This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright
Elevated CO₂, but not defoliation, enhances N cycling and increases short-term soil N immobilization regardless of N addition in a semiarid grassland

Feike A. Dijkstra a,⁎, Gordon L. Hutchinson b, Jean D. Reeder b, Daniel R. LeCain b, Jack A. Morgan b

a The University of Sydney, Level 4, Biomedical Building, 1 Central Ave., Australian Technology Park, Eveleigh, NSW 2015, Australia
b U.S. Department of Agriculture, Agricultural Research Service, Rangeland Resources Research Unit, Crops Research Laboratory, 1701 Centre Ave., Fort Collins, CO 80526, USA

Abstract

Elevated CO₂ and defoliation effects on nitrogen (N) cycling in rangeland soils remain poorly understood. Here we tested whether effects of elevated CO₂ (720 µl L⁻¹) and defoliation (clipping to 2.5 cm height) on N cycling depended on soil N availability (addition of 1 vs. 11 g N m⁻²) in intact mesocosms extracted from a semiarid grassland. Mesocosms were kept inside growth chambers for one growing season, and the experiment was repeated the next year. We added 15N (1 g m⁻²) to one pool (PIM-N pool) to separate biotic + inorganic from abiotic N residing in soil organic matter (SOM). With the 15N measurements we were then able to calculate transfer rates of N from the active PIM-N pool into SOM (soil N immobilization) and vice versa (soil N mobilization) throughout the growing season. We observed significant interactive effects of elevated CO₂ with N addition and defoliation with N addition on soil N mobilization and immobilization. However, no interactive effects were observed for net transfer rates. Net N transfer from the PIM-N pool into SOM increased under elevated CO₂ but was unaffected by defoliation. Elevated CO₂ and defoliation effects on the net transfer of N into SOM may not depend on soil N availability in semiarid grasslands, but may depend on the balance of root litter production affecting soil N immobilization and root exudation affecting soil N mobilization. We observed no interactive effects of elevated CO₂ with defoliation. We conclude that elevated CO₂, but not defoliation, may limit plant productivity in the long-term through increased soil N immobilization.

1. Introduction

Approximately 40% of the global land surface is under range-
lands (13.8% woody savannah and savannah; 12.7% open and closed shrub-lands; 8.3% non-woody grassland; and 5.7% tundra, Suttie et al., 2005), and particularly in semiarid environments, range-
lands have shown a large response to a rise in atmospheric CO₂ concentration (hereafter elevated CO₂, Morgan et al., 2004a; Zheng et al., 2010). The productivity and forage quality of semiarid ran-
geland are to a large degree contingent upon the availability of nitrogen (N) in soil where N is often a limiting nutrient for plant growth (Burke et al., 2008). Both livestock grazing and elevated CO₂ have the potential to alter the availability and cycling of N, but the direction and magnitude of their effects remain unclear.

Domestic livestock grazing affects cycling, loss, and redistribution of N in soil through consumption of N with aboveground plant tissue and deposition of N in feces and urine (Milchunas et al., 1988; Frank and Evans, 1997; Reeder et al., 2004; Augustine and McNaughton, 2006; Burke et al., 2008; Wolf et al., 2010). Defoliation by livestock also affects the partitioning of photsynthetically fixed C between shoots and roots (Caldwell et al., 1981; Briske et al., 1996; Gao et al., 2008) with, in all likelihood, large consequences for N cycling (Bardgett et al., 2005). For instance, increased root exudation with defoliation (Paterson and Sim, 1999; Paterson et al., 2005; Henry et al., 2008) can stimulate microbial activity in the soil that could eventually result in increased N mineralization and plant N uptake (Hamilton and Frank, 2001; Ayres et al., 2004). However, defoliation can also allocate more C to shoots at the expense of root growth (Holland and Detling, 1990; Fajer et al., 1991; Pietikäinen et al., 2009) that may alter root morphology, root exudation, and the capacity of plants to take up N (Anderson et al., 2007; McNemly et al., 2010).

The increase in productivity of semiarid grasslands in response to elevated CO₂ (Morgan et al., 2004a; Zheng et al., 2010), has been attributed to improved water relations (LeCain et al., 2003; Morgan et al., 2004b), but also to increased mineralization of N (Dijkstra et al., 2003). The productivity of semiarid grasslands and rangelands may eventually result in increased N mineralization and plant N uptake (Hamilton and Frank, 2001; Ayres et al., 2004). However, defoliation can also allocate more C to shoots at the expense of root growth (Holland and Detling, 1990; Fajer et al., 1991; Pietikäinen et al., 2009) that may alter root morphology, root exudation, and the capacity of plants to take up N (Anderson et al., 2007; McNemly et al., 2010).

