Integration of CO₂ flux and remotely-sensed data for primary production and ecosystem respiration analyses in the Northern Great Plains: potential for quantitative spatial extrapolation

Tagir G. Gilmanov¹, Larry L. Tieszen², Bruce K. Wylie³, Larry B. Flanagan⁴, Albert B. Frank⁵, Marshall R. Haferkamp⁶, Tilden P. Meyers⁷ and Jack A. Morgan⁷

ABSTRACT

Aim Extrapolation of tower CO₂ fluxes will be greatly facilitated if robust relationships between flux components and remotely sensed factors are established. Long-term measurements at five Northern Great Plains locations were used to obtain relationships between CO₂ fluxes and photosynthetically active radiation (Q), other on-site factors, and Normalized Difference Vegetation Index (NDVI) from the SPOT VEGETATION data set.

Location CO₂ flux data from the following stations and years were analysed: Lethbridge, Alberta 1998–2001; Fort Peck, MT 2000, 2002; Miles City, MT 2000–01; Mandan, ND 1999–2001; and Cheyenne, WY 1997–98.

Results Analyses based on light-response functions allowed partitioning net CO₂ flux (F) into gross primary productivity (Pg) and ecosystem respiration (Re). Weekly averages of daytime respiration, γday, estimated from light responses were closely correlated with weekly averages of measured night-time respiration, γnight (R² 0.64 to 0.95). Daytime respiration tended to be higher than night-time respiration, and regressions of γday on γnight for all sites were different from 1:1 relationships. Over 13 site-years, gross primary production varied from 459 to 2491 g CO₂ m⁻² year⁻¹, ecosystem respiration from 996 to 1881 g CO₂ m⁻² year⁻¹, and net ecosystem exchange from −537 (source) to +610 g CO₂ m⁻² year⁻¹ (sink). Maximum daily ecological light-use efficiencies, εd,max = P_g/Q, were in the range 0.014 to 0.032 mol CO₂ (mol incident quanta)⁻¹.

Main conclusions Ten-day average Pg was significantly more highly correlated with NDVI than 10-day average daytime flux, Pd (R² = 0.46 to 0.77 for Pg-NDVI and 0.05 to 0.58 for Pd-NDVI relationships). Ten-day average Re was also positively correlated with NDVI, with R² values from 0.57 to 0.77. Patterns of the relationships of Pg and Re with NDVI and other factors indicate possibilities for establishing multivariate functions allowing scaling-up local fluxes to larger areas using GIS data, temporal NDVI, and other factors.

Keywords Ecosystem respiration, ecosystem-scale light response functions, gross primary production, net CO₂ flux partitioning, net ecosystem CO₂ exchange, normalized difference vegetation index (NDVI), Northern Great Plains grasslands, phenomenological modelling, tower CO₂ flux measurements.

¹Department of Biology and Microbiology, South Dakota State University, Ag Hall 304, Box 2207B, Brookings, SD 57007, USA; ²SAIC, USGS/EROS Data Center, Sioux Falls, SD 57198, USA; ³Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, T1K 3M4, Canada; ⁴Northern Great Plains Research Laboratory, USDA-ARS, Box 459, Mandan, ND 58554, USA; ⁵USDA-ARS, Fort Keogh LARRL, 243 Fort Keogh Road, Miles City, MT 59301–4016, USA; ⁶Atmospheric Turbulence and Diffusion Division, NOAA/ARL, PO Box 2456, 456 South Illinois Avenue, Oak Ridge, Tennessee 37831, USA; ⁷USDA ARS Rangeland Resources Research, Natural Resources Research Center, 2150 Centre Avenue, Building D, Suite 200, Ft. Collins, CO 80526–8119, USA

Correspondence: Tagir G. Gilmanov, Department of Biology and Microbiology, South Dakota State University, Ag Hall 304, Box 2207B, Brookings, SD 57007, USA.
E-mail: tagir.gilmanov@sdstate.edu
INTRODUCTION

The increasing concentrations of atmospheric CO₂ require a better understanding of ecosystem fluxes, factors that determine the magnitudes of fluxes, the potential for mitigation, and the feedbacks of ecosystems on climate. During the 1990s the attention of CO₂ flux studies was directed toward establishing and expanding flux tower networks and developing methodology. More recently, quantitative biogeochemistry of terrestrial carbon cycling has entered a new phase with higher quality instrumentation and the addition of new sites. These advances and the accumulated data now allow comparative analyses, modelling, synthesis, and scaling-up of local flux measurements (Falge et al., 2002; Gilmanov et al., 2003a,b; Turner et al., 2003a; Gilmanov et al., 2004). The concept of ecoregions is providing a natural framework of data integration, modelling, and scaling-up (Gilmanov et al., 2003b) that needs to be integrated with the top-down approaches of atmospheric models. The Northern Great Plains of North America represents a group of ecoregions where adequate CO₂ flux data are being secured to allow first attempts at regional generalizations, modelling, extrapolations, and spatial scaling-up.

Though substantial areas of the Northern Great Plains are used for crop production, significant parts of this province remain unploughed and are used as rangelands. Quantification of the parameters for carbon cycle in Northern Plains grasslands is an essential part of the general task to evaluate the carbon budget of North America (Sobecki et al., 2001; Wofsy & Harriss, 2002). Many of the early methods for studying carbon budgets of grazing lands can be traced back to the International Biological Program (Coupland, 1979; Bremeyer & Van Dyne, 1981) with its emphasis on both net primary production and field photosynthesis based on measurements from towers and chambers. Presently, improved technology allows tower-based systems to secure continuous long-term measurements of carbon fluxes at the ecosystem scale (Baldocchi et al., 1988; Dugas, 1993; Dugas et al., 1997) and under reasonably natural conditions. Nevertheless, these are still point measurements with limited fetch areas. Quantitative extrapolations and scaling-up of these tower measurements are now urgently needed for carbon cycle research. Achieving these quantitative regional estimates will require the integration of remote sensing, geographical information systems, and mathematical modelling (Hall et al., 1995; Running et al., 1999; Ciais et al., 2001; Wylie et al., 2002; Dolman et al., 2003; Körner, 2003a, 2003b; Potter et al., 2003; Todorovski et al., 2003; Xiao et al., 2004).

Two major topics are considered in this paper. First, based on analysis of long-term CO₂ flux measurements at five stations in the region, we establish quantitative characteristics of the carbon cycle (gross primary production, ecosystem respiration, net ecosystem exchange, and radiation use efficiency). Second, we examine relationships among the CO₂ exchanges, the remotely-sensed Normalized Difference Vegetation Index (NDVI), and other environmental factors. Such relationships will be used to scale-up tower measurements to obtain regional-scale estimates of the carbon budget of Northern Great Plains grasslands. This phenomenologically-based method of upscaling will allow us to estimate regional fluxes more accurately, to identify and map sources and sinks of carbon in spatial and temporal space, and to monitor their changes in relation to modifications of climate and management.

MATERIALS AND METHODS

Grasslands of the Northern Great Plains of North America (Fig. 1) are principally found within the 42nd (North-western Glaciated Plains), 43rd (North-western Great Plains), and 25th (northern part of the Western High Plains) Omernick ecoregions (Omernik, 1987; McMahon et al., 2001). These grasslands, described by the loose term ‘mixed grasslands’, possess both C₃ and C₄ species thereby exploiting both warm summer periods and cooler spring and fall seasons (Tieszen et al., 1997). Their productivity, however, may still be limited by the length of the growing season, which is interrupted by a long winter ‘dormant season’ when air temperature may drop below −20 °C and soil may cool below −10 °C. On the other hand, high summer precipitation and its efficient use due to lower temperatures and longer daylight periods allow northern grasslands to achieve productivity rates comparable to mixed prairies of the Southern Great Plains, which have longer growing seasons.

Since the mid-1990s, continuous measurements of CO₂ exchange have been conducted at five stations within the Northern Great Plains region: Mandan, ND, Miles City, MT, and Cheyenne, WY, belong to the USDA-ARS Agriflux Network (Svejcar et al., 1997), while towers at Lethbridge, Alberta, Canada, and Poplar (Fort Peck Indian Reservation), MT, belong to Ameriflux network (Baldocchi, 2003). Measurements at the Mandan, Miles City, and Cheyenne sites were obtained using the Bowen ratio — energy balance (BREB) technique (Dugas, 1993; Dugas et al., 1999). Measurements at Lethbridge and Fort Peck sites are based on the eddy covariance principle and follow the Ameriflux protocol (Baldocchi, 2003). Table 1 summarizes principal ecological characteristics of the sites; site-specific features of tower operation, data processing and gap filling are available (LeCain et al., 2000; Frank & Dugas, 2001; Meyers, 2001; Flanagan et al., 2002; Frank, 2002; Meyers, 2003; Haferkamp & MacNeil, 2004).

