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Networking Your Way to a Better Prediction: Effectively Modeling Contingent 
Valuation Survey Data 

 
Jason Bergtold, Daniel B. Taylor and Darrell J. Bosch 

 
Abstract 
 

The purpose of this paper is to empirically compare the out-of-sample predictive 

capabilities of artificial neural networks, logit and probit models using dichotmous choice 

contingent valuation survey data. The authors find that feed-forward backpropagation 

artificial neural networks perform relatively better than the binary logit and probit models 

with linear index functions. In addition, guidelines for modeling contingent valuation 

survey data and how to estimate median WTP using artificial neural networks are 

provided. 

 
Keywords: contingent valuation, logit, neural network, probit, semi-nonparametric, 

          willingness to pay 



1. Introduction 

Calculating theoretically consistent willingness-to-pay (WTP) measures using contingent 

valuation survey data in nonmarket valuation studies requires that the underlying econometric 

model satisfy the utility maximization hypothesis. The most widely used models for this purpose 

are the logit and probit type models. To satisfy the utility maximization hypothesis, the argument (or 

index function) of these models must be able to be interpreted as the difference in utility between 

two states of existence defined by the dependent variable (Hanemann, 1984). Hanneman (1984) 

purports that this requirement provides a practical procedure for specification of the functional form 

of the index function of the corresponding model, by postulating a priori the underlying functional 

form of the utility function. The a priori imposition of such a theoretical structure on the statistical 

model without considering the underlying probabilistic structure of the observed data is likely to 

leave the postulated model misspecified.  

In order to guarantee that a statistical model is properly specified it should be viewed as 

isolated from the theory it is purporting to explain (Spanos, 1999). From this viewpoint, Kay and 

Little (1987) show that when the joint density function of the explanatory variables conditional on 

the dependent variable is multivariate normal with homogenous variance/covariance matrix the 

resulting index function of the logistic model is linear, which seems unlikely in the majority of 

many empirical cases. Arnold, Castillo and Sarabia (1999) find such observations put into question 

many of the logistic regression models used in the applied literature. The probit model represents 

even more of a conundrum, given that to date no one has derived conditions for this model 

analogous to those for the logit. Thus, assuring that the functional form of the logit and probit 

models are properly specified poses a significant problem. One solution is to weaken the assumed 
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distributional assumptions of the models and rely upon semi-nonparametric techniques for 

estimation purposes.  

An innovative semi-nonparametric technique used for such classification problems is the 

artificial neural network (ANN). These networks have the ability to learn arbitrary and highly 

nonlinear functional mappings using finite data (Mehrotra, Mohan and Ranka, 1997). White, 

Hornik and Stinchcombe (1992) show that a single layer feed-forward (backpropagation) neural 

network with a linear output function is a universal approximator under fairly general conditions, 

and Ripley (1994) explains that this result is easily extended to networks with logistic output 

functions. Furthermore, the ouput of a feed-forward single-layer neural networks with the 

aforementioned architecture can be interpreted as a conditional probability (Ripley, 1996), 

providing a semi-nonparametric alternative for modeling dichotomous choice problems.  

The purpose of this paper is to empirically compare the out-of-sample predictive 

capabilities of feed-forward backpropagation artificial neural networks (FFBANN) and the 

dichotomous choice logit and probit models using contingent valuation (CV) survey data. The 

objectives of the study are: (i) to provide modeling guidelines for the construction and simulation of 

artificial neural networks using survey data, (ii) to compare the out-of-sample predictive capabilities 

of FFBANNs to traditional dichotomous choice logit and probit models, and (iii) to provide an 

algorithm for determining consistent WTP and WTA measures using feed-forward ANNs.  

2. An Examination of Traditional Dichotomous Choice Methods 

 The authors propose that the traditional viewpoint, a latent variable approach, provides a 

theoretically consistent approach to modeling CV data, but fails to adequately take account of the 

underlying statistical assumptions of the proposed estimable model. In contrast, by viewing the 

response data from a CV survey as inherently categorical (where no latent variable is invoked) and 

 2



using a purely statistical approach for constructing a model, a number of pertinent issues are 

revealed that fail to be addressed by traditional econometric approaches (Powers and Xie, 2000;p. 

7-11). 

2.1 A Theoretically Consistent Dichotomous Choice Contingent Valuation Model 

Hanemann’s (1984) seminal paper on welfare evaluations with discrete responses provides 

the theoretical basis for modeling contingent valuation survey data with binary discrete responses. 

Following Hanemann (1991), consider an individual who derives utility from the supply of some 

environment amenity, and let q denote the level of the amenity supplied.  Furthermore, let  denote 

individual’s income and let  be a vector of variables representing the consumption of other market 

commodities, prices, demographics and financial characteristics.  

y

s

It is assumed that the researcher does not completely know the functional form of the 

individual’s indirect utility function, so the unknown components are treated as stochastic. The 

indirect utility function is given by: 

( ) ( ) iiiiii syqvsyqV εε += ,,,,, ,      (1) 

where v  represents the observable component (mean) of the indirect utility function,( ). ε  is an IID 

random variable with zero mean representing the unobservable component, and  denotes the level 

of being consumed (An, 2000; Hanemann, 1984).  

i

q

Consider the situation where the individual is now faced with the opportunity of increasing 

her consumption of q from  to . If an increase in q is seen as desirable by the individual then 0q

,,

1q

( 000111 ,),,,( )εε syqVsyqV ≥  (Cooper, 2002). If the individual is told that the increase in q will 

cost $C, then the individual will pay that amount if: 

 ( ) ( 000111 ,,,,,, )εε syqVsCyqV ≥− .       (2) 
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The individual’s maximum WTP,  is equal to the compensating variation measure of the 

change in q, which is found by solving for C using (2) with the inequality replaced by equality 

(Hanemann, 1991).  

pC

 The researcher does not observe the actions of the individual, but only if individual pays the 

$C or not (Hanemann, 1991), so the response of the individual can be empirically viewed in a 

probabilistic framework, where p represents the probability that the offer is accepted. In the WTP 

case: 

( )
( ) (( )

(
( )η

εε
εε

≥∆=
+≥+−=

≥−=
=

v
syqvsCyqv

syqVsCyqV
qp

P
P
P
P

000111

000111

),,(),,(
,,,,,,
 increase  to$C pays individual

)
)  ,     (3) 

where ( ) ( syqvsCyqvv ,,,, 0011 − )−=∆  and 10 εεη −=  (Hanemann, 1984). Given the 

cumulative distribution of η ,  Hanemann (1984) states that equation (3) can be written as: 

 ,         (4) ( vFp ∆= η )

where  is the cumulative density function of ( ).ηF η . Some common cumulative density functions 

used for  are the logistic, standard normal and Weibull (Cooper, 2002).  Thus, “if the 

statistical binary response model is to be interpreted as the outcome of a utility-maximizing choice, 

the argument of  … must take the form of a utility difference [i.e. 