The increase in productivity of semiarid grasslands in response to elevated CO₂ (Morgan et al., 2004a; Zheng et al., 2010), has been attributed to improved water relations (LeCain et al., 2003; Morgan et al., 2004b), but also to increased mineralization of N (Dijkstra et al., 2003). The productivity of semiarid grasslands and rangelands may eventually result in increased N mineralization and plant N uptake (Hamilton and Frank, 2001; Ayres et al., 2004). However, defoliation can also allocate more C to shoots at the expense of root growth (Holland and Detling, 1990; Fajer et al., 1991; Pietikäinen et al., 2009) that may alter root morphology, root exudation, and the capacity of plants to take up N (Anderson et al., 2007; McNemly et al., 2010).
et al., 2008). While beneficial soil moisture levels in itself may enhance N mineralization and plant N uptake (Hungate et al., 1997a; Dijkstra et al., 2010a), elevated CO₂ may also stimulate microbial activity through increased root exudation (Hungate et al., 1997b; Cheng, 1999; Pendall et al., 2004). In turn, increased microbial activity under elevated CO₂ has the potential to increase soil N mineralization and plant N uptake (Zak et al., 1993; Dijkstra, 2009), similar to defoliation. In contrast, elevated CO₂ often has no effect on N mineralization (De Graaff et al., 2006) and often reduces soil inorganic N because of increased N immobilization by microbes or plants (Diaz et al., 1993; Hu et al., 2001; Dijkstra et al., 2010b).

Contradictory effects of defoliation and elevated CO₂ on N cycling could occur because defoliation and elevated CO₂ effects may depend on soil N availability. Soil N availability often constrains plant productivity in response to defoliation (Coughenour et al., 1985; Hamilton et al., 1998) and elevated CO₂ (Grünzweig and Körner, 2003; Reich et al., 2006a, 2006b). Defoliation and elevated CO₂ may increase N cycling particularly under low soil N conditions where microbes utilize the increased production of root exudates as an energy source to mine for N locked in soil organic matter (Fontaine et al., 2004; Craine et al., 2007). Thus, these root-microbial interactive effects on N cycling could potentially alleviate N constraints on plant productivity under elevated CO₂ and with defoliation (Hamilton and Frank, 2001; Phillips et al., 2011).

We tested how elevated CO₂ and defoliation, and their interaction, affected N cycling in intact mesocosms extracted from a semiarid grassland, and whether these effects depended on soil N availability. Mesocosms were kept in growth chambers under ambient and elevated CO₂ (720 µL L⁻¹), with and without defoliation (clipping to 2.5 cm height), and with the addition of 1 and 11 g N m⁻², in a full factorial design. We used a ¹⁵N tracer technique to study N dynamics. We followed the ¹⁵N tracer into plant, soil inorganic, microbial and soil organic N pools at multiple times during the experiment. We used a new approach where we combined the Plant, soil Inorganic and Microbial N and ¹⁵N pools into one pool, here defined as the PIM-N pool (Fig. 1). By separating N into these two pools we were then able to calculate rates of N and ¹⁴N flowing from this biotic + inorganic PIM-N pool into the abiotic soil organic N (abiotic SON) pool where N cycling is relatively slow (here defined as soil N immobilization) and vice versa, N flowing from the abiotic SON pool into the PIM-N pool (here defined as soil N mobilization). We hypothesized that the rate of soil N mobilization would increase and that the rate of soil N immobilization would decrease under elevated CO₂ and defoliation (and thus result in an increase in the PIM-N pool), but only under the condition of low soil N availability.

2. Materials and methods

2.1. Experimental design

For our growth chamber study we took intact mesocosms from the USDA-ARS High Plains Grassland Research Station in Wyoming, USA (41°11′ N latitude, 104°54′ W longitude). Mean annual precipitation at this site is 384 mm with most of it occurring in May, June, and July, and mean air temperatures in July and January are 17.5 and −2.5 °C respectively. The vegetation at this site is a northern mixed-grass prairie with the warm-season C₄ grass Bouteloua gracilis (H.B.K.) Lag. Ex Steud. and the cool-season C₃ grasses Pascopyrum smithii (Ryd.), A. Love and Hesperostipa comata Trin & Rupr. as the dominant species. Other species include the sub-shrub Artemisia frigida Willd. and the sedge Carex eleocharis L. Bailey. The soil is a fine-loamy, mixed, mesic Aridic Argustoll.