Modelling

Temporal dynamics of CO₂ in the air between the soil and the CO₂ sensor (in non-forest ecosystems usually located between 1.5 and 4 m above the ground) are the result of the interactions of processes summarized in Fig. 2. Let Air CO₂(t) be the total amount of CO₂ between the soil surface and the sensor; Pₛ the rate of gross photosynthesis; Rₑ the rate of total ecosystem respiration; and F, the CO₂ flux from atmosphere to ecosystem (when F > 0), or from ecosystem to atmosphere (when F < 0) at the sensor level. Total ecosystem respiration (Rₑ) is the sum of autotrophic and heterotrophic respiration (Rₐ and Rₜ), which in turn include above- and below-ground components. The conservation equation for the amount of CO₂ between the soil surface and the sensor (Air CO₂) becomes:
Figure 1 Grassland areas with seasonal NDVI patterns similar to those at flux towers for the locations and years used in this study (1998–2001). Representativeness of the tower sites, defined on the basis of Euclidian distance in the multidimensional ecological space with monthly NDVI values as coordinates, was estimated as: Cheyenne — 13%; Fort Peck — 1%; Lethbridge — 10%; Mandan — 6%; Miles City — 7%.

Table 1 Basic ecological characteristics of the study sites

<table>
<thead>
<tr>
<th>Site, ecosystem</th>
<th>Latitude, Longitude</th>
<th>Elevation, m</th>
<th>Precipitation, mm</th>
<th>Mean January/July Temperature, °C</th>
<th>Dominant plant species</th>
<th>Leaf Area Index (max)</th>
<th>Soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lethbridge, northern mixed/shortgrass prairie</td>
<td>49°42’ N, 112°56’ W</td>
<td>960</td>
<td>378</td>
<td>−8.6/18.0</td>
<td>Agropyron dasystachyum (Hook.) Scrib., Pascopyron smithii Rydb., Tragopogon dubius Scop.</td>
<td>0.9</td>
<td>Orthic dark-brown chernozem, clay-loam</td>
</tr>
<tr>
<td>Fort Peck, northern mixed prairie</td>
<td>48°18’ N, 105°06’ W</td>
<td>634</td>
<td>310</td>
<td>−11.9/18.0</td>
<td>Agropyron dasystachyum (Hook.) Scrib., Pascopyron smithii Rydb., Stipa spp.; Bouteloua gracilis (H.B.K.) Lag.</td>
<td>0.4</td>
<td>Sandy loam</td>
</tr>
<tr>
<td>Miles City, northern mixed prairie</td>
<td>46°18’ N, 105°58’ W</td>
<td>719</td>
<td>343</td>
<td>−8.7/23.5</td>
<td>Pascopyron smithii (Ryd.), Bouteloua gracilis (H.B.K.) Lag., Stipa comata Trin. and Rupr., Carex spp.</td>
<td>0.27</td>
<td>Eapa, fine-loamy, mixed-frigid Aridic Agrioborolls</td>
</tr>
<tr>
<td>Mandan, Mixed prairie</td>
<td>46°46’ N, 100°55’ W</td>
<td>518</td>
<td>404</td>
<td>−12.2/21.2</td>
<td>Bouteloua gracilis (H.B.K.) Lag., Stipa comata Trin and Rupr., Stipa viridula Trin., Carex spp., Pascopyrum smithii (Rybd) Love, Poa pratensis L.</td>
<td>0.48</td>
<td>Werner-Sen-Chama complex, loam, silt-loam and silty clay loam; Entic and Typic Haploborolls</td>
</tr>
<tr>
<td>Cheyenne, Mixed prairie</td>
<td>41°11’ N, 104°54’ W</td>
<td>1910</td>
<td>397</td>
<td>−2.5/17.5</td>
<td>Pascopyrum smithii (Ryd.), Stipa comata (Trin and Rupr.), Bouteloua gracilis ((H.B.K.) Lag.)</td>
<td>0.79</td>
<td>Ascalon sandy loam; mixed, mesic, Aridic Argiustoll</td>
</tr>
</tbody>
</table>
Similarly to BREB systems (Meyers, 2001), in some eddy covariance systems, measurements of the storage term are included (Flanagan et al., 2002), while in other cases the storage term is neglected, and approximation (3) is used when available, otherwise approximation (3) will be used.

Because processes controlling CO₂ exchange during daytime (when photon flux density Q > 0) and night-time (Q = 0) are different, for modelling purposes it is convenient to introduce two additional variables, daytime flux, P.

\[
P(t) = \begin{cases}
F(t), & Q(t) > 0 \\
0, & Q(t) = 0,
\end{cases}
\]

and daytime ecosystem respiration, \(R_e \). The major equations for subsequent analysis may be formulated as:

\[
P_s = P + R_e.
\]

Radiation use efficiencies

In the context of ecosystem-scale analysis, it is important to distinguish between physiological and ecological light-use efficiencies. Physiological coefficient of light-use efficiency of the gross primary productivity, \(\varepsilon_{phys} \), is defined as the ratio of gross photosynthetic assimilation, \(P_g \), to absorbed photosynthetically active radiation, \(Q_a \) (Larcher, 1995):

\[
\varepsilon_{phys} = \frac{P_g}{Q_a}.
\]

It is the most direct indicator of radiation use efficiency at the level of individual plants. Nevertheless, determination of \(\varepsilon_{phys} \) at the ecosystem scale is rather complicated because it is difficult to measure all necessary radiation components in the plant canopy. Although approaches to estimate \(Q_a \) through both direct and indirect measurements are currently under development (Monteith, 1994; Asner et al., 1998; Sinclair & Muchow, 1999; Asner et al., 2003), serious difficulties of precise estimation of absorbed radiation and, consequently, of \(\varepsilon_{phys} \) remain (e.g. Demetriades-Shah et al., 1992, 1994).

As an alternative to \(\varepsilon_{phys} \), ecological radiation use efficiency, \(\varepsilon_{ecol} \), is defined as a ratio of gross productivity to total incoming photosynthetically active radiation (Odum, 1959; Cooper, 1970; Austin et al., 1978; Colinvaux, 1993; Wofsy et al., 1993):

\[
\varepsilon_{ecol} = \frac{P}{Q_{tot}}.
\]

In contrast to \(\varepsilon_{phys} \), \(\varepsilon_{ecol} \) depends not only on physiological plant properties but also on such ecosystem-scale characteristics as above-ground green biomass, leaf area index, etc. For example, a sparse stand with certain physiological light-use efficiency \(\varepsilon_{phys} \) will have lower ecological efficiency \(\varepsilon_{ecol} \) than a more dense stand with the same value of \(\varepsilon_{phys} \). Following Wofsy et al. (1993) who described \(\varepsilon_{ecol} \) as a ‘well defined property of the ecosystem’, in this paper, we will use ecological efficiency to compare light-use efficiency in different ecosystems (later in this paper ecological efficiency will be denoted by \(\varepsilon \) without a subscript).

Light-response functions and their parameterization

The daytime CO₂ flux, \(P \), may be influenced by a variety of factors, however, photosynthetically active radiation, \(Q \), is usually the dominant driver. Our experience, based on the analysis of thousands of daily data sets for different ecosystem types shows that only in special circumstances (drought, extreme heat or cold, nutrient deficiency, pests and disease, etc.) do other factors assume the leading role in determining daytime CO₂ exchange.

To describe the general relationship of the daytime flux, \(P \), to photosynthetically active radiation, \(Q \), and, if necessary, its other factors, however, photosynthetically active radiation, \(Q \), is usually the dominant driver. Our experience, based on the analysis of thousands of daily data sets for different ecosystem types shows that only in special circumstances (drought, extreme heat or cold, nutrient deficiency, pests and disease, etc.) do other factors assume the leading role in determining daytime CO₂ exchange.

In BREB towers, where CO₂ flux is measured at approximately 1.5 m height, determination of the storage term is not included in the measurement protocol, and the flux \(F \) is approximated as:

\[
F = P_s - R_e.
\]

In some eddy covariance systems, measurements of the storage term are included (Flanagan et al., 2002), while in other cases the storage term is neglected, and approximation (3) is used similarly to BREB systems (Meyers, 2001). In the following consideration, the term \(F \) is assumed to include the storage correction, when available, otherwise approximation (3) will be used.