( ).ηF

( ).ηF v∆ ] (Hanemann, 1984; p. 

334).” This result provides a mechanism to determine if a given statistical model is compatible with 

the utility maximization hypothesis, and provides a procedure for specifying a theoretically 

consistent functional form for a statistical model (Hanemann, 1984).       

Even though the above approach provides a theoretically consistent method for specifying 

an estimable model, the researcher still needs to worry about potential model misspecifications. In 
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the next section, the dichotomous choice models given by equations (10) and (11) are re-examined 

in a purely statistical viewpoint in order to shed light on some of the potential statistical problems 

that arise from using the above dichotomous choice models for CV analysis. 

 2.2 Functional Form of the Dichotomous Choice CVM – A Statistical Viewpoint 

 The researcher in the previous section only observes the response of the individual to pay 

$C to increase q from q  to . Thus, the response should be empirically viewed as a Bernoulli 

random variable with parameter p, which represents the probability of a response of ‘yes’ or ‘pay 

$C’ (Davis and Xie, 2000).  Let  denote the response by the  individual, where  for 

‘yes’ and  otherwise. 

0 1q

iR thi 1=iR

0=iR

Given that ( ) ∞<−== )1(1var iii ppR , R  can be decomposed orthogonally into a 

systematic and nonsystematic component, giving rise to the following statistical generating 

mechanism: 

 , i        (5) ( ) iii uRER += N,...,1=

where  and u  (Spanos, 1999 and 1986).  Since the parameter  changes 

across the survey respondents (i.e. it exhibits heterogeneity), equation (5) is not operational. There 

are as many observations as there are parameters to be estimated (Spanos, 1986). To alleviate this 

problem, researchers tend to assume that  is dependent upon some vector of explanatory 

variables  via the following relationship: 

( ) ii pRE =

iX

( 0,1bin~i ) ip

ip

( )[ ]θ;ii xhFp = , i ,       (6) N,...,1=

where , , m denotes the cardinality of the vector , and ( ) [ ]1,0:. →RF ( ) RRh m →:. iX θ  is a 

 vector of unknown parameters. The function ( 1×m ) ( ).F , the transformation function, is usually 
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chosen to be the logistic or standard normal cdf and ( ).h , the index function, a linear combination 

of the elements of the vector (Amemiya, 1981; Davidson and MacKinnon, 1993). ix

i

i +

i = bin~

( ( xr iii ,|

( )=

i

 In an experimental context,  in equation (6) is treated as fixed (or is controlled by the 

experimenter), allowing the modeler to substitute equation (6) directly into equation (5), giving rise 

to a proper regression function (in much the same manner as the Gauss linear model as represented 

by Spanos (1986)). In econometrics, it is highly suspect that  can be treated as “fixed in repeated 

samples” given that econometricians primarily handle observational data, which tends to be 

stochastic in nature. Thus,  becomes conditionally dependent upon , giving rise to the 

alternative statistical generating mechanism: 

iX

iX

R iX

 ,       (7) ( iiii uxXRER == | )

where ( ) ( )[ ]θ;| iiii xhFpxXRE ==  and ( )0,1iu  (Fahrmeir and Tutz, 1994; Spanos, 

1999). Equation (7) is based on a conditional Bernoulli distribution. To be able to interpret equation 

(7) as a proper regression function, it is necessary that the conditional Bernoulli distribution 

underlying equation (7) be derived from a proper joint density function of R  and X  (Spanos, 

1999).  

 Following Arnold and Press (1989), the joint density  with conditional densities 

 and  will exist if and only if the following two conditions hold:  

),( ii XRf

( )ii XRf |1 ( ii RXf |2 )

(R1) ( ) ){ } ) ( ){ } NRXfNXRfxrN iiiii =>==>= 0|:0:, 2211 , and 

(R2) ( ) ) ( ) ( ( )( )iiiiiiii XRfXfRXfRfXRf ,|| 4231 =⋅⋅ , 

where  represents the marginal density of  and ( iRf3 R ( )iXf 4  represents the marginal density 

of .iX 1 Condition (R1) amounts to stating that the pre-images of ( )ii XRf |1 ,  and ( )ii RXf |2

)
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),( ii XRf  over the positive real line are the same. Using condition (R2) and assuming that 

condition (R1) holds, consider the following relationship: 

f
f

1

1

j =π

i jRf =1 |






ln




ln




=0

iR

 
( )
( )

( ) ( )
( ) ( )iii

iii

ii

ii

XfRXf
XfRXf

XR
XR

42

42

0

1

0|
1|

|0
|1

⋅=
⋅=

=
⋅=
⋅=
π
π

,    (8) 

where ( ) ( )jRjRf ii === P3  for 1,0=j

1,0

. Substituting in 

 for ( ) ( ) ( ) j
i

j
ii ppX −−= 11 =j  and taking the natural log of both sides of equation 

(8) gives: 

  ( )
( )









−








−

=



=
=

0

1

2

2 ln
1

ln
0|
1|

π
π

i

i

ii

ii

p
p

RXf
RX

ln
f

     (9) 

(Kay and Little, 1987).  Kay and Little (1987) show that if: 

 
( )
( ) )(

0|
1|

0
2

2
i

ii

ii xgaa
RXf
RXf ′+=




=
=

,      (10) 

then: 

 )(
1 0 i

i

i xgbb
p

p ′+=



−

,       (11) 

where 







+

2

1
0 ln

π
π

ab  and b . Solving equation (11) for  gives rise to the conditional 

mean for the standard logit model: 

a= ip

 .      (12) ( )( )[ ii uxgbb +′−−+= −1
0exp1 ]

Kay and Little (1987) provide the transformations ( )ixg  that are required for the members of the 

exponential family of distributions to ensure that the logistic model given by equation (12) can be 

derived from a proper joint distribution. 
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 When the conditional distribution of   given iX jRi =  is multivariate normal with 

heterogeneous covariance matrix dependent upon j, the index function ( )θ;ixh  is a quadratic 

function of  and . When the covariance matrix is homogeneous, the index function is linear in 

 and (Kay and Little, 1987). Kay and Little (1987) state that “in cases other than multivariate 

normality, however, little can be said since there are few other multivariate distributions which 

could act as appropriate models (p. 498).” 