In the spring of 1997 we pounded 48 PVC cylinders (25 cm diameter) 30 cm into the ground at random locations in a pasture with a long history of light grazing by cattle. We then pulled the cylinders with intact vegetation and soil out of the ground, capped them at the bottom, and transferred them to growth chambers in Fort Collins, CO, USA. On average aboveground biomass in the mesocosms comprised of 23% C₄ grasses, 55% C₃ grasses, and 22% forbs and sedges (LeCain et al., unpublished results). This distribution of functional groups is representative of the site. The mesocosms were randomly placed in 4 growth chambers (EGC Chagrin Falls, OH, USA), 12 mesocosms in each growth chamber. The light level was maintained at 600 µmol m⁻² s⁻¹ photosynthetic photon flux density at canopy height using sodium vapour and metal halide lamps. Photoperiod and day/night temperature were adjusted weekly to mimic the seasonal climate in southeast Wyoming. Weekly water additions to the mesocosms were based on long-term precipitation data (LeCain et al., unpublished results). In two growth chambers we raised the atmospheric CO₂ concentration to 720 ± 50 µL L⁻¹ (mean ± standard deviation, referred to as C⁺-treatment), while the other two growth chambers were kept under ambient atmospheric CO₂ concentration (370 ± 40 µL L⁻¹, C⁻-treatment). The CO₂ concentration inside the C⁺-growth chambers was continuously monitored (Vaisala probes, Vantaa, Finland) and computer controlled. These growth chambers have been successfully used in the past to study elevated CO₂ effects on plant growth (Morgan et al., 1998). Before the experiment started (Day 0) we added 10 g N m⁻² as a KNO₃ solution in half of all the mesocosms (6 mesocosms in each growth chamber). We further added 1 g K¹⁵NO₃ (99 atom%¹⁵N) in all but two mesocosms in each growth chamber. The N and ¹⁵N were added as solutions by bringing the mesocosms to field capacity with DI water (LeCain et al., unpublished results). The two mesocosms not labelled with ¹⁵N (one with and one without 10 g unlabelled N m⁻²) were harvested after 2 days, and were used to measure background ¹⁵N levels and to calculate recovery of the ¹⁵N label in the different N pools in the ¹⁵N labelled mesocosms (see Equation (2) below). Thus, the N treatment in the remaining 10 mesocosms in each chamber consisted of the addition
of 1 g N m\(^{-2}\) (N– treatment) to 5 mesocosms and 11 g N m\(^{-2}\) (N+ treatment) to the other 5 mesocosms. After 35 days, one N– and one N+ mesocosm was harvested from each growth chamber. At the same time, two N– and two N+ mesocosms of the remaining 8 mesocosms in each growth chamber were defoliated at 2.5 cm height (D+ treatment, a one-time defoliation), while the other 4 were not defoliated (D– treatment). This defoliation treatment corresponds with a typical late spring cattle grazing on this range-land. After 80 days, one replicate of each N and defoliation treatment (a total of 4 mesocosms) in each growth chamber was harvested. The final four mesocosms in each growth chamber were harvested after 125 days. Thus, while the CO\(_2\) and N treatments started on Day 1, the defoliation treatment started on Day 35 and its effect was only measured in the mesocosms harvested on Day 80 and Day 125. The whole experiment was repeated one year later, adopting fresh cores.

2.2. Plant and bulk soil N

At each harvest plant biomass was separated into shoot and root tissue. After breaking up the mesocosms, roots were handpicked and washed. The soil was thoroughly mixed before subsamples were taken. Plant samples and soil subsamples were dried (60 °C), weighed, and ground. The samples were analysed for N and 15N on an isotope ratio mass spectrometer (IR-MS, Europa Scientific, Cheshire, UK).

2.3. Inorganic N

The soil of each mesocosm was thoroughly mixed. Subsamples were extracted with 1 M KCl and frozen until further analyses. Extracts were analysed for NH\(_3\) and NO\(_3\) on a flow injection analyser (QuikChem FIA+, Lachat Instruments, Milwaukee, WI). Extracts were also analysed for 15NH\(_4\) and 15NO\(_3\) using diffusion traps (Stark and Hart, 1996). First NH\(_3\) in the extracts was trapped with acidified filter-paper disks placed inside PTFE tape. Then 15NO\(_3\) was first converted to NH\(_3\) by adding Devarda’s Alloy to the extracts, and then trapping the converted NH\(_3\) as above. The filter disks were analysed for 15N on an IR-MS.

2.4. Microbial N

One soil subsample was immediately extracted with 0.5 M K\(_2\)SO\(_4\) while another subsample was extracted with 0.5 M K\(_2\)SO\(_4\) after fumigation with chloroform for 2 days. Organic N in the extracts was converted to inorganic N using the persulfate digestion method (Cabrera and Beare, 1993). Analyses for NO\(_3\) and 15NO\(_3\) in the fumigated and non-fumigated K\(_2\)SO\(_4\) extracts were done in the same way as for the KCl extracts.

