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QUANTITATIVE REMOTE SENSING APPROACHES FOR MONITORING AND
MANAGING AGRICULTURAL RESOURCES

MISSION

The ultimate goal of this research is to use remote sensing technology to increase our understanding
of processes associated with environmental variability and to provide resource managers with
information that will assist them in making tactical and strategic management decisions on farms,
rangelands, and natural plant communities. Emphasis will be given to approaches that have potential

for operational application, and that also have a strong physical foundation based on quantitative
measurements.
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IMAGE-BASED REMOTE SENSING FOR AGRICULTURAL MANAGEMENT -
PERSPECTIVES OF IMAGE PROVIDERS, RESEARCH SCIENTISTS, AND USERS

M.S. Moran, Physical Scientist

PROBLEM: Precision crop management (PCM) is an emerging agricultural management system
using information and technology to identify, analyze, and manage site-soil spatial and temporal
variability within fields for optimum profitability, sustainability, and protection of the environment.
Many experts agree that there is a good match between the information needs of PCM and the
offerings of spatially-distributed information about crop and soil conditions provided by image-based
remote sensing (RS). The question remains: “Can current RS technology meet the very stringent
information requirements of PCM?”

APPROACH: To answer better the posed question about remote sensing (RS) technology, I
conducted a limited survey of three groups (with number of contacts in parentheses): image providers
(5), research scientists (5), and users (13). By my definitions, image providers are companies trying
to make a profit from selling remote sensing image products for farm management; research scientists
are people at universities or government research laboratories studying remote sensing science with
the goal of providing algorithms and models for farm management; and wusers are people or
corporations who have already purchased remote sensing image products for PCM. Representatives
from each of the three groups were contacted by telephone and asked a series of questions related
to remote sensing for PCM, The results of this limited survey provided an insight into their
experiences, attitudes, and expectations and provided the foundation to answer the posed question.

FINDINGS: Measurement Accuracy: Users agreed that an accuracy of 70-75% in the measurement
of most crop or soil conditions was sufficient to implement PCM and improve farm profitability. This
is in contrast with the goal of many research scientists to provide algorithms and models with 90-95%
accuracy. Furthermore, users were in agreement that the accuracy of the image product must be
quantified through a series of documented experiments and further testing on their own farm. Inall
cases, users were willing to provide their own test plots and pay for the image data in return for
interpretation and analysis by a scientist working with the image provider. All users in the survey
were already testing other new technologies at their own expense.

Product Delivery; The highest priority for all users and image providers was quick turnaround.
Unlike measurement accuracy for which users were willing to accept 70% accuracy, the users
expected 100% reliability in image delivery. The consensus of all users and image providers was that
images must be delivered within 24 hours, preferably within 12 hours.

Location Accuracy: The second highest priority for all users and image providers was highly accurate
geo-registration. For PCM, it is necessary to pinpoint the location of the anomalous crop or soil
condition for proper precision management and inclusion in a geographic information system (GIS).
This was one issue for which users and image providers had largely different expectations. The user
accuracy requirements of approximately 2 m contrast with the positional accuracies (20-500 m)
offered by some image providers.
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Revisit Period: Unlike the very restrictive requirements for turnaround time {12-24 hours with 100%
reliability), users had more relaxed expectations for repeat coverage. The requirements ranged from
twice per week for irrigation scheduling to biweekly for general damage detection. Al users agreed
that when the image products are more quantitative (that is, offering an accurate assessment of the
cause of the anomaly and suggesting a management activity) then the users would request more
frequent repeat coverage. Image providers working with aircraft-based sensors reported that they
were stretching their personnel and equipment limits to provide repeat passes on a weekly basis,
Image providers working with satellite-based sensors are confined by the orbital constraints and
numbers of satellites, and are often limited to repeat passes every two weeks.

Management Unit: Like positional accuracy, the spatial resolution required for PCM depends upon
the management operation. There was a user consensus that it was economical to manage crop and
soil units with a nominal size of 10 m,

The user requirements for remotely sensed information in PCM based on this limited survey of users,
image providers, research scientists, and the literature are summarized in Table 1. The first three user
requirements translate directly to sensor and algorithm specifications, where the value-added product
accuracy should be on the order of 75%, the tumaround time should be within 24 hours of
acquisition, and the geo-registration should be as accurate as possible (within 1 pixel). To translate
the latter two user requirements (revisit period and management unit) into sensor specifications,
Moran (2000) accounted for basic sensor limitations and site-specific atmospheric conditions.