1x 2x

1x 2x

 The above example illustrates the rigid conditions that must be satisfied in order for the 

index function, ( )θ;ixh  to be linear (or quadratic) in . Kay and Little (1987) provide some other 

conditions under which one might obtain a linear or quadratic index function in . Two of these 

conditions include: (i) independent explanatory variables conditional on  with conditional 

distributions in the exponential family and (ii) dependent explanatory variables conditional on  

with a multivariate distribution in the exponential family (e.g.  conditional on  is 

ix

ix

R

iR

iR

1X ji =

( )jp,1bi  and conditional on 2X kX =1  and jRi =  is ( )kjp,1ib  for 1,0, =kj ). In light of the 

these observations, many of the logistic models used in the literature, and constructed based on the 

theory in section 2.1 are questionable. Many studies provide no indication that the underlying 

probabilistic assumptions of the models are satisfied (Arnold, Castillo and Sarabia, 1999).  

No such derivation has been derived for the probit model, in part due to the fact that the 

standard normal cdf cannot be expressed in terms of a finite number of additions, multiplications, 

root extractions or subtractions (Weisstein, 1999). This result does not rule out the existence of 

for the probit model. Arnold, Castillo and Sarabia (1999) provide a number of 

algorithmic approaches to verify that 

( ii XRf , )

( )iii xXRf =|1  and ( )jRXf ii =|2  for  are 

indeed compatible distributions, by evaluating the compatibility of the empirical density functions 

1,0=j
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of  and ( )iii xXRf =|1 ( jRXf ii )=|2

( )

 to verify condition (R2). To the author’s knowledge no 

one has yet attempted to verify the existence of a proper joint distribution from which the probit 

model is derived. 

( ).F θ;ix

( )( )θ;ixh

 Gabler, Laisney and Lechner (1993) perform a Monte Carlo experiment comparing 

dichotomous choice probit and semi-nonparametric (SNP) models. They find that when the probit 

specification is incorrect, the SNP specification can reduce, at some computational cost, the bias 

associated with an incorrect transformation functional form assumption, i.e. the wrong choice of 

cdf. Horowitz (1993) discovers similar conditions for the case of the dichotomous choice logit 

specification. These results suggest that a semi-nonparametric estimator might be more desirable 

than an explicit parametric specification, such as the logit or probit discussed above. 

 Cooper (2002) states that a SNP specification is a distribution-free approach that avoids 

restricting  and/or h  in equation (7) by trying to estimate the compound function 

F , allowing the modeler to replace ( ).F , ( )θ;ixh  or both with a flexible SNP functional 

form. One such method of increasing interest in many fields of study is the use of artificial neural 

networks.  

3. Feed-Forward Backpropagation Artificial Neural Networks. 

 FFBANNs have been used and compared to more traditional statistical methods in a 

number of studies across many disciplines. In the majority of these studies, FFBANNs were found 

to be superior to traditional statistical techniques for classification problems on the bases of out-of-

sample predictive accuracy. West, Brockett and Golden (1997) compared artificial neural networks 

to traditional linear-additive statistical methods (e.g. discriminant analysis and logistic regression) 

for predicting consumer choice. They found that  

“practically speaking, on the average, the “best trained” neural network always 
out performed both discriminant analysis and logistic regression in terms of both 
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within- and out-of-sample predictive accuracy  for the noncompensatory decision 
rules. … All three modeling procedures performed exceptionally well in capturing 
[a] compensatory decision rule. Thus, you cannot go wrong by using neural 
networks in linear settings and can gain substantially in nonlinear (or unknown) 
settings (p. 382).”  
 

Kastens and Featherstone (1996) used FFBANNs to predict decision makers’ responses to 

subjective questions concerning agricultural risk, and found that FFBANNs coupled with a rigorous 

out-of-sample model testing procedure, allowed for a flexible modeling procedure that can predict 

categorical responses in which the researcher is interested. Dasgupta, Dispensa and Ghose (1994) 

compared FFBANNs to the traditional binary logit model and discriminant analysis. Their study 

found that FFBANNs neural networks were better able to predict out-of-sample than the logit 

model and discriminant analysis based on out-of-sample prediction percentage only, but the 

FFBANNs superiority was not found to be statistically significant. 

    Despite the large number of studies showing that FFBANNs can outperform traditional 

statistical regression models (see Arana, Delicado and Marti-Bonmati, 1999; Goss and 

Ramchandani, 1998; Jeng and Fesenmaier, 1996; Qi, 2001; Zurada et al., 1999 for further 

comparisons), it is not always the case that FFBANNs outperform these regression models (for 

example see Dasgupta, Dispensa and Ghose, 1994). The out-of-sample performance of FFBANNs 

is problem and application dependent, meaning cases do arise under which more traditional 

statistical models would be preferred. Despite any shortcomings of using FFBANNs, they do 

provide a flexible semi-nonparametric modeling alternative to traditional dichotomous choice 

models.  

3.1 What is an Artificial Neural Network? 

 Fausett (1994) defines an artificial neural network as “an information-processing system 

that has certain performance characteristics in common with biological neural networks (p. 3).” 
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Thus, artificial neural networks can be viewed as the parallel interconnection of many simple 

elements known as neurons (West, Brokett and Golden, 1997). Information is processed by passing 

signals between the neurons along arcs, which are weighted according to the usefulness of the 

information being passed along that particular arc. As the artificial neural network is trained these 

weights adjust so that useful arcs (pathways) are strengthened, until the neural network learns to 

recognize the patterns in the data used to train the network. The objective is to have the artificial 

neural network learn the training patterns so that it can generalize and be used to classify new 

patterns (Fausett, 1994; West, Brokett and Golden, 1997).  