2.5. Calculations

The plant N pool in each mesocosm was calculated as the sum of N in shoot and root biomass. The soil inorganic N pool was calculated as the sum of NH\(_4\) and NO\(_3\) pools. The microbial N pool was calculated as the difference between the sum of NH\(_4\) and NO\(_3\) in the fumigated sample and the sum of NH\(_4\) and NO\(_3\) in the non-fumigated sample multiplied by 0.54 (Brookes et al., 1985). The PIM-N pool was calculated as the sum of plant, soil inorganic and microbial N. The abiotic SON pool was calculated by subtracting the soil inorganic and microbial N pools from the bulk soil N pool. Thus, the abiotic SON pool included a small fraction of dissolved organic N (DON). Temporal field measurements at the site where our mesocosms were extracted indicated that the DON pool never exceeded 0.2% of the abiotic SON pool (Carrillo et al., unpublished results). By separating the N of the mesocosms into two distinct pools, the PIM-N pool where N is biotically or directly available to the biota, and the abiotic SON pool where N is not directly available to the biota (with the exception of a small DON pool), we were then able to calculate rates of soil N mobilization and immobilization between these two pools (Fig. 1 and see below). All N pools were expressed in g N m\(^{-2}\).

The amount of 15N added to the mesocosms recovered in pool \(i\) \((15N_{rec,i}\) in g m\(^{-2}\)) was calculated as:

\[
15N_{rec,i} = N_i \times 15N_{fr,i}
\]

(1)

where \(N_i\) is the N content of pool \(i\) (plant, inorganic, or microbial N, in g m\(^{-2}\)) and 15N\(_{fr,i}\) is the applied 15N label expressed as a fraction of the total N in pool \(i\) (Dijkstra et al., 2008). This fraction can be calculated as:

\[
15N_{fr,i} = (\text{At} \times 15N_{post,i} - \text{At} \times 15N_{pre,i}) / (\text{At} \times 15N_{label} - \text{At} \times 15N_{pre,i})
\]

(2)

where \text{At} \times 15N_{post,i}, \text{At} \times 15N_{pre,i} and \text{At} \times 15N_{label} are the 15N atom% measured in pool \(i\) after labelling, the 15N atom% measured in pool \(i\) before labelling (i.e., from the mesocosms harvested after 2 days), and the 15N atom% of the applied label respectively. The 15N recovery in the bulk soil pool was also calculated with Equation (1) using the \(N_i\) and 15N\(_{post,i}\) values measured in the bulk soil samples. However, since the bulk soil included inorganic and microbial 15N, we calculated the 15N recovery in the abiotic SON pool by subtracting the 15N recovery in the inorganic and microbial biomass from the 15N recovery in the bulk soil pool. From now on we will refer to the 15N recovery in the abiotic SON pool as “soil 15N recovery”. The 15N recovery in the PIM-N pool was calculated as the sum of the 15N recoveries in the plant, soil inorganic and microbial pools. Finally, the total 15N recovery of the whole mesocosm was calculated as the sum of the 15N recovery in the PIM-N and the abiotic SON pool.

Because we measured N and 15N pools at different times of the experiment, this allowed us to estimate the rate of N from the PIM-N pool going into the abiotic SON pool (soil N immobilization or si, where si = pl + md, Fig. 1) and the rate of N leaving the abiotic SON pool going into the PIM-N pool (soil N mobilization, sm). If we assume that gaseous N loss is negligible in this system (Mosier et al., 2002, 2008), then it can be derived that:

\[
\Delta PIM-N/\Delta t = pl + md - sm
\]

(3)

and:

\[
\Delta 15N_{rec,PIM-N}/\Delta t = pl \times 15N_{plant} + md \times 15N_{fr,microbial} - sm \times 15N_{fr,soil}
\]

(4)

where \(\Delta PIM-N/\Delta t\) and \(\Delta 15N_{rec,PIM-N}\) (in g N and 15N m\(^{-2}\) d\(^{-1}\)) are the net changes in N and 15N recovery in the PIM-N pool between two measuring dates, and 15N\(_{plant}\), 15N\(_{fr,microbial}\) and 15N\(_{fr,soil}\) are the fractions of labelled N in the plant, microbial and abiotic SON pool respectively. Equation (4) assumes that the fractions of labelled N do not change with time. However, these fractions of labelled N changed somewhat between two measuring dates, but changes were relatively small (Table S2, Supporting Information). We therefore used average values of the two measuring dates (e.g., for the 35–80 day period we averaged the fractions of labelled N measured on Day 35 and Day 80) to calculate soil N immobilization and soil N mobilization. We calculated soil N immobilization and soil N mobilization during the 35–80 and 80–125 day period with two contrasting assumptions. First, we assumed that all N and 15N loss out of the PIM-N pool occurred through microbial death (pl = 0...
and $\text{si} = \text{md}$). Soil N immobilization (si) and soil N mobilization (sm) can now be calculated as:

$$\text{si} = \Delta\text{PIM-N}/\Delta t + \text{sm} \quad (5)$$

$$\text{sm} = \left(\Delta\text{15N}_{\text{rec,PIM-N}}/\Delta t - \Delta\text{PIM-N}/\Delta t \times \text{15N}_{\text{fr,plant}} / (\text{15N}_{\text{fr,plant}} - \text{15N}_{\text{fr,soil}}) \right) \quad (6a)$$