Because processes controlling CO₂ exchange during daytime (when photon flux density \(Q > 0 \)) and night-time (\(Q = 0 \)) are different, for modelling purposes it is convenient to introduce two additional variables, daytime flux, \(P \):

\[
\frac{dCO_2}{dt} = F + R_e - P.
\]

From this it immediately follows that the flux of CO₂ from the atmosphere to ecosystem, \(F \), measured by the sensor, is equal to the difference between gross productivity and ecosystem respiration plus the storage term:

\[
F = P_s - R_e + \frac{dCO_2}{dt}.
\]

In BREB towers, where CO₂ flux is measured at approximately 1.5 m height, determination of the storage term is not included in the measurement protocol, and the flux \(F \) is approximated as:

\[
F = P_s - R_e.
\]

\[
P(t) = \begin{cases}
F(t), & Q(t) > 0 \\
0, & Q(t) = 0,
\end{cases}
\]

and daytime ecosystem respiration, \(R_e \). The major equations for subsequent analysis may be formulated as:

\[
P_s = P + R_e.
\]
factors-predictors, $\{X_i\}$, we use the concept of the ecosystem-scale light-response function:

$$P = P(Q, X_1, X_2, \ldots, X_j; a_1, a_2, \ldots, a_p),$$

(8)

where $\{a_i, i = 1, \ldots, p\}$ are numerical parameters. We have found that of the great variety of light-response relationships $P(Q, \ldots)$ available in the literature, the nonrectangular hyperbolic function (Prioul & Chartier, 1977):

$$P(Q; \alpha, \beta, \gamma, \theta) = \frac{1}{20} \left(\frac{\alpha Q + \beta - \sqrt{(\alpha Q + \beta)^2 - 4\alpha \beta \theta Q}}{\gamma} \right) - \gamma,$$

(9)

and its soil temperature (T_s) dependent modification describing the hysteresis of the radiation-flux relationship:

$$P(Q, T_s; \alpha, \beta, \gamma, \theta, \kappa) = \frac{1}{20} \left(\frac{\alpha Q + \beta - \sqrt{(\alpha Q + \beta)^2 - 4\alpha \beta \theta Q}}{\gamma e^{\kappa T_s}} \right) - \gamma,$$

(10)

are especially convenient tools to describe patterns of light-response of ecosystem-scale fluxes at the 20–30 min time step during non-rainy days (Gilmanov, 2001; Gilmanov et al., 2003a, 2003b, 2004). Interpretation of parameters in equations 9 and 10 are well known: α is the initial slope of the light response curve, β is its plateau parameter, equal to the maximum rate of gross photosynthesis, γ is the respiration term, and θ is the curvature parameter ($0 \leq \theta \leq 1$), modifying the shape of light-response curve from hyperbolic at $\theta = 0$ to linear at $\theta = 1$. The coefficient κ in the exponential term of equation 10 describes the strength of the hysteresis of the light-response curve.

Parameters $\alpha, \beta, \gamma, \theta$, and κ of equations 9 and 10 that provide the best fit for daytime fluxes were identified using the 'Global Optimization' package of the Mathematica® system (Loehle Enterprises, 2001). Examination of seasonal dynamics showed that parameters $\alpha, \beta, \gamma, \theta$, and, to a lesser extent, κ, have distinct seasonal patterns, $\alpha(t)$, $\beta(t)$, $\gamma(t)$, and $\theta(t)$, which can be used for gap-filling purposes.

Estimating R_d from daytime flux measurements

Following Marshall & Biscoe (1980), we estimated daytime ecosystem respiration, R_d, using the γ parameter of the light-response function (9) or $\gamma e^{\kappa T_s}$ (10). Comparing daytime respiration estimates thus obtained with directly measured night-time fluxes (Gilmanov et al., 2003a, 2003b, 2004) demonstrated that light-curve derived estimates of γ are in fair agreement with values measured by tower during night (R_n). Combining R_d estimates with measured R_n values results in 24 h ecosystem respiration values $R_d = R_d + R_n$. Integration of $P(t)$ from sunrise to sunset for every calendar day j gives daytime production, $P_d(j)$, which combined with daytime respiration integral, $R_d(j)$ leads to estimation of daily gross primary production, $P_g(j)$:

$$P_g(j) = P_d(j) + R_d(j).$$

(11)

While the classical rectangular light-response model $P(Q) = \alpha Q \beta/((\alpha Q + \beta)^2) - \gamma$ typically overestimates daytime respiration, R_d, due to its inability to describe the curvature of the $P(Q)$ relationship, estimates from non-rectangular hyperbolic eqn. (10) may also lead to overestimation of R_d because (especially under drought stress) a decrease of P corresponding to the lower branch of the hysteresis loop may in fact be caused not only by an increase in respiration rate due to higher temperature (described by the term $\gamma e^{\kappa T_s}$) but also to a decrease in the rate of photosynthetic accumulation, e.g. as the result of stomatal regulation.

Annual CO₂ budgets

Finally, plotting the curves of daily integrals of P_d, P_g, and F on the same graph provides complete characterization of the seasonal dynamics of ecosystem CO₂ exchange (see Fig. 7a–d below). Note that the area between the P_d and F curves is equal to total ecosystem respiration, R_n, while areas between P_d and P_g and F correspond to daytime and night-time respiration totals, respectively.

Flux–NDVI relationship

During the three-decade long history of studies, considerable progress has been made in understanding the relationships among the extensive (e.g. biomass, leaf area, moisture content) and intensive (e.g. photosynthesis, evapotranspiration, respiration, net primary productivity, net CO₂ exchange) characteristics of terrestrial ecosystems, on the one side, and various remotely sensed variables (indices), on the other side. Compared to early studies relating satellite spectral variables to biomass of various ecosystem types (Tucker et al., 1983; Prince & Tucker, 1986), contemporary researchers are using remotely sensed indices to differentiate a wide array of biophysical properties of vegetation surfaces in terms of quality and quantity of biomass, its phenological status, moisture content, and productivity characteristics. Correlative and functional relationships were established between vegetation indices and fluxes of energy, water, and carbon dioxide in green canopies of different communities (Bartlett et al., 1990; Gannon et al., 1995; Veroustraete et al., 1996; Frank & Karn, 2003; Xiao et al., 2004). Normalized difference vegetation index (NDVI) is defined as (Rouse et al., 1973):

$$\text{NDVI} = (R_{sw} - R_{nd})/(R_{sw} + R_{nd}),$$

(12)

where R_{sw} and R_{nd} are reflectances in the near-infrared and red spectral bands, respectively. Yoder & Waring (1994) and Gannon et al. (1995) identified NDVI as quantifying potential photosynthetic activity or an indicator or physiological change at the canopy level. NDVI became the vegetation index most widely used in the context of ecosystem studies because it was shown to be closely related to biomass (Wylie et al., 2002; Boelman et al., 2003), biomass moisture (Chladil & Núñez, 1995), leaf area index (See et al., 1995; Gower et al., 1999), absorption of photosynthetically active radiation (Hall et al., 1995; Gower et al., 1999), trends of photosynthesis and transpiration (Running & Nemani, 1988; Slayback et al., 2003), respiration (Boelman et al., 2003; Wylie et al., 2003) and CO₂ uptake (Frank & Karn, 2003;
Wylie et al., 2004). On the other hand, NDVI has been shown to be sensitive to view angle effects (Epiphanio & Huete, 1995), standing dead or litter biomass (Huete & Jackson, 1987), saturation at high LAI (Gao et al., 2000), and soil and atmospheric effects. The Soil Adjusted Vegetation Indices (SAVI) and other SAVI related indices attempt to minimize soil background effects while the Enhanced Vegetation index (EVI) attempts to minimize both atmospheric and soil effects (Hue et al., 1997). However, SAVI was found to be more sensitive to view angle than NDVI (Epiphanio & Huete, 1995). Broge & Leblanc (2001) found NDVI to outperform SAVI on low or moderate levels of LAI, which are more typical for arid and semiarid rangelands. Purevdoj et al. (1998) found both a SAVI index and NDVI to track rangeland vegetation cover the best over a wide range of grass densities and Seen et al. (1995) found NDVI to track LAI well when atmospheric effects were minimized. Similarly, according to unpublished data by Gallo et al. (2004), comparison of MODIS EVI and NDVI at 4347 random US grassland locations, shows a strong linear relationship between the two indices with no increased scatter in NDVI at low index values where soil backgrounds effects should be important, and a larger dynamic range of NDVI over EVI. Given the historical NDVI data sets on background effects should be important, and a larger dynamic range of NDVI well when atmospheric effects were minimized. Similarly, grass densities and seen rangeland vegetation cover the best over a wide range of NDVI (Epiphanio & Huete, 1995). Broge & Leblanc (2001) found NDVI to outperform SAVI on low or moderate levels of NDVI (Epiphanio & Huete, 1995). Broge & Leblanc (2001) found NDVI to outperform SAVI on low or moderate levels of NDVI (Epiphanio & Huete, 1995). Broge & Leblanc (2001) found NDVI to outperform SAVI on low or moderate levels of NDVI (Epiphanio & Huete, 1995). Broge & Leblanc (2001) found NDVI to outperform SAVI on low or moderate levels of NDVI (Epiphanio & Huete, 1995).

Our experience with analysis and modelling of the net CO₂ flux data sets from a number of CO₂ flux towers in grasslands and shrublands (Wylie et al., 2003; Gilmanov et al., 2004; Wylie et al., 2004) has also demonstrated rather weak relationships between F and spectral vegetation indices (e.g. NDVI), contrary to the earlier opinion by Bartlett et al. (1990). We found that daytime CO₂ flux integrals (Pg) are more closely correlated with NDVI, than 24-h F integrals (Wylie et al., 2003). With the emergence of the methods for estimation of daytime ecosystem respiration based on daytime flux measurements using light response function analysis allowing net CO₂ flux partitioning into Pg and Rg components (Gilmanov, 2001; Suyker & Verma, 2001; Falge et al., 2002; Gilmanov et al., 2004; Xu & Baldocchi, 2004), the first long-term data sets of Pg and Rg values became available. Analysis of these data sets in relation to vegetation indices revealed significantly higher correlations between Pg and NDVI than between Pg and NDVI (the latter, in its turn, is more highly correlated with NDVI than 24-h net CO₂ flux integral) (Wylie et al., 2003; Gilmanov et al., 2004).