 Figure 1 provides a pictorial representation of a single neuron in the hidden or output layer 

of an artificial neural network. A neuron takes individual inputs from M other neurons, aggregates 

them into a single value, denoted in Figure 1 as net, and then performs a nonlinear transformation of 

net using an activation function  to produce an individual output  (West, Brokett and ( ).F y

 
    Figure 1: Topology of a Neuron 
 

Inputs 

 

∑
=

=
M

m
mm xw

net

1

( ).F ( )netFy =

x1 

w1 Neuron 

Output 

wm xm 

wM 

Activation 
Function 

Aggregation
xM 
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Golden, 1997). Two common choices of activation functions are the logistic or the binary sigmoid 

and hyperbolic tangent. A bias (or intercept) term is usually added to the summation of the inputs to 

the neuron as well. This term is usually treated as another weighted input designated by  so 

that (Fausett, 1994): 

1=ox

  net .       (13) ∑
=

+=
M

m
mm xww

1
0

 The topological structure of a neural network is usually referred to as the net architecture. 

This architecture is arrayed in a number of different layers. At a minimum there exists an input and 

output layer, with input and output neurons respectively in each layer. It should be noted at this 

point that the output of the neurons in the input layer are the input itself (i.e. ( ).F  is the identity 

function). For generalization purposes, hidden layers or layers with neurons between the input and 

output layers are added. Figure 2 illustrates the topology of a single hidden layer feed-forward 

neural network. In a single hidden layer feed-forward neural network, a pattern 

{ }iKii XX ,,1 ,...,=X  is introduced to the input (or zero) layer at which point each input neuron 

sends a signal to each neuron in the hidden layer. The signal is the product of the input   and the 

connection weight 

iX

( )1
kmw

mnet

Mm ,..,1=

, where k designates the input neuron firing the signal and m designates the 

neuron receiving the signal in the hidden layer. At each neuron in the hidden layer, the input signals 

are aggregated ( ) and then transformed using the activation function. The outputs , 

 from each neuron in the hidden layer are then sent to the output layer, where the 

weighted sum of the outputs from the hidden layer net is transformed using another activation 

function, which produces the output Y .   

my

i

The net architecture of a single hidden layer FFBANN can be represented as (with bias): 
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Figure 2: Net Architecture of a Single Layer Feed-Forward Neural Network 
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 ,    (14) ( ) ( ) ( ) ( )


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


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where  designates the activation function in the  layer of the network (Mehrotra, 

Mohan and Ranka, 1997; West, Brockett and Golden, 1997). A two hidden-layer network would be 

given by the following mathematical representation (with bias): 

2,1, =lFl
thl

 . (15) ( ) ( ) ( ) ( ) ( ) ( )


























⋅+⋅+⋅+= ∑ ∑∑

= ==

M

m

K

k
ikpkp

P

p
mpmmi XwwFwwFwwFY

1 1
,

1
,

1
,0

1
1

2
,

2
,02

33
03

 White, Hornik and Stinchcombe (1992) show that any single hidden-layer feed-forward 

artificial neural network with a single real-valued node with linear activation function in the output 

layer (i.e. a function ) can approximate any continuous function uniformly on a 

compact set. This result holds regardless of the choice activation function, as long as the activation 

function is non-decreasing, 

RR →Kf :

( ) 1lim =∞→ λλ F  and ( ) 0lim =−∞→ λλ F , and regardless of the 

dimension of the input space.  
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  Furthermore, a theorem by Lusin states that if  is a measurable function and the input 

space is compact, then  can be closely approximated by continuous functions except on a set of 

arbitrarily small measure (Fine, 1999). Thus, the results by White, Hornik and Stichcombe (1992) 

apply to classifiers as well. As long as the activation function is not almost everywhere a 

polynomial, a single-layer FFBANN can approximate any square integrable classifier (function), 

which includes , since the set of all possible single hidden layer feed-forward 

networks with a real-valued output node with linear activation function is dense in , the space of 

all real-valued square integrable functions, with respect to the  metric (Fine, 1999).  

f

f

( iX )ii xRE =|

2L

2L

 For a classifier to effectively classify input data or patterns, the classifier must be trained (or 

estimated) using a training set of input and output (target) data, to construct a mapping between 

various input patterns and specified output vectors (Fausett, 1994). The objective of training is to 

adjust the weights in order to approximate the true underlying functional relationship, thus the 

modeler wants to minimize the error between the output targets given to the neural network during 

training and the outputs produced by the neural network. In order to achieve this objective, the 

modeler needs to choose a fitting or error criterion, which will be used to minimize the errors made 

by the network. For optimization, it is desirable that the fitting criterion be second-order 

differentiable as well as interpretable, which is why, the mean square error (MSE) fitting criterion: 

 ( ) ∑
=

−=
N

i
ii YR

N
E

1

21.  ,       (16) 

where  is the output target vector and Y  is the output vector produced by the neural network, is 

commonly used (Mehrotra, Mohan and Ranka, 1997).  

iR i

 Finding the values of the connection weights that minimize the fitting criterion  is an 

unconstrained optimization problem. The differentiability of the error criterion allows the weights to 

( ).E
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be updated and calculated recursively during training using the chain rule. This procedure is known 

as backpropagation, hence the use of the acronym FFBANN (Ripley, 1994). Figure 3 illustrates the 

backpropagation procedure for a single hidden layer FFBANN. A net input is fed through the 

neural network producing the net output. The error between the net output and the output target is 

then computed using the fitting criterion, where the error is injected recursively into the network to 

update the weights. The connection weights are updated using a gradient search method, where the  

weight update for a given connection weight, ( ).
,

l
nmw , is a function of the output from the  node in 

the  layer and the activation error, 

thn

( )thl 1+ nδ  of the  node in the l  layer of the network. The 

activation error

thm th

nδ  represents the square error derivative of the fitting criterion associated with a 

particular processing node (West, Brockett and Golden, 1997).  