Second, we assumed that all N loss out of the PIM-N pool occurred through plant death (md = 0 and $\text{si} = \text{pl}$). Calculation of si is as in Equation (5) and sm can now be calculated as:

$$\text{sm} = \left(\Delta\text{15N}_{\text{rec,PIM-N}}/\Delta t - \Delta\text{PIM-N}/\Delta t \times \text{15N}_{\text{fr,plant}} / (\text{15N}_{\text{fr,plant}} - \text{15N}_{\text{fr,soil}}) \right) \quad (6b)$$

In reality N is lost from the PIM-N pool through microbial death and plant death, but our two assumptions provide us with the boundaries of our calculated rates of soil N immobilization and soil N mobilization. Plant death in the mesocosms during the time frame of our experiment mostly happened through root death. For Equation (6b) we therefore used the $\text{15N}_{\text{fr,plant}}$ values measured in roots.

2.6. Statistical analyses

We used ANOVA to test for main effects of CO2 (C− and C+), defoliation (D− and D+), N addition (N− and N+), time (Days 35, 80, and 125), years (1997 and 1998), and all their interactions on N pools, 15N recovery, and soil N immobilization and soil N mobilization rates. The mesocosms harvested on Day 2 were included in the ANOVAs testing for effects on N pools. We used a split-split plot design with the CO2 and year treatments as the between-plots factors, the defoliation, N addition, and time treatments as within-plots factors, and the whole growth chamber as a random factor nested within the CO2 treatment (Quinn and Keough, 2002). Although there were significant differences between years, there were no significant interactive effects of year × CO2, year × defoliation, or year × N addition. Therefore, year effects are not presented and results are presented by combining both years (i.e., the two replicates of each treatment combination in each year were treated as four separate replicates). Whenever there were significant treatment interactions between CO2, defoliation, and N addition (i.e., for soil N immobilization and microbial N mobilization rates) we also compared the means of the separate treatment combinations using Tukey’s HSD test. In some cases, data were log-transformed to improve assumptions of normality and homoscedasticity. All statistical analyses were performed with JMP (version 8.0.1; SAS Institute, Cary, NC, USA) (Fig. 2).

3. Results

Treatment effects on total shoot and root biomass are summarized in Table 5. In summary, shoot biomass significantly increased under elevated CO2 in C3 grasses ($P = 0.002$), but not in C4 grasses and forbs, and increased with N addition in C3 grasses ($P = 0.002$) and C4 grasses ($P = 0.0003$), but not in forbs, and was not affected by defoliation. Root biomass significantly increased with N addition, decreased with defoliation, but was not affected by elevated CO2.

Total 15N recovery (in plant, inorganic, microbial and soil N pools) was c. 0.8 g 15N m−2 or 80% of the amount added, and was not affected by elevated CO2, defoliation, N addition, and time (Table 1). These results suggest that there was a rapid initial loss of gaseous 15N during the first 35 days of the experiment, but that after 35 days, N loss was minimal and not affected by the different treatments.

The PIM-N pools (sum of plant, soil inorganic, and microbial pools) increased during the first 35 days of the experiment in most treatments (except for the pots with N addition), but then declined afterwards (Fig. 3). The decline of PIM-N was greater under elevated than ambient CO2 (CO2 × time interaction, $P = 0.02$, Table 1). Defoliation had no effect on PIM-N. Not surprisingly, N addition increased PIM-N. The net addition of 10 g N m−2 increased PIM-N by 14 g N m−2 after 2 days, but after 35 days the PIM-N increase reduced to 5.4 g N m−2, and remained more or less constant during the remainder of the experiment. There were no significant interactions among treatments ($P > 0.1$).

The decline in PIM-N after 35 days was a result of a decline in the inorganic and microbial N pools, while plant N pools remained more or less constant after 35 days (Fig. 4). Similarly, the greater decline of PIM-N under elevated than ambient CO2 was caused by a greater decline in the inorganic and microbial N pools under elevated CO2 (CO2 × time interaction, $P = 0.04$ for inorganic N and 0.008 for microbial N, Table 1). Defoliation had no effect on the individual plant, inorganic, and microbial N pools. The N addition initially increased the inorganic and microbial N pools relative to the pools in pots without N addition, but after 35 days these pools returned to levels observed in the pots without N addition. On the other hand, N addition steadily increased the plant N pool relative to plants without N addition. Plants that received 11 g N m−2 had on average 5.8 g N m−2 more N after 125 days than plants with 1 g N m−2 addition. No significant treatment interactive effects on plant, inorganic, or microbial N were observed.