To examine relationships between ecosystem-scale CO₂ exchange and remotely-sensed NDVI we used data from the SPOT VEGETATION dataset integrated over 10-day time steps. More specifically, SPOT VEGETATION NDVI data were represented by temporally smoothed (Swets et al., 1999) 10-day maximum value composite NDVI values (http://www.vgt.vito.be/). To match this level of aggregation, corresponding 10-day statistics for Q, Pg, Pd, Rg, and other variables (temperature, precipitation, moisture, etc.) were calculated. Analysis of the relationships of gross primary productivity and ecosystem respiration to NDVI and other environmental factors indicates that combining NDVI with other factors may further improve predictive power of models for Pg and Rg compared to models based only on NDVI. Formally speaking, we are looking for models in the form:

\[P_g = f_2(NDVI, X_1, X_2, \ldots, X_n) + \varepsilon_p \]

\[R_g = f_2(NDVI, Y_1, Y_2, \ldots, Y_m) + \varepsilon_R \]

where \(\{X_i\}, i = 1, \ldots, n\) are additional predictors for photosynthesis, \(\{Y_j\}, j = 1, \ldots, m\) denote additional predictors for ecosystem respiration, \(f_p(NDVI, X_1, X_2, \ldots, X_n) \) and \(f_R(NDVI, Y_1, Y_2, \ldots, Y_m) \) are multivariate functions to be identified, and \(\varepsilon_p \) and \(\varepsilon_R \) are random error terms with certain stochastic characteristics.

It should be emphasized that within the framework of a ‘black box’ approach when only external driving factors (e.g. meteorological variables) are allowed as members of the sets \(\{X_i\} \) and \(\{Y_j\} \), the chances of finding models (13) and (14) with acceptable predictive power might not be very high. Nevertheless, these data sets leaving wide room for calibration of model parameters. Nevertheless, even most recent models of this type occasionally demonstrate errors as high as several hundreds of per cent when compared with the tower flux measurements (Verostraete et al., 2004). In contrast, in those rare cases when \(P_g \) data were available for validation, multiplicative radiation-use efficiency models show poor agreement with tower flux-based \(P_g \) curves (e.g. Ruimy et al., 1996; Turner et al., 2003b).

Global Ecology and Biogeography, 14, 271–292, © 2005 Blackwell Publishing Ltd
chances are improved by switching to the ‘grey box’ models, when the input data sets \(X_i\) and \(Y_j\) are allowed to include variables characterizing internal state of the ecosystem such as green biomass (leaf area index), soil water content, soil temperature, stage of phenological development, etc., as well as their remotely-sensed surrogates such as NDVI.

RESULTS AND DISCUSSION

Light-response functions

Light response of daytime \(CO_2\) fluxes can be fit by the non-rectangular hyperbolae (9), as illustrated by Fig. 3, for various sites characterizing days with favourable conditions (e.g. no moisture stress) and high photosynthesis. On days with substantial drought stress, a hysteresis loop is observed on the light-response curves, so that the morning branch of the \(P(Q)\) curve lies higher than the evening branch (Fig. 4a,b,c,d,e left). In such cases, daytime flux dynamics are better described by the light-response function \(P(Q, Ts)\) depending not only on photosynthetically active radiation \((Q)\) but also on soil temperature \((Ts)\).

The parameters of light-response functions exhibited seasonal patterns of variation at all sites (Fig. 5). These patterns are characterized by the maximum values of the apparent quantum yield, \(\alpha\); the maximum photosynthetic rates, \(\beta\); and the daytime ecosystem respiration values, \(\gamma\), occurring at the peak of the season (June–July). This pattern, however, is complicated by the fluctuations reflecting weather peculiarities during portions of some seasons. Maximum weekly average values for all three parameters were observed for the most productive Cheyenne site: \(\alpha_{\text{max},\text{wk}} = 1.50\, \text{g CO}_2\, (\text{mol quanta})^{-1} = 0.034\, \text{mol CO}_2\, (\text{mol quanta})^{-1}\); \(\beta_{\text{max},\text{wk}} = 1.25\, \text{mg CO}_2\, \text{m}^{-2}\, \text{s}^{-1}\), and \(\gamma_{\text{max},\text{wk}} = 0.275\, \text{mg CO}_2\, \text{m}^{-2}\, \text{s}^{-1}\). Parameters \(\alpha\), \(\beta\) and \(\gamma\) established in this study for Northern Great Plains grasslands are definitely lower than those determined by Luo et al. (2000) for the sunflower culture under mesocosm conditions. They do lie, however, between the values established for sagebrush steppe in the US Intermountain West (Gilmanov et al., 2003a) and true steppe in Kazakhstan (Gilmanov et al., 2004) at the lower end and the values for mixed prairie, pasture, tallgrass prairie and the winter wheat crop in Oklahoma (Gilmanov et al., 2003b) at the upper end.

We evaluated our light-response estimates of daytime respiration, \(\gamma_{\text{day}}\), by comparing them with directly measured night-time respiration rates, \(\gamma_{\text{night}}\) (Fig. 6). In all five cases, close linear relationships between \(\gamma_{\text{day}}\) and \(\gamma_{\text{night}}\) were observed (Table 2) with \(R^2\) coefficients from 0.64 (Mandan) to as high as 0.95 (Lethbridge). On all the five graphs, more points occur above the 1 : 1 line than below it, indicating that on average, estimated daytime respiration

![Figure 3](image-url)
Figure 3 Light-response curves for days with high productivity at several sites fit with a nonrectangular hyperbolic model (9). The Lethbridge site was dry in 2000 and wet in 1998.

Table 2 Statistical characteristics of regressions, \(\gamma_{\text{day}} = b_0 + b_1\gamma_{\text{night}}\), of the average daytime weekly ecosystem respiration rate estimated from light-response analysis on the average night-time weekly ecosystem respiration rate obtained from flux-tower measurements (Fig. 6).

<table>
<thead>
<tr>
<th>Site, ecosystem ((n = \text{number of data points}))</th>
<th>Adjusted (R^2)</th>
<th>Coefficient</th>
<th>Estimate (standard error)</th>
<th>Student’s (t)-statistic</th>
<th>(P)-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lethbridge, northern mixed/shortgrass prairie ((n = 186))</td>
<td>0.95</td>
<td>(b_0)</td>
<td>0.0024 (0.0009)</td>
<td>2.508</td>
<td>0.01301</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b_1)</td>
<td>1.1045 (0.0194)</td>
<td>56.893</td>
<td>0.00000</td>
</tr>
<tr>
<td>Fort Peck, northern mixed prairie ((n = 52))</td>
<td>0.75</td>
<td>(b_0)</td>
<td>0.0207 (0.0054)</td>
<td>3.862</td>
<td>0.00032</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b_1)</td>
<td>1.0555 (0.0856)</td>
<td>12.335</td>
<td>0.00000</td>
</tr>
<tr>
<td>Miles City, northern mixed prairie ((n = 58))</td>
<td>0.79</td>
<td>(b_0)</td>
<td>0.0167 (0.0046)</td>
<td>3.618</td>
<td>0.00064</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b_1)</td>
<td>0.9430 (0.0651)</td>
<td>14.477</td>
<td>0.00000</td>
</tr>
<tr>
<td>Mandan, mixed prairie ((n = 99))</td>
<td>0.64</td>
<td>(b_0)</td>
<td>0.0301 (0.0040)</td>
<td>7.477</td>
<td>0.00000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b_1)</td>
<td>0.7316 (0.0554)</td>
<td>13.210</td>
<td>0.00000</td>
</tr>
<tr>
<td>Cheyenne, mixed prairie ((n = 52))</td>
<td>0.83</td>
<td>(b_0)</td>
<td>0.0130 (0.0082)</td>
<td>1.5813</td>
<td>0.12013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b_1)</td>
<td>1.0649 (0.0668)</td>
<td>15.941</td>
<td>0.00000</td>
</tr>
</tbody>
</table>
γ_{day} is higher than the measured night-time respiration γ_{night}. To test the hypothesis that deviation of the regression line from the 1:1 diagonal is due to random errors only, ellipses describing the 99% critical zones for this hypothesis in the parametric space were constructed. At all sites, points (b_0, b_1) describing observed regressions $\gamma_{\text{day}} = b_0 + b_1 \gamma_{\text{night}}$ lie outside these ellipses, demonstrating that the regressions are different from the 1:1 relationships.