 There are a number of iterative algorithms that can be used to minimize the fitting criterion 

and train FFBANNs. These include steepest descent algorithms, conjugate gradient algorithms, 

quasi-Newton algorithms and Levenberg-Marquardt algorithms (trust region methods) (see Fine, 

1999 for a detailed discussion of each algorithm and associated MATLAB code) 

 

 

Figure 3: The Backpropagation Procedure 
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 Each time all the input data patterns have been presented to the network and the weights 

updated, the network has been said to complete one epoch (or iteration). Weight updates can be 

done in batches or online. If done in batches, each input pattern is introduced and the corresponding 

error and weight update is calculated and saved. The weight updates calculated after all the input 

patterns have been introduced are then summed and applied at the end of each epoch. In online 

training, the weights are updated immediately after an input pattern has been introduced to the 

network, thus the weights will be updated N times each epoch (Fine, 1999).     

 A key issue during training is the question of how well the network performs in classifying 

input patterns that were not used to train the network or generalization. This issue arises due to the 

fear that the network will be overtrained or overfitted.  Fine (1999) states that over-fitting  

“a condition in which the network overfits the training set and fails to generalize 
well. One explanation for the failure of generalization when overtraining occurs is 
that overtraining renders accessible the more complex members of the excessively 
flexible family of neural networks being deployed. Hence, we may end up fitting the 
data with a more complex function that the true relationship (e.g. a higher degree 
polynomial can fit the same points as a lower degree polynomial). A more common 
explanation observes that the target variables often contain noise as well as signal 
– there is usually only  a stochastic relationship between feature vectors x  and 
target t, with repetitions of the same feature vector often corresponding to different 
target values. Fitting too closely to the training set means fitting to the noise as well 
and thereby doing less well on new inputs that will have noise independent of that 
found in the training set. (p. 155).” 
 

To avoid overtraining a network, a validation set of data that is independent of the training set of 

data should be constructed or set aside from the original sample (Principe, Euliano and Lefebvre, 

2000). The validation set is then used in conjunction with a stopping rule based on an out-of-sample 

performance criterion. Two such criteria proposed in the literature are: 

(S1) )(...)1()( vtEtEtE valvalval +≤≤+≤  for some ,....2,1=v  chosen by the modeler, 

        where  is the validation error using the fitting criterion at the t  epoch; or ( )tEval
th
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(S2) )(...)1()( vtPRtPRtPR +≤≤+≤  for some ,....2,1=v  chosen by the modeler   

        and ( )∑
=

=−=
N

i
ii YR

N
PR

1
01 1 , where ( )0=− ii YR1  is an indicator function that equals 1 

        when the output of the neural network is equal to the output target and 0 otherwise. 

Both rules terminate training after a particular criterion fails to be improved upon after v  epochs. 

Rule (S1) uses the mean square forecast error when the validation set is fed to the neural network 

using the connection weight values determined in epoch t, while rule (S2) states that training should 

be terminated when the number of input patterns correctly specified begins to decreases after v  

epochs. (Fine, 1999; Kastens and Featherstone, 1996).  

3.2 A Statistical Perspective on using FFBANNs as Dichotomous Choice CVMs 

 The statistical generating mechanism given by equation (7) forms the basis for a statistical 

model using a FFBANN. Viewing a FFBANN as an approximation (a flexible functional form) to 

 (see section 3.1), gives rise to the following statistical generating mechanism: ( iii xXRE =| )

 ,   (17) ( ) ( ) ( ) ( )
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where u . The logit or probit specifications can be obtained by letting 
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 Km ,...,1=  (i.e. by eliminating the hidden layer) and ( ).2F  be 

the logistic or normal curve respectively.   

From this viewpoint, consider a single hidden layer FFBANN with a single output node 

with logistic activation function. In this case the statistical generating mechanism given by equation 

(17) becomes:  
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where u  and h , which is a single 

hidden layer FFBANN with a single output node with linear activation function. According to 

White, Hornik and Stinchcombe (1992) such a network can approximate any continuous function 

uniformly. Thus, one can interpret equation (18) as a semi-nonparametric model. The 

transformation function is assumed to be logistic at the outset, while the index function is 

approximated by using a single hidden layer FFBANN with a single output node with linear 

activation function. This interpretation is easily extended to other specifications of  as long as 

it has the properties of a cdf, as well as two hidden layer FFBANNs.  

( 0,1bin~i ) ( ) ( ) ( ) ( ) ( )∑ ∑
= =









⋅+⋅+=

M
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k
ikmkmmi xwwFwwx

1 1
,

1
,

1
,01

22
0;θ

( ).2F

4. Model Construction and Estimation 

 One of the primary objectives of the paper is to test the comparative out-of-sample 

predictive abilities of FFBANNs to that of logit and probit models using dichotomous choice 

contingent valuation survey data. This objective is achieved by using data from an empirical study 

to construct and estimate (train) the FFBANNs and statistical model used in the paper. 

4.1 Data  

 The data set (denoted E-K from here on) used to construct the FFBANN used in the 

comparison with the logit and probit models was collected by Eisen-Hecht and Kramer (2002) and 

used in a study that examined water quality protection in the Catawba River Basin in North and 

South Carolina. The data contained 915 usable observations, which they used to estimate a 

dichotomous choice probit model analyzing the respondents  ́decision about vtoing for a proposed 

water quality management plan to sustain the current level of water quality in the basin. All of the 

respondents were asked questions concerning water quality and use in the Catawba River Basin, 

various demographic questions, and asked a referendum style CV question if they would be willing 

to adopt a water quality management plan that maintained water quality at current levels over time. 
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“The management plan was offered to respondents at one of eight different price levels ranging 

from $5 to $250 [randomly assigned] per year for five years (Eisen-Hecht and Kramer, 2002; p. 6).”  

Variables and descriptive statistics for the E-K data set are available upon request from the authors.  

