








Author's personal copy
 

S.A. Prior et al. / Agricultural and Forest Meteorology 162– 163 (2012) 85– 90 89

can increased under elevated CO2, despite increased WUE,
due to increases in plant size (Runion et al., 1999). However,
whole-plant transpiration decreased for both sorghum (Sorghum
bicolor (L.) Moench) and soybean when grown under high CO2
(Dugas et al., 1997) despite increased above- and belowground
growth for both crops (Prior et al., 2003).

Mycorrhizae, the symbiotic association of plant roots with fungi,
benefit their hosts via increased nutrient and water uptake (Bowen,
1973). Soil water and nutrient status, as well as elevated CO2, can
also influence root colonization by mycorrhizal fungi. Runion et al.
(1997) suggested that sink/source relationships regulate mycor-
rhizal development under high CO2. That is, when photosynthate
supply is not source-limited (elevated CO2) or when tissue N con-
centrations are low (low soil N), plants alter allocation to soil
resource acquisition by investing in roots and mycorrhizas. Con-
versely, when N supply is not limiting, plants shift allocation
above-ground resulting in lower levels of mycorrhizal coloniza-
tion. Kimball et al. (2007) reported minimal responsiveness of
arbuscular mycorrhizal fungi to elevated CO2 for sour orange trees
in this study. Lower rates of mycorrhizal colonization have fre-
quently been observed at high fertility (Marx et al., 1977; Reid et al.,
1983); thus, the lack of response of sour orange may  be due to
being grown with more than adequate nutrition. It is also possible
that vesicular–arbuscular mycorrhizae are less responsive to CO2
enrichment (O’Neill, 1994; Runion et al., 1997). Nonetheless, the
observed increase in sour orange root length may  have increased
total mycorrhizae per tree.

4. Conclusion

Seventeen years of CO2 enrichment resulted in significant stim-
ulation of both fine root length and dry weight densities (35–40%).
This stimulation occurred in the upper 30 cm of the soil profile (root
length ∼ 60%; root dry weight ∼ 80%), but was not affected by dis-
tance from the tree (up to 2 m).  These large root responses, along
with the large increases in fruit and wood production noted by
Kimball et al. (2007), indicate that long-term citrus productivity
can be enhanced as atmospheric CO2 continues to rise, particu-
larly when trees are grown under conditions of water and nutrient
supply typical of orchard conditions. Whether or not sour orange
trees can be grown with less water and/or nutrients as atmospheric
CO2 concentration continues to rise will depend upon the complex
belowground interactions involving roots and resource acquisi-
tion.
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