Figure 4 Bivariate light-response functions $P(Q, T_s)$ (right) provide a better fit of the observed pattern of diurnal CO$_2$ exchange for days with hysteresis on the $\{Q, P\}$ plots than monovariate non-rectangular hyperbolae $P(Q)$ (left): (a) Lethbridge (1998), day 222; (b) Fort Peck (2000), day 170; (c) Miles City 2000, day 155; (d) Mandan 2000, day 196; and (e) Cheyenne (1998), day 176.
Our observation that $\gamma_{\text{day}} > \gamma_{\text{night}}$ is in agreement with the results by Grahammer et al. (1991) who, using chamber measurements in tallgrass prairie in Kansas, estimated average rates of daytime and nighttime soil respiration during summer as $\gamma_{\text{soil,day}} = 0.12 \text{ g } \text{CO}_2 \text{ m}^{-2} \text{ s}^{-1}$ and $\gamma_{\text{soil,night}} = 0.10 \text{ g } \text{CO}_2 \text{ m}^{-2} \text{ s}^{-1}$. We propose that $\gamma_{\text{day}} > \gamma_{\text{night}}$ respiration even though some experimental data suggest that respiration of green leaves may be inhibited by light (Villar et al., 1994, 1995). Gifford’s (2003) review demonstrated that leaf mitochondrial respiration was unaffected by light (Loreto et al., 1999, 2001a, 2001b). It is presently well established that respiration of below-ground plant parts, soil micro-organisms, and fauna increases with soil temperature, as described by the exponential term in eqn. (10) (e.g. Krogh, 1914; Rabinowich, 1956; Howard, 1971; Lloyd & Taylor, 1994; Kirschbaum, 1995; Tjoelker et al., 2001; Burton et al., 2002). In addition, a number of studies using radiocarbon pulse labelling have demonstrated rapid connection of production of photosynthates and root respiration and exudation (Megonigal et al., 1999; Kuzyakov, 2002; Lu et al., 2002). For example, Kuzyakov & Domanski (2002) have found the isotopic label in soil microorganisms and exudates within the first hours after pulse labelling of ryegrass, with maxima of microbial and exudates 14C observed approximately 4 h after isotopic labelling. Our working hypothesis is that increased levels of below-ground plant and
heterotrophic soil (especially, rhizosphere) respiration during daytime, associated with increasing soil temperature and the production and translocation of photosynthates is greater than the inhibition of leaf respiration by light (if the latter is taking place at all), resulting in a higher rate of ecosystem respiration during the day than at night.

Seasonal/annual CO₂ budgets

Seasonal curves of P_g, P_d, and F for the five sites for selected years are shown in Fig. 7. Table 3 summarizes the estimates of seasonal (annual) flux integrals for all available sites and years. These estimates are in reasonable agreement with numbers for gross primary production and ecosystem respiration of non-forest ecosystems available in the literature (cf. Gilmanov et al., 2003a,b; Suyker et al., 2003; Xu & Baldocchi, 2004). Similar to southern prairies (Suyker et al., 2003) and Mediterranean grasslands (Xu & Baldocchi, 2004), the Northern Great Plains grasslands exhibit substantial variability of CO₂ exchange, and may switch from being significant carbon sinks during years with favourable precipitation to significant sources of carbon in water stress years (Table 3).

Radiation use efficiencies

As an integral characteristic of the plant production process, the daily coefficient of ecological radiation use efficiency, $\varepsilon = P_g/Q$,

![Figure 5 Continued.](image-url)
demonstrates significant seasonal and year-to-year variability. (Fig. 8). The moving weekly average of ε has more regular dynamics (solid line of Fig. 8), but, contrary to the anticipated unimodal pattern (Lethbridge 1998; Cheyenne 1998), in certain years it displays several distinct maxima (e.g. Lethbridge 2000; Fort Peck 2000; Miles City 2000–01; Mandan 1999–2001; Cheyenne 1998). The range of maximum daily light-use efficiencies in our study (0.014 to 0.032 mol CO$_2$ mol quanta$^{-1}$) is close to the
same range from literature data (0.015 to 0.041 mol CO$_2$ mol quanta$^{-1}$) (Table 4). The same is true for the range of maximum weekly light use efficiencies: our interval between 0.008 and 0.019 mol CO$_2$ mol quanta$^{-1}$ practically lies within the interval 0.009 to 0.028 mol CO$_2$ mol quanta$^{-1}$ of published data, which also include more productive grasslands. Our intervals for the average seasonal radiation use efficiency $\varepsilon_{\text{seas}} = P_g/Q_{\text{seas}}$ (0.0033 to 0.0057 mol CO$_2$ mol quanta$^{-1}$) and the average annual radiation P_g
Figure 8 Ecological radiation use efficiency $\varepsilon = \frac{P}{Q}$ at the five Northern Great Plains sites: (a) Lethbridge (1998–2001); (b) Fort Peck (2000) (2002); (c) Miles City (2000–01); (d) Mandan (1999–2001); (e) Cheyenne 1997–98. Circles — data for original days; solid line — seven day moving average.

Table 4 Maximum and average ecological radiation use efficiencies $\varepsilon = \frac{P}{Q}$ (mol CO$_2$ mol incoming quanta$^{-1}$) of selected non-forest ecosystems

<table>
<thead>
<tr>
<th>Site, ecosystem (years)</th>
<th>$\varepsilon_{\text{max}, \text{day}}$</th>
<th>$\varepsilon_{\text{max}, \text{week}}$</th>
<th>$\varepsilon_{\text{graver}}$</th>
<th>$\varepsilon_{\text{year}}$</th>
<th>Data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lethbridge, Alberta, mixed/shortgrass prairie (1998–2001)</td>
<td>0.022</td>
<td>0.011</td>
<td>0.0025</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td>Matador, Sascatchewan, northern mixed prairie</td>
<td>0.014</td>
<td>0.009</td>
<td>0.0041</td>
<td>0.0031</td>
<td>Coupland & Van Dyne (1979)</td>
</tr>
<tr>
<td>Fort Peck, Montana, northern mixed prairie (2000)</td>
<td>0.015</td>
<td>0.008</td>
<td>0.0033</td>
<td>0.0026</td>
<td>This study</td>
</tr>
<tr>
<td>Miles City, Montana, northern mixed prairie (2001)</td>
<td>0.024</td>
<td>0.014</td>
<td></td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td>Shortandy, Kazakhstan, true steppe (1998–2001)</td>
<td>0.015</td>
<td>0.009</td>
<td>0.0057</td>
<td>0.0038</td>
<td>Gilmanov et al. (2004)</td>
</tr>
<tr>
<td>Pawnee, Colorado, shortgrass steppe</td>
<td>0.032</td>
<td>0.019</td>
<td>0.0055</td>
<td>0.0039</td>
<td>This study</td>
</tr>
<tr>
<td>Mandan, North Dakota, mixed prairie (2001)</td>
<td>0.022</td>
<td>0.015</td>
<td>0.0057</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td>Cheyenne, Wyoming, mixed prairie (1998)</td>
<td>0.019</td>
<td>0.014</td>
<td>0.0072</td>
<td>0.0053</td>
<td>Gilmanov et al. (2003b)</td>
</tr>
<tr>
<td>Woodward, Oklahoma, mixed prairie</td>
<td>0.024</td>
<td>0.017</td>
<td>0.0059</td>
<td>0.0044</td>
<td>Gilmanov et al. (2003b)</td>
</tr>
<tr>
<td>Little Washita, Oklahoma, pasture in tall/mixed prairie (1997)</td>
<td>0.0077</td>
<td></td>
<td></td>
<td></td>
<td>Risser et al. (1981)</td>
</tr>
<tr>
<td>Osage, Oklahoma, tallgrass prairie</td>
<td>0.0235</td>
<td></td>
<td></td>
<td></td>
<td>Turner et al. (2003a)</td>
</tr>
<tr>
<td>Konza, Kansas, tallgrass prairie</td>
<td>0.031</td>
<td>0.026</td>
<td>0.0141</td>
<td>0.0091</td>
<td>Gilmanov et al. (2003b)</td>
</tr>
<tr>
<td>Shidler, Oklahoma, tallgrass prairie (1997)</td>
<td>0.039</td>
<td></td>
<td></td>
<td></td>
<td>Grace et al. (1998)</td>
</tr>
<tr>
<td>South-west Amazonia, Brazil, tropical pasture</td>
<td>0.0173</td>
<td></td>
<td></td>
<td></td>
<td>Turner et al. (2003a)</td>
</tr>
<tr>
<td>AGRO, Illinois, corn field</td>
<td>0.041</td>
<td>0.028</td>
<td>0.0121</td>
<td></td>
<td>Gilmanov et al. (2003b)</td>
</tr>
</tbody>
</table>
Flux–NDVI relationships

Statistical analysis of the relationships among the 10-day averages \(P_g, P_d, \) and \(R_e \) as dependent variables, and the 10-day Normalized Difference Vegetation Index (NDVI) composites and other factors reveals complex interrelationships. First, the correlation between the average 10-day gross primary productivity \((P_g) \) and the 10-day composite NDVI is significantly higher than the correlation between the average 10-day daytime CO\(_2\) flux totals \((P_d) \) and the 10-day composite NDVI. As illustrated in the second and third columns of Table 5, correlation coefficients \(r(P_g, NDVI) \) vary from 0.68 to 0.88, while coefficients \(r(P_d, NDVI) \) lie in the range 0.21 to 0.73. In all cases \(r(P_g, NDVI) > r(P_d, NDVI) \). To test the significance of this inequality, we used the test for comparison of correlation coefficients suggested by Steiger (1980), which is also applicable for correlated variables (note high correlations \(r(P_g, P_d) \) between corresponding \(P_g \) and \(P_d \) values in column 4, Table 5). Results presented in Table 5 show that for all sites the observed \(r \)-value, \(t_{obs} \), is considerably higher than the 5\% value of the Student’s criterion with \(n-3 \) degrees of freedom \(t_{crit}(0.95; n-3) \). In fact, \(P \)-values for all sites (last column) are less than 0.1\%, indicating significance of the observation that \(P_g \) is more highly correlated with NDVI than \(P_d \).