4.2 Model Construction 

 The choice of net architecture and training style tend to be problem dependent. There are a 

number of decisions that have to be made by the modeler when constructing a FFBANN. These 

issues include: (i) the number of hidden layers in the neural network, (ii) the number of hidden 

nodes in each layer, (iii) the type of activation function used in each layer of the network, (iv) the 

choice of training algorithm. Issues (i) thru (iii) deal with the net architecture, while issue (iv) deals 

with the training of the neural network. Given the dependence between these difference choices, the 

optimal approach to model construction would be to perform a grid search over all possible 

combinations of decisions pertaining to each issue, but such an approach is not usually practical. 

Thus, guidelines from literature concerning the neural networks are provided to help decrease the 

dimensionality of this task. 

4.2.2 Choice of Training Algorithm 

 A significant amount of empirical evidence has shown that the traditional steepest descent 

algorithm (the delta rule) used to train neural networks tends to be a poor choice due to the slow 

progression during training toward an optimal solution (see Bazarra, Sherali and Shetty, 1993; 

Ripley, 1996). Thus, the question arises of what (type of) algorithm should be used in its place? 

Demuth and Beale (2001) mention that the performance of any particular algorithm is dependent 

upon a number of factors, which includes the nature of the problem, the size of the training set, the 

size of the network (number of connection weights), the choice of fitting criterion and choice of 

stopping rule.   
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 For a reasonable number of weights (up to 1000), Ripley (1996) recommends the use of 

quasi-Newton methods. For larger problems, Ripley suggests using conjugate gradient methods or 

the limited-memory BFGS quasi-Newton algorithm (see Bazaraa, Sherali and Shetty, 1993 for a 

description of the latter). The benefit of these algorithms is that they have super-linear convergence 

and in practice tend to converge quickly once they are in a local neighborhood of an optimal 

solution. The quasi-Newton algorithms are especially effective in this respect (Ripley, 1996). 

4.2.3  Number of Hidden Layers 

 We know from the approximation theorems in section 3.1 that a single hidden layer 

FFBANN approximates any measurable function up to a set of points of measure zero. Fine (1999) 

states that single hidden layer FFBANN are useful for approximating particular families of 

functions, such as the family of continuous functions, while multiple hidden layer FFBANNs are 

useful for approximating composite functions. Recall, that the conditional mean function for the 

logit and probit models is of this form ( )[ ]θ;ixhFp = . Furthermore, multiple hidden layer 

FFBANN can exactly approximate functions with discontinuities, even though single hidden layer 

FFBANN can achieve relatively close approximations (Fine, 1999).  

 Given that our primary goal is generalizization, Ferrett (1993) recommends that the smaller 

the network the better it will be able to generalize. Thus, for practical purposes a single hidden layer 

network would be suggested over a two-layer network. Furthermore, results in the literature suggest 

that a single hidden layer FFBANN is sufficient for most purposes in terms of generalization, but 

the modeler should not rule out the use of two-layer networks since at times they provide the best 

over-all fit to the validation data set. 

4.2.4 Number of Hidden Nodes 
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 A neural network with two few nodes does not have enough degrees of freedom to 

correctly classify all the input data patterns of the training set, so it will adjust the weights to 

minimize the fitting criterion, thereby hopefully correctly classifying the majority of input patterns. 

In contrast, a neural network with too many nodes, has more than enough degrees of freedom, and 

perfectly classifies all the input training patterns, but performs poorly on test data sets due to over-

fitting on the training data set (Principe, Euliano and Lefebvre, 1999). These two cases illustrate the 

problem faced by the modeler when choosing the number of hidden neurons in each layer of the 

neural network.  

 How many hidden neurons are too many? West. Brockett and Golden (1997) state that the 

answer to this question is problem dependent. They suggest that in practice, the modeler start with 

the simplest net architecture, no neurons in the hidden layer, and successively increase the number 

of neurons in the hidden layer as long as the MSFE for the validation data set decreases, which 

amounts to finding a peak of generalizability.      

4.2.5 Type of Activation Function in the Hidden Layer 

 The activations functions in the input and output layers are readily determined. The identity 

function is used in the input layer by construction, and the logistic tends to be used in the output 

layer for neural networks modeling dichotomous choice data using a single node. The question of 

what activation function to utilize in the hidden layer is not quite so clear. Given the discussion in 

section 3.2, the only guidance given by the approximation theorems presented there is that the 

activation function should have the properties of a squashing function (see section 3.1). West, 

Brockett and Golden (1997) note that the logistic activation function is usually chosen due to the 

fact that it has desirable mathematical and computational properties, which is also true of the 

hyperbolic tangent activation function. In addition, in practice it is suggested that all input data 
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vectors are normalized to fall into the range [ ]1,1−  when the hyperbolic tangent activation function 

is used in the hidden layer(s) of the network, and between [ ]1,0  when the logistic activation 

function is used (see Demuthe and Beale, 2001; Kastens and Featherstone, 1996).      

4.2.6 Optimal Networks Used for Comparative Analyses 

        To construct the FFBANN for use in the comparative analyses conducted in section 5, 

simulations were run examining various net architectures and training algorithms. The networks 

with the overall best out-of-sample predictive capabilities, based on out-of-sample predictive 

accuracy using the test data set, were chosen to be used in the comparison with the logit and probit 

models. This decision was based upon the  premise that such networks represent the best predictors 

for the population being examined. In addition, a validation data set was constructed from the E-K 

data set for the stopping rule to determine when to terminate training, while the remainder was 

utilized for estimating (or training) the weights of the FFBANNs. Following West, Brockett and 

Golden (1997) the E-K data set, was divided in the following manner: sixty percent of the data was 

used for training, twenty percent for validation and twenty percent for testing. For each simulation a 

sample re-use procedure was utilized. This procedure randomly partitions the data into separate 

training, validation and test data sets as described above. For each run, five hundred separate 

partitions were generated and a separate neural network trained for each. Overall performance was 

measured using mean square forecast error (MSFE) and the percentage of input patterns correctly 

classified (PR) for each data set. All of the issues in section 4.2.2 thru 4.2.5 were examined. Due to 

space limitations, simulation results are omitted, but are available upon request from the author.  