While total 15N recovery was unaffected by time, 15N recovery in the PIM-N pool showed a decline with time (Table 1, Fig. 5). This decline was slightly faster under elevated CO2 (CO2 × time interaction, $P = 0.07$) and slower with defoliation (D × time interaction,
Because total 15N recovery, and thus gaseous 15N loss, was not affected by the treatments, the faster decline of 15N in the PIM-N pool under elevated CO$_2$ and without defoliation was most likely caused by increased transfer of N from the PIM-N pool into the abiotic SON pool through plant and/or microbial death (Fig. 1). Indeed, the 15N recovery in the abiotic SON pool mirrored the 15N recovery in the PIM-N pool, where 15N recovery increased with time, and where the increase was faster under elevated CO$_2$ (CO_2 × time interaction, $P = 0.02$) and slower with defoliation (although this time not significantly, Table 1, Fig. 5). These results indicate 1) that the 15N was transferred from the PIM-N pool into the abiotic SON pool during the experiment through plant and/or microbial death, and 2) that this transfer increased under elevated CO$_2$ and decreased with defoliation. The 15N recovery in the PIM-N pool was greater with N addition (Table 1, Fig. 5), most likely because N addition diluted the 15N in the PIM-N pool, which resulted in a decreased loss of 15N per unit of N transferred from the PIM-N pool into the abiotic SON pool. Of the two N loss pathways

Table 1

Summary of repeated measures ANOVA results (P-values are in bold when $P < 0.05$ and in italics when $P < 0.1$) for the effects of elevated CO$_2$ (C), defoliation (D), nitrogen (N), and time.

<table>
<thead>
<tr>
<th>Effect</th>
<th>PIM-N recovery</th>
<th>Plant N recovery</th>
<th>Inorganic N recovery</th>
<th>Microbial N recovery</th>
<th>Total 15N recovery</th>
<th>PIM-15N recovery</th>
<th>Soil 15N recovery</th>
<th>Soil N immobilization</th>
<th>Microbial N mobilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>0.08</td>
<td>0.02</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>D</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>0.04</td>
<td>0.02</td>
<td>ns</td>
<td>0.003</td>
</tr>
<tr>
<td>C × D</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>0.005</td>
<td>0.003</td>
<td>ns</td>
<td>0.004</td>
</tr>
<tr>
<td>N</td>
<td>0.0001</td>
<td>0.0002</td>
<td><0.0001</td>
<td>ns</td>
<td>ns</td>
<td>0.001</td>
<td>0.001</td>
<td>0.04</td>
<td>ns</td>
</tr>
<tr>
<td>C × N</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>0.02</td>
<td>0.02</td>
<td>ns</td>
<td>0.08</td>
</tr>
<tr>
<td>D × N</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>0.02</td>
<td>0.10</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>C × D × N</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>0.001</td>
<td>0.001</td>
<td>0.08</td>
<td>ns</td>
</tr>
<tr>
<td>C × D × time</td>
<td>0.10</td>
<td>0.04</td>
<td><0.0001</td>
<td>0.09</td>
<td>ns</td>
<td>0.008</td>
<td>0.03</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>D × N × time</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>0.002</td>
<td>0.002</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>C × D × N × time</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>0.002</td>
<td>0.0009</td>
<td>ns</td>
<td>ns</td>
</tr>
</tbody>
</table>

Fig. 3. Main effects of CO$_2$ (Panels a, d, and g), defoliation (Panels b, e, and h), and N addition (Panels c, f, and i) on total Plant N (Panels a, b, and c), Inorganic N (Panels d, e, and f), and Microbial N (Panels g, h, and i). See Fig. 2 for treatment abbreviations. Error bars represent 1 standard error.
N addition diluted the 15N particularly in microbes (Supporting Information, Table S2), suggesting that N and 15N transfer by microbes rather than by plants caused the increased 15N recovery in the PIM-N pool with N addition.

When we calculated the rate of N transferred from the PIM-N pool into the abiotic SON pool (soil N immobilization) and the rate of N transferred from the abiotic SON pool into the PIM-N pool (soil N mobilization) based on the assumption that all N leaving the PIM-N pool occurred through microbial death. In Panel (a) and (c) the interactive effects of the CO2 and N treatments are shown (averaged across defoliation treatment, n = 8), in Panel (b) and (d) the interactive effects of the defoliation and N treatments are shown (averaged across CO2 treatment, n = 8). Error bars represent 1 standard error. Different letters above bars indicate significant differences for each time separately (P < 0.05, Tukey’s HSD test).