The important practical implication for scaling-up algorithms is that gross primary productivity, \(P_g \), derived from daytime flux measurements using light-response analysis is a more appropriate variable than total net daytime flux, \(P_d \). These findings are in agreement with observations of higher \(P_g-NDVI \) correlations compared with \(P_d-NDVI \) correlations in a true steppe ecosystem in northern Kazakhstan (Gilmanov et al., 2004; Wylie et al., 2004).

Ten-day average total ecosystem respiration \((R_e) \) was also closely correlated with NDVI composites, with \(r \)-values varying from 0.75 to 0.88 (Table 6). This is not surprising, because a substantial part of total ecosystem respiration is represented by plant biomass respiration which is directly related to green above-ground biomass and, consequently, to NDVI (cf. Gifford, 2003). However, \(R_e \) is also related to such environmental factors as precipitation, soil temperature, and soil water content. We have used available data sets to identify phenomenological models linking \(R_e \) to NDVI and other environmental drivers.

In spite of significant correlation, there is a scatter in both the \(P_g-NDVI \) and the \(R_e-NDVI \) relationships. Part of this scatter is probably due to totally random effects. On the other hand, there are, obviously, other factors, e.g. photosynthetically active radiation, precipitation, soil water content, and soil temperature, that affect production and respiration of the grassland ecosystem, in addition to NDVI. For instance, at the Mandan site, a linear function of NDVI explains 53\% of the variability in 10-day gross primary productivity and has a standard error \(SE = 3.15\) g CO\(_2\) m\(^{-2}\) d\(^{-1}\). Including photosynthetically active radiation, \(Q \), provides improvement of the model. Figure 9 shows the response surface of the gross photosynthesis of the mixed prairie at Mandan to photosynthetic radiation, \(Q \), and NDVI, described by the model:

\[
P_g = \frac{\varphi Q}{(1 + e^{\lambda - \mu NDVI})} + e_p, \tag{15}\]

where \(e_p \) denotes the residual error term. With estimated parameters \(\varphi = 0.342\) g CO\(_2\) (mol quanta\(^{-1}\)), \(\lambda = 3.954 \), and \(\mu = 8.759 \), the model, obtained using nonlinear regression fitted to a 10-day aggregated Mandan (1999–2001) data set, is characterized by the corrected R-squared value \(R^2_{cor} = 0.65 \) and the standard error \(SE = 2.67\) g CO\(_2\) m\(^{-2}\) d\(^{-1}\). In addition to visual evaluation of the

Table 5 Comparison of correlation coefficients between \(P_g \) and NDVI and between \(P_d \) and NDVI at the 10-day scale

<table>
<thead>
<tr>
<th>Site, ecosystem (n = number of data points)</th>
<th>(r(P_g, NDVI))</th>
<th>(r(P_d, NDVI))</th>
<th>(t_{obs}(0.95; n-3))</th>
<th>(t_{crit})</th>
<th>(P)-value ((t_{obs}, n-3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lethbridge, northern mixed shortgrass prairie (n = 129)</td>
<td>0.8061</td>
<td>0.6703</td>
<td>0.9487</td>
<td>1.657</td>
<td>9.305</td>
</tr>
<tr>
<td>Fort Peck, northern mixed prairie (n = 34)</td>
<td>0.6786</td>
<td>0.2143</td>
<td>0.8020</td>
<td>1.696</td>
<td>8.448</td>
</tr>
<tr>
<td>Miles City, northern mixed prairie (n = 43)</td>
<td>0.8768</td>
<td>0.4441</td>
<td>0.7159</td>
<td>1.684</td>
<td>8.756</td>
</tr>
<tr>
<td>Mandan, mixed prairie (n = 68)</td>
<td>0.8528</td>
<td>0.7291</td>
<td>0.9334</td>
<td>1.669</td>
<td>5.593</td>
</tr>
<tr>
<td>Cheyenne, mixed prairie (n = 36)</td>
<td>0.7890</td>
<td>0.6702</td>
<td>0.9512</td>
<td>1.692</td>
<td>3.920</td>
</tr>
</tbody>
</table>

Table 6 Correlations (\(r \)) and regressions \((R_e = b_0 + b_1NDVI) \) between average 10-day ecosystem respiration \((R_e) \) and 10-day NDVI composite

<table>
<thead>
<tr>
<th>Site, ecosystem (n = number of data points)</th>
<th>Correlation coefficient (r)</th>
<th>(P)-value</th>
<th>Intercept (b_0)</th>
<th>Slope (b_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lethbridge, northern mixed shortgrass prairie (n = 128)</td>
<td>0.876</td>
<td>< 0.001</td>
<td>-1.554</td>
<td>20.142</td>
</tr>
<tr>
<td>Fort Peck, northern mixed prairie (n = 34)</td>
<td>0.880</td>
<td>< 0.001</td>
<td>-2.374</td>
<td>24.218</td>
</tr>
<tr>
<td>Miles City, northern mixed prairie (n = 41)</td>
<td>0.765</td>
<td>< 0.001</td>
<td>-7.990</td>
<td>52.345</td>
</tr>
<tr>
<td>Mandan, mixed prairie (n = 79)</td>
<td>0.752</td>
<td>< 0.001</td>
<td>0.536</td>
<td>11.595</td>
</tr>
<tr>
<td>Cheyenne, mixed prairie (n = 36)</td>
<td>0.795</td>
<td>< 0.001</td>
<td>-5.830</td>
<td>38.522</td>
</tr>
</tbody>
</table>
model fit by comparing the data points with the surface on Fig. 9a, direct comparison is provided in Fig. 9b by the scatter plot of the observed and predicted values with the 1 : 1 diagonal.

Further improvement of the description of gross primary productivity is achieved by modification of the model (15) to include bell-shaped dependence on soil water content W_s, resulting in the model:

$$P_t = \frac{\theta Qe^{-\lambda W_s - \xi \theta}}{1 + e^{-\lambda NDVI}} + \epsilon_p$$ \hspace{1cm} (16)

With parameters $\theta = 0.3844$ g CO$_2$ (mol quanta)$^{-1}$, $\lambda = 3.886$ (dimensionless), and $\mu = 8.169$ (NDVI units)$^{-1}$, $\xi = 4.588$ (dimensionless), and $\theta = 0.407$ m3 m$^{-3}$, the model is characterized by $R_{corr}^2 = 0.68$ and $SE = 2.61$ g CO$_2$ m$^{-2}$ d$^{-1}$. A scatter diagram of the observed vs. predicted P_t values for model (16) is presented in Fig. 10. Compared to model (15), this model has somewhat higher R_{corr}^2 and lower SE, though for practical applications the simpler model (15) explains a sufficient part of the P_t variability to be acceptable.

Because the empirical models (15) and (16) combine information on the phenomenology of relationships of grassland P_t with photosynthetically active radiation, NDVI, and soil water (where available), we estimated their parameters for all Northern Great Plains sites (Table 7). For all three sites for which soil water data were available (Lethbridge, Mandan, and Cheyenne), model (16) provided the best fit, with R_{corr}^2 values above 60%. For the Fort Peck northern mixed prairie and the Miles City mixed prairie, where W_s data were not available, model (15) performed well, with combined effect of radiation and NDVI explaining 60% and 64% of the variation of 10-day average gross primary productivity, respectively. It should be noted that the top-soil water variable, W_s used in this analysis, does not provide complete characterization of the water availability and its effect on ecosystem productivity. Apparently, data on water content in the whole rooting zone, W_s, when available, might further improve the predictive power of phenomenological models $P_t = f(Q, NDVI, W_s, ...)$.