Based upon the simulation runs, the following four networks were chosen. The four 

FFBANNs were: (The notation used to represent the networks is as follows – (Training Algorithm)[ 

(# of input variables) – (# of nodes in the hidden layers) – (# of output variables)]) (i) BFG[20-18-
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1],  (ii)CGF[20-5-1] , (iii) BFG[20-20-1-1] , (iv)BFG[20-16-11-1], where BFG stands for the 

BFGS quasi-Newton algorithm and CGF stands for the conjugate gradient algorithm with Fletcher-

Reeves update. In addition, each network used the hyperbolic tangent activation function in the 

hidden layers of the network and where trained using stopping rule (S1). The training results for the 

connection weights are not reported due to the large amount of space required to report them (for 

example, the model BFG[20-16-11-1] would require the reporting of 523 connection weight 

values), but the estimates are available from the authors upon request.   

4.3 Estimated Logit and Probit Models 

 For the comparative analyses conducted in section 5 of the paper, the two primary 

dichotomous CVMs used in the literature, the logit and probit models, were estimated using the E-

K data set. In order to obtain a valid comparison using the test data set, the E-K data set was 

partitioned into a training (or estimation) data set and a test data set. The training data set accounted 

for 80 percent of the data, while the test data set contained the remaining 20 percent. To ensure a 

valid and meaningful comparison the test data set was constructed to be the same across all of the 

models compared. In addition, following the traditional approach to modeling dichotomous choice 

CV data, the index functions of the logit and probit models were assumed to be linear. Due to space 

limitations, estimation results are not presented in the paper, but are available from the authors upon 

request. 

 
5 Comparative Analyses 

The comparison of the four FFBANN indicated in section 4.2.7 to the estimated logit and 

probit models is based on the out-of-sample and overall performance of the models. Out-of-sample 

and overall performance was evaluated using MSFE, PR, Type-I Error and Type-II Error measures 

using both the test and entire E-K data sets. The measure PR is the percentage of input patterns 
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correctly classified by the model. The Type-I and Type-II measures calculate the percentage of 

times a type-I or type-II error occurs for a particular data set. A type-I error occurs when the model 

predicts that the respondent does not vote for the water quality management plan (see Esien-Hecht 

and Kramer (2002), when in actuality the respondent did. A type-II error occurs when the model 

predicts that the respondent does vote for the management plan, when in actuality the respondent 

did not (West, Brockett and Golden, 1997).  

 To provide a clear comparison, the difference between values of the PR measure 

for the FFBANN and the logit/probit models is examined using statistical testing procedures. Two 

sets of hypotheses were considered: (i) ji ppH =:0   vs.  ji ppH ≠:1 , and (ii)   

vs.  , where 

ji ppH =:0

ji ppH >:1 p denotes the value of the measure being examined (a percentage), i  

denotes one of the four FFBANNs being compared and j  denotes the logit or probit model. These 

tests are conducted using a binomial testing procedure that uses the chi-square form of McNemar’s 

Test, as presented by Hollander and Wolfe (1999). 

 Within-sample and out-of-sample measures are provided in Table 1. The measures indicate 

that on average the FFBANNs perform relatively better on the test and entire E-K data sets. The 

two hidden layer FFBANNs provided the best out-of-sample predictive accuracy. The results from 

the binomial tests comparing PR indicate that (i) the out-sample predictive accuracy based on the 

measure PR of the model BFG[20-20-1-1] is statistically different from that obtained by the logit 

and probit models, and (ii) the percentage of input patterns correctly classified by the model 

BFG[20-20-1-1] is statistically greater than the logit and probit model at a 0.05 level of statistical 

significance.2 

 Comparing the MSFE errors for the test and data sets reveals that the FFBANN tends to 

provide a better overall fit to the data. The fit is even more apparent when the MSFE is examined  

 24



Table 1: Comparative Analyses of  FFBANN and Neural Networks: MSE, MSFE and PR 
 Model 

Measure BFG[20-
18-1] 

CGF[20-5-
1] 

BFG[20-20-
1-1] 

BFG[20-16-
11-1] 

Logit 
Model 

Probit 
Model 

Training Data set 
PR1 0.7760 0.7687 0.7923 0.7851 0.7650 0.7609 
Type-I Error 0.0747 0.0765 0.0619 0.0601 0.0902 0.0915 
Type-II Error 0.1494 0.1548 0.1457 0.1548 0.1448 0.1475 
MSFE 0.1491 0.1543 0.1493 0.1490 0.2350 0.2391 

Validation Data Set 
PR1 0.7377 0.7814 0.7650 0.7213 N/A N/A 
Type-I Error 0.1202 0.0765 0.0984 0.1202 N/A N/A 
Type-II Error 0.1421 0.1421 0.1366 0.1585 N/A N/A 
MSFE 0.1704 0.1649 0.1726 0.1798 N/A N/A 

Test Data Set 
PR1 0.8525 0.8579 0.8634 0.8634 0.8470 0.8470 
Type-I Error 0.0656 0.0656 0.0656 0.0656 0.0710 0.0710 
Type-II Error 0.0820 0.0765 0.0710 0.0710 0.0820 0.0820 
MSFE 0.1325 0.1266 0.1247 0.1241 0.1530 0.1530 

Entire E-K Data Set 
PR1 0.7836 0.7891 0.8011 0.7880 0.7814 0.7781 
Type-I Error 0.0820 0.0743 0.0699 0.0732 0.0863 0.0874 
Type-II Error 0.1344 0.1366 0.1290 0.1388 0.1322 0.1344 
MSFE 0.1500 0.1509 0.1490 0.1502 0.2186 0.2219 
1 PR represents the porportion of input patterns correctly classified given the corresponding data set. 
 
 

for the training and validation sets in Table 1. This result stems from the fact that a FFBANN can 

formulate highly nonlinear and even disjoint discriminants (with two hidden layers) in the input 

variable space (Principe, Euliano and Lefebvre, 2000). Thus, based on these measures the 

FFBANN outperforms the logit and probit models. Furthermore, the modeler should keep in mind 

that a FFBANN provides a flexible function form for dichotomous choice CVM models.  

 Overall, the FFBANN provide better out-of-sample performance than the logit and probit 

models, but on average the differences tend not to be statistically different. If the question of 

determining the correct functional form of a dichotomous choice CVM were not an issue, then the 

recommendation from this study would be to use the logit and probit if the modeler is only 
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interested in out-of-sample predictive performance. On the other hand, as will be seen in the next 

section of the paper, statistical inference concerning the WTP is dependent upon the functional form 

assumption of the model, and using a flexible functional form can help provide a means of avoiding 

model misspecifications, especially given the statistical interpretation of using FFBANN provided 

in section 3.2.   