Fig. 5. Calculated rates of soil N immobilization (Panels a and b) and soil N mobilization (Panels c and d) during the 35–80 and 80–125 day period assuming that all N loss out of the PIM-N pool occurred through microbial death. In Panel (a) and (c) the interactive effects of the CO2 and N treatments are shown (averaged across defoliation treatment, n = 8), in Panel (b) and (d) the interactive effects of the defoliation and N treatments are shown (averaged across CO2 treatment, n = 8). Error bars represent 1 standard error. Different letters above bars indicate significant differences for each time separately (P < 0.05, Tukey’s HSD test).
PIM-N pool occurred through microbial death (Equations (5) and (6a)), then for the first time we observed significant treatment interactions. For both soil N immobilization and microbial N mobilization we observed significant CO$_2$ x N x time and D x N x time interaction effects (Table 1). The CO$_2$ x N x time interactions occurred because both N immobilization and mobilization fluxes increased under elevated CO$_2$, but only without N addition, and only during the 35–80 day period of the experiment (Fig. 5). Similarly, the D x N x time interactions occurred because both N immobilization and mobilization fluxes decreased with N addition, but only when plants were defoliated, and only during the last 80–125 days of the experiment. During the 35–80 day period microbial N mobilization also decreased with defoliation, but only without N addition. On average defoliation decreased soil N immobilization by 37% and microbial N mobilization by 46%. When we calculated soil N immobilization and microbial N mobilization based on the assumption that all N leaving the PIM pool occurred through plant death (Equations (5) and (6b)), then we observed in general smaller fluxes but similar treatment effects (Supporting Information, Table S3 and Fig. S1).

4. Discussion

Because of the complex nature of the N cycle involving plants, microbes and environmental factors, studying N dynamics in intact plant-soil systems has been notoriously difficult (Schimel and Bennett, 2004; Frank and Groffman, 2009). We used a novel approach where we estimated N transfer between the biotic (including root exudates) under elevated CO$_2$ as an energy source to mine for N locked in soil organic matter (Phillips, 2007; Rütting et al., 2010). Increased microbial mining of N from soil organic matter under elevated CO$_2$ could benefit plant growth if the mined N is eventually transferred to the plants after microbial turnover (Cheng and Kuzyakov, 2005). However, we found no evidence that this transfer to plants happened in our mesocosms. The plant N pool was unaffected by elevated CO$_2$ (Fig. 4). Further, while soil N mobilization increased during the 35–80 day period in the low N treatment, so did soil N immobilization (Fig. 5). Our results suggest that most of the extra N mined by microbes from soil organic matter under elevated CO$_2$ was returned to the soil. Thus, elevated CO$_2$ enhanced cycling of N between the PIM-N and abiotic SON pool during the 35–80 day period independent of soil N availability and without having an impact on N in plants. Possibly, enhanced N cycling did not increase plant N uptake under elevated CO$_2$ because of intensified plant—microbial competition for N (Diaz et al., 1993). The abiotic SON pool included dissolved organic N (DON), and much of the transfer of N between the PIM-N and abiotic SON pool most likely occurred through DON. Indeed, all N in soil organic matter first has to depolymerise where much of the N enters the DON pool before it is available to plants and microbes (Schimel and Bennett, 2004).

The CO$_2$ x N interactive effect on soil N immobilization and mobilization disappeared during the 80–125 day period, suggesting that the CO$_2$ x N interactive effect was transient. The CO$_2$ x N interactive effect on soil N immobilization may have disappeared because soil inorganic N and microbial N pools were low in all mesocosms by the end of the experiment (Fig. 4). As such, microbial demand for N and the potential for microbial mining for N from SOM may have been high in all mesocosms, including mesocosms with N addition, by the end of the experiment. At the same time, translocation of C to root exudates may have been low in all mesocosms. It has been suggested that root exudation declines as plants mature (Meharg and Killham, 1990; Warembourg and Estelrich, 2001), resulting in reduced rhizosphere effects on soil organic matter decomposition (Cheng et al., 2003; Dijkstra et al., 2010c). This may then have subdued any elevated CO$_2$ effects on soil N mobilization at the end of the experiment. Soil N immobilization, on the other hand, remained high in all treatments (Fig. 5). A prolonged low soil moisture content during the last 50 days of the experiment when no water was added to the mesocosms may have caused water stress to microbes and plants inducing microbial and plant death in all treatments where the associated N returned to the soil pool.

While elevated CO$_2$ and CO$_2$ x N interactive effects on soil N mobilization and immobilization were transient, the effect of elevated CO$_2$ on the PIM-N pool, which reflects the net difference in soil N mobilization and immobilization, increased with time. But in contrast to our hypothesis, the PIM-N pool declined more under elevated than ambient CO$_2$ (Fig. 3), indicating that the net N transfer from the PIM-N pool to the abiotic SON pool was higher under elevated CO$_2$, as is also illustrated by the increased transfer of 15N into the abiotic SON pool under elevated CO$_2$ (Fig. 5). Moreover, this transfer was not affected by initial differences in soil N availability. Despite a greater transfer of N to the abiotic SON pool and a greater decrease in soil inorganic N under elevated CO$_2$, the plant...
N pools remained significantly higher after five years of elevated CO₂ in a semiarid grassland in Colorado with similar plant species (Dijkstra et al., 2008).