From previous studies of the phenomenology of ecosystem respiration, it is known that R_t is directly related to the amount of the autotrophic and heterotrophic biomass and, consequently, leaf area index (LAI) and NDVI (Monsi & Saeki, 1953; McCree, 1970; Bunce, 1989; Norman et al., 1992; Polley et al., 1992; Hanan et al., 1997; Amthor & Baldocchi, 2001; Gifford, 2003). On the other hand, the metabolic activity of plant, microbial, and animal biomass is controlled by environmental drivers such as temperature, moisture, etc. While detailed characterization of the interaction of these extensive and intensive factors in determining dynamics of ecosystem respiration may apparently be implemented only in rather comprehensive simulation models, analysis of our data revealed statistically significant phenomenological relationships between R_t and other factors at the 10-day time scale. As we have seen in Table 6, linear functions of NDVI alone explain more than 50% of the variability of ecosystem respiration of northern Great Plains rangelands at the 10-day scale. Multivariate linear regression analysis has indicated that atmospheric precipitation, PCPN, and radiation, Q, complement NDVI most effectively, so that linear functions of these variables explain 63 to 87% of the dispersion of 10-day R_t values with SE values from 1.17 to 3.60 g CO$_2$ m$^{-2}$ d$^{-1}$.

Figure 9 (a) Response function $P_t(Q, NDVI)$ describing relationship of the 10-day average gross primary productivity of the mixed prairie at Mandan (1999–2001 data) to 10-day average daily photon flux totals (Q, mol quanta m$^{-2}$ d$^{-1}$) and 10-day NDVI composites (NDVI) described by equation 15 with parameters presented in Table 7, and (b) the scatter plot of the observed vs. predicted P_t values. The dashed line shows the 1 : 1 diagonal.

Figure 10 Scatter plot of observed P_t values for the Mandan site against estimates predicted by model (15) relating P_t to photosynthetically active radiation, Q, NDVI, and topsoil moisture, W_s. The dashed line shows the 1 : 1 diagonal.
To investigate the effect of nonlinearity of the relationship between biomass and \(\text{NDVI} \), and consequently, between \(R_e \) and \(\text{NDVI} \) (cf. Turner et al., 1999; Wylie et al., 2002), we used a nonlinear (with respect to \(\text{NDVI} \)) model:

\[
R_e (\text{NDVI}, \text{PCPN}, Q) = \frac{\rho}{1 + e^{\lambda \text{NDVI}}} + \mu \text{PCPN} + \nu Q + \psi e_e
\]

(17)

where \(\lambda, \mu, \nu, \rho, \) and \(\psi\) are empirical parameters, \(\rho = R_e(0, 0, 0)/(1 + e^\theta)\). Parameters of this model, estimated for all the sites, are listed in Table 8. As an illustration, Fig. 11 shows the response surface \(R_e(\text{NDVI}, \text{PCPN})\) and the scatter diagram of observed vs. predicted \(R_e\) values for the Fort Peck site. For all sites except Lethbridge, the model (17) provided better fit for ecosystem respiration data, demonstrating \(R^2\) values from 0.70 to 0.89 and \(SE\) values from 1.22 to 3.36 g CO\(_2\) m\(^{-2}\) d\(^{-1}\).

Previous studies of the phenomenology of ecosystem respiration have demonstrated bell-shaped dependences on temperature (which below 25 °C is reasonably approximated by the exponential or \(Q_{10}\)-type function) combined with saturated or bell-shaped relationships to soil water (Flanagan & Bunnell, 1976; Singh & Gupta, 1977; Davidson et al., 1998; Davidson et al., 2000; Mielnick & Dugas, 2000; Frank et al., 2002). We have found that the simple model combining exponential response to soil temperature, \(T_s\), with bell-shaped response to soil water, \(W_s\):

\[
R_e = R_0 e^{\xi W_s - \psi W_s^2} + e_e
\]

(18)

Table 7 Site-specific estimates of the parameters of equation 17 relating 10-day average gross primary productivity \((P_g)\) to 10-day averages of photon flux density \((Q)\), \(\text{NDVI}\), and top-soil water content \((W_s)\)

<table>
<thead>
<tr>
<th>Site, ecosystem ((n = \text{number of data points}))</th>
<th>(\varphi)</th>
<th>(\lambda)</th>
<th>(\mu)</th>
<th>(\xi)</th>
<th>(\theta)</th>
<th>(R^2)</th>
<th>(R^2_{\text{corr}})</th>
<th>(SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lethbridge, northern mixed shortgrass prairie ((n = 77))</td>
<td>0.577</td>
<td>6.78</td>
<td>29.08</td>
<td>38.89</td>
<td>0.364</td>
<td>0.92</td>
<td>0.85</td>
<td>1.79</td>
</tr>
<tr>
<td>Fort Peck, northern mixed prairie* ((n = 31))</td>
<td>0.383</td>
<td>2.85</td>
<td>6.81</td>
<td>0</td>
<td>0</td>
<td>0.78</td>
<td>0.60</td>
<td>2.19</td>
</tr>
<tr>
<td>Miles City, northern mixed prairie ((n = 44))</td>
<td>0.202</td>
<td>8.59</td>
<td>37.42</td>
<td>0</td>
<td>0</td>
<td>0.80</td>
<td>0.64</td>
<td>1.65</td>
</tr>
<tr>
<td>Mandan, mixed prairie ((n = 64))</td>
<td>0.384</td>
<td>3.89</td>
<td>8.01</td>
<td>4.60</td>
<td>0.406</td>
<td>0.82</td>
<td>0.68</td>
<td>2.61</td>
</tr>
<tr>
<td>Cheyenne, mixed prairie ((n = 36))</td>
<td>0.543</td>
<td>5.15</td>
<td>15.05</td>
<td>32.21</td>
<td>0.200</td>
<td>0.73</td>
<td>0.67</td>
<td>4.13</td>
</tr>
</tbody>
</table>

Table 8 Site-specific estimates of the parameters of equation 16 relating average total ecosystem respiration, \(R_e\), to composite \(\text{NDVI}\), precipitation, \(\text{PCPN}\), and photosynthetically active radiation, \(Q\), at the 10-day scale

<table>
<thead>
<tr>
<th>Site, ecosystem ((n = \text{number of data points}))</th>
<th>(\rho)</th>
<th>(\lambda)</th>
<th>(\mu)</th>
<th>(\nu)</th>
<th>(\psi)</th>
<th>(R^2)</th>
<th>(R^2_{\text{corr}})</th>
<th>(SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lethbridge, northern mixed shortgrass prairie* ((n = 125))</td>
<td>4.757</td>
<td>6.534</td>
<td>23.84</td>
<td>0.068</td>
<td>0.051</td>
<td>0.83</td>
<td>0.68</td>
<td>1.47</td>
</tr>
<tr>
<td>Fort Peck, northern mixed prairie ((n = 34))</td>
<td>61.84</td>
<td>4.069</td>
<td>4.457</td>
<td>0.057</td>
<td>0</td>
<td>0.89</td>
<td>0.79</td>
<td>1.22</td>
</tr>
<tr>
<td>Miles City, northern mixed prairie ((n = 36))</td>
<td>10.11</td>
<td>5.696</td>
<td>21.39</td>
<td>0.075</td>
<td>0</td>
<td>0.74</td>
<td>0.55</td>
<td>1.97</td>
</tr>
<tr>
<td>Mandan, mixed prairie ((n = 60))</td>
<td>1049.5</td>
<td>6.982</td>
<td>3.198</td>
<td>0.017</td>
<td>0</td>
<td>0.72</td>
<td>0.51</td>
<td>1.89</td>
</tr>
<tr>
<td>Cheyenne, mixed prairie ((n = 36))</td>
<td>13.85</td>
<td>7.01</td>
<td>21.51</td>
<td>0.022</td>
<td>0</td>
<td>0.70</td>
<td>0.49</td>
<td>3.36</td>
</tr>
</tbody>
</table>

*At the Lethbridge site, linear regression \(R_e = -2.16 + 12.12\text{NDVI} + 0.058\text{PCPN} + 0.77Q\) is characterized by \(R^2 = 0.86, SE = 1.17\text{ g CO}_2\text{ m}^{-2}\text{ d}^{-1}, F_{3,121} = 246.37 \text{ and } P < 0.00001\).

Figure 11 (a) Response function \(R_e(\text{NDVI}, \text{PCPN})\) describing relationship of the 10-day average total ecosystem respiration of the northern mixed prairie at Fort Peck (2000, 2002 data) to 10-day \(\text{NDVI}\) composite \((\text{NDVI}\) values\) and 10-day precipitation totals \((\text{PCPN}, \text{mm})\) described by equation 17 with parameters presented in Table 8, and (b) the scatter plot of the observed vs. predicted \(R_e\) values. The dashed line shows the 1 : 1 diagonal.
Table 9 Correlation coefficients (r) between average 10-day soil
temperature at 5 cm depth, \(T_s\), and 10-day composite \(NDVI\) at the
five study sites

<table>
<thead>
<tr>
<th>Site</th>
<th>Lethbridge</th>
<th>Fort Peck</th>
<th>Miles City</th>
<th>Mandan</th>
<th>Cheyenne</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r(T_s, NDVI))</td>
<td>0.73</td>
<td>0.92</td>
<td>0.50</td>
<td>0.93</td>
<td>0.65</td>
</tr>
</tbody>
</table>

provides a satisfactory description of the \(R_s(T_s, W_s)\) relationships
for all the sites when both \(T_s\) and \(W_s\) data available. Compared to
the linear and logistic models, model (17) provides poorer fit to
data \((R^2\) from 0.19 to 0.77 and SE from 1.58 to 4.56 g CO₂ m⁻² d⁻¹\).
Nevertheless, it allows us to estimate the exponential temperature
coefficient, \(K\), which provides quantitative characterization of the
partial response of ecosystem respiration to temperature. The average of \(K\)-value for all five sites, 0.063 (°C⁻¹) (range 0.037 to
0.082 (°C⁻¹)), is close to the value \(\frac{\ln(2)}{10} = 0.069 (°C^{-1})\) correspond-
ing to the standard physiological value of \(Q_{10} \approx 2\). It should be
noted here that higher \(Q_{10}\) values often reported in the literature,
as a rule do not reflect the partial temperature response in the
strict sense because of difficulties maintaining unchanged levels of
other factors.