Table 1. PCM user information requirements translated to RS system specifications.

User Information Requirements System Specifications

Measurement Accuracy 70-75% Algorithm Accuracy 70-75%
Product Delivery < 24 hours Tumaround Time < 24 hours
Location Accuracy Zm Geo-registration Accuracy 1 pixel
Revisit Period 1 week Repeat Cycle 3 days
Management Unit 10-20m Pixel Size 2-5m

Remotely-Sensed Product for PCM: The users contacted in this survey were confident and
unanimous in their description of the preferred image product:

(1) Users expected a color map product (hardcopy, or preferably digital) with “quantitative”
information that could be used to make decisions, not simply identify anomalies. They wanted to
know where the anomaly was located, how large it was, and what had caused it.

(2) Users wanted personal help with image interpretation in the form of person-to-person contact,
areliable help line, oruser-friendly software. Person-to-person contact was the preferred information
delivery method.

(3) Users expected the image provider (or research scientists) to do the product validation first,

1999 USWCL Annual Report work in progress o8 Do not duplicate without prior consent,



before presenting it to the user for purchase. Users were all willing to conduct additional yield tests
on their own farm, but they were not interested in high-risk ventures.

(4) Users wanted honest, reasonable marketing of the image product. All users felt that RS products
had been oversold, and that users had been promised much more than had ever been delivered. As
a result, users described themselves as skeptical, reluctant, and distrustful.

The image providers interviewed were aware of the users’ expectations. Four of five image providers
were offering “high end” products including maps of weeds, insect infestations, nutrient deficiency,
water deficiency and/or yield. The fifth image provider was providing only maps of anomalies; he
hoped that buyers, such as crop consultants or chemical dealers, would process the high quality image
to sell value-added products to farm managers. All image providers were conducting product
validation studies to some extent.

All image providers were struggling to provide help in image interpretation to the users. Some
companies were providing face-to-face on-farm interpretation at a great deal of expense, but with
good success. Other companies were putting similar expense into providing a useful and simple
sofiware interface that could improve users’ image interpretation. Finally, one company had a 24-
hour help line to allow users to get personal information at any time.

When users were asked what caused them to continue purchasing RS images for a second (or third,
fourth, etc.) season, they all responded that it was profitability; that is, the imagery either improved
yields or reduced costs. Secondarily, it was because they had a personal interest in the technology,
and thought they might benefit economically in the future. The factors cited by users who did not
continue to purchase images were lack of profitability, lack of time and labor, and inability to use
variable rate technology (VRT) in response to image information. Theimage providers described the
same story from a different perspective. They stated that they lost customers primarily due to
weather and the economy, and secondarily due to instrument failures that prevented them from
offering further overflights.

Role of Research Scientists: Both users and image providers appreciated the studies of research
scientists working at universities and government laboratories. On the other hand, users would like
to see more research scientists working hand-in-hand with image providers because they felt it
provided more credence to the company’s agricultural products. Image providers suggested that
research scientists should put more effort into technology transfer to prove that their algorithms and
models were robust and operational. The research scientists interviewed for this review were already
working with commercial companies. In their view, the role of research scientists in promoting
remote sensing for PCM was to “be practical,” understand the accuracy requirements in algorithm
and model development, and keep in mind that the users and image providers are interested primarily
in profitability.

With these issues in mind, the role of research scientists in promoting RS for PCM could be improved
through greater interaction with the client (either the user or the image provider), including

» definition of the research program based on client needs (identified by the client) and participation
of clients in the program operation,;

« ownership of the system by the client (clients need to help assembling information and applying it);

1999 USWCL Annual Report work in progress 99 Do not duplicate without prior consent.



» education of clients on the capabilities of remote sensing, and gradual implementation of the new
program (to allow the client to maintain an understanding of the new technology); and

» economic analysis to show clients the economic benefit of using RS over traditional approaches.
Furthermore, research scientists reported that universities and government laboratories were changing
to reward research scientists for technology transfer and to encourage them to use a team approach
and involve clients in program development.