4.3. Main effects of defoliation and interactive effects of defoliation with soil N addition

We found no evidence for an increase in soil N mobilization after defoliation under N-poor soil N. We expected that soil N mobilization would increase after defoliation, but only in the low N treatment, where microbes would utilize the increased supply of root exudates as an energy source to mine for N locked in SOM (Fontaine et al., 2004; Craine et al., 2007). Instead, soil N mobilization decreased directly after defoliation in the low N treatment, while soil N mobilization was unaffected by defoliation in the high N treatment (Fig. 5). In contrast, defoliation of Poa pratensis increased rhizodeposition and caused a short-lived increase in potential N mineralization, which resulted in increased plant N uptake (Hamilton and Frank, 2001). Our results are more in line with a recent study by Augustine et al. (2011) where rhizodeposition was significantly higher after three years of elevated CO₂ in the long-term (Díaz et al., 1993; Luo et al., 2004). In contrast, plant N pools remained significantly higher after five years of elevated CO₂ in a semiarid grassland in Colorado with similar plant species (Dijkstra et al., 2008).

4.4. Contrasting elevated CO₂ and defoliation effects on N cycling caused by a shift in the balance between root exudation and root litter inputs?

Not only changes in root exudation, but also changes in root litter inputs could influence the net N transfer between active and passive pools, which could then also help explain some of the contrasting effects of elevated CO₂ and defoliation on N cycling observed in different field experiments. For instance, while the reduction in soil N mobilization with defoliation (on average by 46%) may have been a result of lower root exudation rates, the reduction in soil N immobilization (on average by 37%) may have been a result of reduced root C inputs as root litter after defoliation (Holland and Detling, 1990; Frank and Groffman, 1998). Similarly, the increase in the net transfer of N from the PIM-N pool into SOM under elevated CO₂ may have been a result of a larger increase in root litter inputs increasing soil N immobilization (Jastrow et al., 2000; Dilustro et al., 2001). We have no information about root litter inputs in our mesocosms. Root biomass no longer increased after 35 days in defoliated mesocosms (in fact, there was a slight decrease, on average by 2%) while root biomass increased on average by 10% in non-defoliated mesocosms (Table S1). A relative decrease in root biomass with defoliation may also have decreased root turnover, but direct evidence for this is lacking. Root biomass was not affected by elevated CO₂ but root turnover has been found to increase under elevated CO₂ in the field (Milchunas et al., 2005), suggesting that root litter inputs increased. Thus, relative changes in allocation of C between root litter and root exudation caused by elevated CO₂ and defoliation could affect soil N mobilization and immobilization in opposite ways, where it is the balance between the two C allocation pathways that determines long-term N availability to plant growth.

5. Conclusions

While we observed significant interactive effects of elevated CO₂ with N addition (CO₂ × N) and defoliation with N addition (D × N) on rates of transfer between the PIM-N pool (Plant, soil Inorganic, and Microbial pool) and the abiotic SON pool, net transfer of N between these pools was independent of soil N availability. This is surprising, because many studies have suggested that ecosystem responses to CO₂ and defoliation should depend on N level (e.g., Hamilton et al., 1998; Grünzweig and Körner, 2003; Reich et al., 2006a). We may not have observed CO₂ × N and D × N interactive effects on net N transfer because the N addition only had a transient effect on soil inorganic N and microbial N pools, and thus CO₂ × N and D × N interactive effects on soil N mobilization and immobilization may have been also transient. However, integrative measures of soil N mobilization and immobilization have often been measured in disturbed soils incubated in the laboratory (e.g., Frank and Groffman, 1998; Rütting et al., 2010), and not in undisturbed soils in the presence of plants. Plant presence however, can have a significant influence on N cycling in soils (Dijkstra et al., 2009). Here we used a new and robust method that provides an aggregative measure of N transfer between biotic (including directly available inorganic) N and abiotic N. Using our new approach, we showed that the net transfer from the biotic + inorganic PIM-N pool into the abiotic SON pool increased under elevated CO₂, which could eventually cause a negative feedback mechanism for the enhanced plant growth under elevated CO₂ (Luo et al., 2004; Reich et al., 2006b). On the other hand, defoliation slowed down both soil N mobilization and immobilization, and had no effect on the net transfer between the PIM-N and abiotic SON pool. Therefore, defoliation may only have limited effects on the N budget in semiarid grasslands in the long-term.

Acknowledgements

We thank G.E. Schuman, M.C. Mortenson, J.A. Nelson, and D.W. Grant for technical assistance and two anonymous reviewers for their helpful comments.

Appendix. Supporting information

The supplementary information associated with this article can be found in the online version, at doi:10.1016/j.soilbio.2011.07.017.

References

Warembourg, F.R., Estelrich, H.D., 2001. Plant phenology and soil fertility effects on below-ground carbon allocation for an annual (Bromus madritensis) and a perennial (Bromus erectus) grass species. Soil Biology and Biochemistry 33, 1291–1303.