Overall, \(NDVI\)-based models provided considerably better fit
to the respiration data than the temperature-based model (18).
The fact that \(NDVI\)-based models did not include temperature as
a significant additional predictor, and the temperature-based
models in most cases did not include \(NDVI\), may be explained by
high positive correlation \(r(T_s, NDVI)\) between soil temperature
and \(NDVI\) in the 10-day data (Table 9). Only at the Miles City
and Cheyenne sites characterized by lower \(r(T_s, NDVI)\) values
(0.50 and 0.65, respectively), did the inclusion of \(NDVI\) as an
additional predictor increase the fit.

Recently, Körner (2003a, 2003b) expressed serious concerns
regarding approaches to scaling-up of the results of the eddy
covariance tower flux measurements in forests. One of his points
— the need to generalize plot-based fluxes only to the areas with
similar dynamic parameters of carbon cycling — is also applicable
to non-forest ecosystems, including grasslands. Because \(NDVI\)
characterizes structural and functional ecosystem properties, we
think that the application of \(NDVI\)-based models (13)–(14)
derived from tower sites has the potential for robust extrapolation.
GIS layers of \(NDVI\) and other relevant predictors \(|X_i|, \mid Y_i|\)
for the pixels with similar temporal patterns and magnitudes
of \(NDVI\) as the flux towers and within ecologically similar eco-
regions (Fig.1) can spatially constrain the empirically based
method of upsampling tower CO₂ fluxes. This approach may be
considered as complementary to the dynamic simulation approach
including running a SWAT or biogeochemical simulation models
driven by meteorological, topographic, and remotely sensed data
in every pixel (or subsets of pixels) of the map (e.g. Nouvellon
et al., 2001; Liu et al., 2002).

An important distinction of our model relative to the con-
structions based on the radiation-use efficiency approach sensu
Monteith (e.g. Running et al., 1999; Verostraete et al., 2002) is
that our functions \(P_g(\ldots)\) and \(R_s(\ldots)\) are directly derived from
on-site and satellite measurements and do not include \(a priori\)
assumptions about the values and seasonal patterns of radiation-
use efficiency coefficients. According to Nouvellon et al. (2000)
these assumptions may lead to large estimation errors.

The most straightforward application of the multivariate
functions \(P_g(\ldots)\) and \(R_s(\ldots)\) is for scaling-up of CO₂ fluxes at
ecologically similar locations within the ecoregion and the year
of measurements. Portability of these phenomenological models
across the years requires additional testing with larger data sets.
However, the results for the Lethbridge data set, that includes
4 years of observations with \(R^2\) values sufficiently high for both
photosynthesis and respiration (Tables 7 and 8), provide encour-
agement and stimulate additional research.

CONCLUSIONS

Partitioning of the net CO₂ fluxes from the BREB and eddy cov-
ariance towers on the Northern Great Plains resulted in daytime
respiration estimates closely correlated with and consistently
higher than measured night-time respiration rates. Estimates of
gross primary production of Northern Great Plains ecosystems
based on these daytime respiration values are in agreement with
existing GPP estimates for other ecosystems in the climatic
gradient from shortgrass to tallgrass prairies. Significant positive
correlations of daytime flux totals \((P_g)\), daily gross primary
productivity \((P_g)\), and ecosystem respiration \((R_s)\) with NDVI were
established, correlation coefficients \(r(P_g, NDVI)\) being signifi-
cantly higher than \(r(P_g, NDVI)\). Our analysis demonstrated that
the phenomenological models \(P_g = f_p(NDVI, X_1, X_2, \ldots, X_n)\) and
\(R_s = f_s(NDVI, Y_1, Y_2, \ldots, Y_m)\) can be used to describe relation-
ships of gross primary productivity and ecosystem respiration to
\(NDVI\) and other environmental predictors. Sites with more rep-
resentative data sets (longer periods of observation and a wide
range of factors — Lethbridge, Mandan) produce models with
higher \(R^2\) and lower standard errors. Parameterization of these
models with data sets from Northern Great Plains flux sites that
will become available in the future, and their application to areas
with similar ecological conditions, may provide opportunities to
scale-up local tower CO₂ flux measurements to larger geographical
units using GIS data on the spatial distribution of vegetation
indices and other environmental factors. Taking into account the
paramount importance of gross primary productivity \((P_g)\) as a
functional ecosystem-scale characteristic, we strongly recom-

end partitioning of the flux tower data sets of net CO₂ fluxes
using light-response function analysis to provide measurement-
based data sets of \(P_g\) and \(R_s\) values required for both greater
mechanistic understanding and for modelling of the carbon cycle.

ACKNOWLEDGEMENTS

This study was made possible in part by the Science Applications
International Corporation (SAIC) under the US Geological
Survey (USGS) contract 03CRCN00001, Global Livestock Collab-
orative Research Support Program (GL/CRSP) funded by
USAID (PCE-G-00-98-00036-00), and the Collaborative CO₂
Flux Scaling Project funded through GL/CRSP, USDA’s Agricultural Research Service (USDA-ARS) Headquarters and National Program Staff, USDA-ARS Agriflux participants, and USGS Earth Surface Dynamics program. The authors thank Bradley Reed (EROS Data Center) for assistance with NDVI data, David Turner (Oregon State University, Corvallis) for additional information on light use efficiency in tallgrass prairie and corn field sites, Norman Bliss (EROS Data Center) for judicious and insightful editing, and Ruth Anne Doyle (EROS Data Center) for help with GIS and mapping.

REFERENCES

Prioul, J.L. & Chartier, P. (1977) Partitioning of transfer and

BIOSKETCHES

Tagir G. Gilmanov is a faculty member at the Department of Biology and Microbiology, South Dakota State University. His research focuses on post-processing CO₂ flux tower measurements including partitioning of the net CO₂ exchange into gross primary productivity and ecosystem respiration, modelling their relationships to on-site and remotely sensed factors, and scaling-up CO₂ fluxes from towers to landscapes and ecoregions. In his studies, he integrates methods of instrumental field measurements, phenomenological and mechanistic mathematical modelling, GIS and remote sensing.

Larry L. Tieszen is Deputy Manager of the International Program at the USGS/EROS Data Center where he develops research and development activities in support of global and international activities. His research as an academic emphasized photosynthesis in C₃ and C₄ grasses, grassland ecology, and biogeochemistry. He developed applications that used natural abundances of ¹³C to quantitatively trace carbon through ecosystems and diets. These techniques made substantial contributions to ecology, archaeology, and related fields. He now integrates remote sensing approaches with carbon biogeochemistry in climate mitigation research.

Bruce K. Wylie is a SAIC research scientist at the USGS EROS Data Center. His scientific research has focused on remotely sensed rangeland biophysical parameters and the scaling up of flux tower observations to the regional level. His research has focused on the African Sahel, Central Asia, and North America.

Lawrence B. Flanagan is a professor in the Department of Biological Sciences, University of Lethbridge, Canada. He studies interactions between ecosystems and the atmosphere and how these interactions are affected by environmental change.

Albert B. Frank is scientist with the USDA, Agricultural Research Service, Mandan, ND. His research focuses on relationships between management practices, plant processes, and site productivity on carbon dynamics in grasslands.

Marshall R. Haferkamp is a rangeland scientist with USDA-ARS, Fort Keogh Livestock and Range Research Laboratory, Miles City, MT. The emphasis of his research is on soil-plant-environment-herbivore interactions on native rangelands and seeded pastures. He focuses on measuring livestock production utilizing seeded forages in combination with native rangeland and determining the role of Northern Great Plains rangelands in regulating atmospheric CO₂.

Tilden P. Meyers is research meteorologist at the Atmospheric Turbulence and Diffusion Division of NOAA’s Air Resources Laboratory in Oak Ridge, Tennessee. His research is focused on using measurements of land surface processes including the air-surface exchange of water, carbon dioxide and other trace gases to improve the representation of these processes in both regional and global scale models.

Jack A. Morgan is the Research Leader of the Rangeland Resources Research Unit in the USDA Agricultural Research Service, stationed in Fort Collins, CO. He studies the ecological responses of primarily native grasslands to global climate change and to domestic livestock grazing, with an emphasis on soil/plant water relations, fluxes of CO₂ and water vapour, and C and N cycling.