgets for the U.S. because this component is significant
compared to U.S. forest ecosystem flux estimates.
[41] The forest ecosystems in the United States were

reported as a C sink ~0.20 Pg yr-1 in recent decades [Pacala
et al., 2001; Xiao et al., 2011; Pan et al., 2011a]. If forest
disturbance effects were removed, this C sink could be
significantly larger [Williams et al., 2012]. FAO report
[2006] estimated that 104 million ha per year of the world’s
forests, or 3% of the total area, were disturbed each year by
fire, pests, and weather; however, this was a significant un-
derestimate of the disturbance rate because of incomplete
reporting by countries. This suggested that accurate estima-
tion of disturbance effects on regional scales could be of im-
portance for accurately estimating C budgets in the United
States and globe [Zheng et al., 2011; Pan et al., 2011a;
Liu, 2011].

4.2. Changes in C Pools and Legacy Effects Following
Forest Disturbance

[42] Forest disturbance (including harvest) could have a
strong legacy effect on forest ecosystem C, water, and N
dynamics. Since biomass increases with stand age, postpon-
ing disturbance to the age of biological maturity may result
in the formation of a larger C sink [Alexandrov and
Yamagata, 2002]. Although productivity could increase due
to higher regrowth rate of young forests, forest biomass had
greatly decreased after disturbance in Mississippi and
Alabama during 1985–2007. A long-term legacy effect fol-
lowing disturbance was also found, especially for forest
biomass (even 50 years after a disturbance event), indicating
the system could not fully recover to predisturbed levels in
the short term.
[43] Through collection of a large number of field experi-

ment data, Johnson [1992] and Johnson and Curtis [2001]
conducted a meta-analysis to further evaluate the relation-
ships between forest harvest and soil C storage. They con-
cluded that soil C could either decrease or increase after
forest harvest depending on the harvest intensity and re-
gimes. Yanai et al. [2003] revisited the Covington’s curve
(i.e., forest floor mass declined sharply following harvest,
with 50% of forest floor organic matter lost in the first
20 years [Covington, 1981]) and the relationships found from
Johnson and Curtis [2001]. They concluded that forest har-
vest has a much smaller effect on forest floor and soil C pools
than was predicted from early interpretations of Covington’s
curve. Through analyzing a large collection of observational
data from 432 sites in the temperate climatic zone, Nave et al.

[2010] also pointed out that soil C was not significantly
changed after harvesting, while forest floor litter C could be
reduced more. In this study, we noted that there was a negligi-
ble forest soil C increase of 18.02 Tg C (by 0.76%) resulting
from long-term forest disturbance during 1985–2007. This
was mainly because of increased litter inputs at the forest floor
during a disturbance event and faster litter decomposition due
to opening canopy (Figure 12). After a forest disturbance
event, litter C was soon depleted and needed a long time to
recover, which resulted in decreased soil C storage from
2007 to 2060. This means that soil C may increase in the short
term after disturbance events but eventually decrease in
the long-term period. We also found that litter C storage
(by 4.19%) reduced faster than soil C storage (by 0.94%) from
2007 to 2060.
[44] The different patterns of C pool changes during and

after disturbance implied that a static or statistical approach
[e.g., Johnson and Curtis, 2001; Yanai et al., 2003;
Thiffault et al., 2011], which statistically estimates the
changes in different C pools, may not accurately track the
C dynamics after disturbance. Reports [e.g., Xiao et al.,
2011; Pan et al., 2011a] showed that the current U.S. forest
C sink (~0.2 Pg /yr) was primarily distributed in the southern
forests based on static estimation approaches. These studies
might overestimate this C sink since in-use forest wood prod-
ucts and long-term disturbance legacy effects were not
accounted for in their analyses. Based on long-term model in-
put data, Tian et al. [2012] estimated that the southern United
States was a larger C sink during recent decades but only a
slight C sink in the long-term period (i.e., 1895–2007). It is
necessary to dynamically monitor long-term changes in for-
est structure, C, N, and water cycles.

4.3. Uncertainties and Future Research

[45] Currently, it is still a great challenge to accurately as-
sess disturbance impacts on forest C budgets [Pan et al.,
2011b]. Two major uncertainties exist: disturbance data ac-
curacy and representative modeling algorithms [Liu, 2011].
In this study, the use of ~30m high-resolution forest mortal-
ity data as classified from Landsat TM images could ensure a
relatively high input data accuracy. In addition, the DLEM
model used in this study has fully coupled ecosystem-level
C, water, and N cycles, and a full tracking module for C bud-
get after forest disturbance, which improves the assessment
accuracy for disturbance impacts. However, many uncer-
tainties still exist. For example, DLEM assumes trees will re-
generate right after a disturbance event and no competition
among different biomes during forest succession. Further im-
provements will be made for this modeling algorithm. In addi-
tion, the disposition parameters were assigned based on
average conditions in the southern United States for different
wood product pools (e.g., 1, 15, and 40 year half-life wood
products and landfill), wood product salvage rates, and site
preparation intensity (e.g., slash burning portion). Due to lack
of enough information, we are unable to separate forest mor-
tality induced by forest harvest from other natural disturbance
events (e.g., hurricane, storm, and fire). Instead, we used aver-
age parameters for harvested forest biomass allocation and site
preparation, which could result in some uncertainties since
managed forest accounts for about 20% in this region [Smith
et al., 2009].
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5. Conclusions

[46] Based on high-resolution forest mortality rate data and
a process-based biogeochemical model, this study estimated
the C storage changes in Mississippi and Alabama following
long-term forest disturbance events. Forest disturbance
caused large C emission during 1985–2007, which is compa-
rable to the previously reported forest C sink in this region.
Litter, soil, and in-use wood product C pools were C sinks
during forest disturbance events; however, this effect was ne-
gated by more decreases in vegetation C. Due to legacy effect
after disturbance events, forest ecosystems need a long
period to recover; however, forest disturbance might also re-
sult in a C sink in some areas if wood product C pool is con-
sidered as a component of local ecosystem C storage due to
long residence time of wood product C. Forest ecosystems
in the United States were reported as a large C sink during
the recent decade; however, forest disturbance may have
greatly reduced this C sink size. To accurately assess long-
term regional C budgets, it is necessary to estimate the im-
pacts of forest disturbance using a dynamic modeling ap-
proach, which fully couples water, C, and N cycles.
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