6. Estimating Median Willingness to Pay\Willingness to Accept using FFBAN 

 One of three approaches presented by Hanemann (1984) for estimating an individual’s 

minimum WTP for an environmental amenity is to determine the amount of money the individual 

would have to pay to just make them indifferent between sustaining or not sustaining that amenity. 

In the case of Eisen-Hecht and Kramer (2002), this amounts to finding the minimum amount a 

respondent would pay that would make them indifferent between voting for or against a 

management plan to sustain the current level of water quality in the Catawba River Basin. Using the 

framework in section 2.1, this indifference can be interpreted as the level of C that makes 

(Hanemann, 1984): 

         ( ) ( )( 5.0,,,,,, 000111 ) =≥−= εε syqVsCyqVp P .    (19)  

Finding the level of C that solves equation (19) is not straightforward using a FFBANN, 

due to the fact that a FFBANN has a highly nonlinear and interconnected structure. Thus, the 

problem must be solved numerically (Cooper, 2002). To find the median WTP numerically, the 

modeler will need to perform a grid search for the level of  that will make Y , the output of the 

FFBANN, equal to 0.50. The algorithm used to determine this level of C (using the above 

procedure) is presented in Appendix 1. The algorithm determines the median WTP for group of 

individuals by first determining the median WTP for each individual and then by taking the mean 

across the group. Thus, for each individual the only variable that is not fixed is C . In the case of the 

C i
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Eisen- Hecht and Kramer (2002) study, C  represents the price of the management plan or the 

yearly amount of tax each respondent would be willing to pay to support the management plan.  

 Using the algorithm in Appendix 1, the median WTP using each of the neural network 

models was calculated. The results are presented in Table 2. The median WTP found using the 

FFBANN tends to be lower than the estimates obtained from the traditional logit and probit models 

using Hanemann’s (1984) approach. A possible reason for this difference is the nonlinear nature of 

the FFBANN, i.e. the index function and therefore the utility difference, V∆ , are nonlinear 

functions. This result underscores the importance the functional form, V∆ , has in determining the 

median WTP, as stressed by Hanemann (1984). The modeler should make sure that the underlying 

functional form assumptions of the model are valid given the observed data. In the case that the 

logit and probit models were misspecified, the median WTP would be biased upwards by about 12 

to 13 percent.  

 

Table 2: Median WTP using a FFBANN 
Model Median WTP ($) Standard Error ($) 
BFG[20-7-1] 163.90 64.14 
BFG[20-18-1] 162.43 75.35 
CGF[20-5-1] 159.08 68.47 
BFG[20-20-1-1] 163.07 71.30 
BFG[20-16-11-1] 161.30 71.86 
Logit Model1 186.98 110.01 
Probit Model1 186.38 109.56 
1 The median WTP for the logit and probit model was found by solving equation (6-2) following 
Hanemann (1984) for each data point and then taking the mean across the corresponding vector. 
Using the probit model, Eisen-Hecht and Kramer estimated the median WTP to be $198 using this 
approach. 
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Endnotes 

1. The result stated in this paper is somewhat more restrictive then Theorem 4.1 

stated in Arnold and Press (1989). For a proof of the theorem see Arnold and 

Press (1989). 

2. The test statistic comparing PR for the BFG[20-20-1-1] model to the logit was 

4.6286 and for the probit was 6.2113. The critical values at a significance level of 

0.05 percent were 0.00098/5.0239 for a two-sided test and 3.8415 for a one-sided 

test. 
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Appendix 1: Algorithm for Determining Median WTP Using a FFBANN 

se

an

alg

 

 

Initialization: Determine the initial WTP interval [ ]ba,  on the real line. Choose a 
tolerance level, 0>γ , which represents how close the algorithm needs to converge to 
the median level of WTP to terminate. Set ( )( )aba −−+= αλ 1  and ( )aba −+= αµ , 
where 618.0=α . For the  individual, fix the remaining explanatory variables or 
input values to their current level and calculate 

thi
( )aY , i ( )bY , i ( )λiY  and ( )µiY , where 

 is the output of the FFBANN with ( )xYi xC = . 
 
Main Step: For the individual thi

1. If Y  or Y , then stop. The median WTP is  or ( ) 5.0≤ai ( ) 5.0≥bi aC p = bC p =
respectively. Otherwise, go to step 2. 

2. If γ<− a
C p =

b , then stop. The optimal solution lies in the interval [ . In this 
case let . Otherwise, if 

]
)

ba,
( ab −⋅5.0 ( ) 5.0<biY  and ( ) > 5.0λiY  go to step 

3, if ( ) 0< 5.λiY  and ( ) 5.0>µiY  go to step 4, or if ( ) 5.0<µiY  and Y  
go to step 5.  

( ) 5.0>ai

3. Let λ=a  and ( ) ( )λii YaY = . Recalculate ( ) ( )µλµλ ii YY ,,,  using the new 
interval [ ]b,a  with the formulas presented above and then return to step 1. 

4. Let µ=a , λ=b , ( ) ( )µii YaY =  and ( ) ( )λii YbY = . Recalculate 
( ) ( )µλµλ iY,iY,,  using the new interval [ ]ba,  with the formulas presented 

above and then return to step 1. 
5. Let µ=b  and ( ) ( )µii YbY = . Recalculate ( ) ( )µλµλ ii YY ,,,  using the new 

interval [ ]b,a  with the formulas presented above and then return to step 1. 
 
Do this for all the individuals to obtain a vector of median WTP values for all 
individuals. Once this vector has been obtained calculate the mean and standard 
deviation of the vector using standard statistical techniques to obtain the median 
WTP for the group. 
 

The algorithm is a simple grid search along a closed interval of the real line. The 

arch method is based on the golden section line search method (see Bazaraa, Sherali 

d Shetty, 1993). The closed interval on the real line represents the search area for the 

orithm or the upper and lower bound of a respondent’s WTP.  
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