INTERPRETATION: Nearly 9% of the one-half million farmers growing corn in the U.S. used
some aspect of PCM for corn production in 1996 (representing nearly one-fifth of 1996 harvested
corn acreage); and, of these PCM users, 54% used tractor-mounted yield monitors to map field
variability. These numbers illustrate the large potential market for remotely sensed agricultural
information and the capacity of farm managers to adopt new technology. Whether image-based RS
technology is included in emerging PCM systems will depend on the ability of commercial image
providers, engineers, and research scientists to meet the stringent PCM requirements for quantitative,
validated information products. This will mean improvements in product turnaround and image
registration, as well as successful launches of upcoming commercial satellite-based sensors with
spatial resolutions of 2-5 m and/or further advances in aircraft-based mounts and sensors. A strategy
will have to be developed for independent validation of algorithms produced by research scientists
and proprietary products produced by for-profit commercial companies to satisfy the requirements
of risk-adverse farm managers. The economics of RS for PCM will have to be determined through
well-designed experiments comparing profits obtained through conventional and high-technology
management systems, Finally, an effort will have to be made to encourage a systematic, triangular
education of image providers, research scientists, and users through inclusion of all clients in program
development and implementation.

FUTURE PLANS: Work will focus on addressing the research, development and policy issues
identified in the previous section.

COOPERATORS: This work would not have been possible without the honest insights provided by the
anonymous image providers, research scientists, and users contacted in this limited survey.

REFERENCES: Moran, M.S. (2000) Image-based remote sensing for agricultural management -
perspectives of image providers, research scientists and users, 2* Intl. Conf. Geospatial Information
in Agric. and For, 10-12 Jan,, Orlando FL. (in press).
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A NEW CANOPY CHLOROPHYLL CONTENT INDEX FOR COTTON
T.R. Clarke, Physical Scientist, and E. M. Barnes, Agricultural Engineer

PROBLEM: According to a recent meeting between commodity group representatives and
members of the remote sensing research community, one of the most important decisions a grower
must make is how to manage crop fertilizer inputs in order to assure a good yield while preventing
ground water contamination. Variable rate application technology has recently been developed, but
the technology for directing applications effectively is less mature. A means of rapidly assessing a
crop's fertilizer needs with sufficient frequency and spatial resolution is needed for this aspect of
precision agriculture to succeed.

APPROACH: A Canopy Chlorophyll Content Index (CCCI) using reflectances from three
wavelengths of light was developed and field tested. Reflectance measurements ofa cotton field were
made in the summer of 1999 using a linear move irrigation system that had been fitted with a sensor
platform and precision water and fertilizer application capabilities developed by The University of
Arizona Department of Agricultural and Bioengineering. The sensor platformcarrieda multi-spectral
sensor developed at the U.S. Water Conservation Laboratory (USWCL) (1998 Annual Report) in
such a manner that a 1-meter resolution image of the 16 plot, 1-hectare field could be acquired in
about 2 V4 hours. Images were acquired several times per week. The initial coarse reflectances were
produced using a painted reference panel attached to the central tower of the linear irrigation system,
and sampled by the sensor every minute. Half of the plots received 50% of the recommended
nitrogen application, which was applied before planting and at three times during the season. The
remaining plots received the full 200 Ibs./acre recommended nitrogen. Half of the plots also were
subjected to periodic water stress, so that four replicates each of four different treatments (full-water,
full-nitrogen; full-water, half-nitrogen; low-water, full-nitrogen; and low-water, half-nitrogen) were
present,

FINDINGS: Preliminary findings show that the CCCI was able to clearly reveal the low nitrogen
plots even when a vegetation index showed no difference, as seen in Figure 1. What is more, the
CCCI differences disappeared within a couple days of a fertilizer application.

INTERPRETATION: These data are still in the early stages of analysis, but the coarse results seen
so far are very promising, If a good correlation is found between the CCCI and chiorophyli meter
and leaf petiole analyses, which were collected but are not yet available, the index could be converted
to a fertilizer recommendation. Hand-held sensors, sensors mounted on tractors, or airborne cameras
could then be used to provide spatial nutrient deficit information to variable rate applicators.

FUTURE PLANS: The methodology used in the CCCI is currently under review for patentability,
and therefore details cannot yet be released. Analysis of the 1999 data must be completed.
Specifically, the coarse reflectances will be refined using data from an up-looking sensor which were
collected during each measurement run, Animage processing program currently under development
by The University of Arizona Department of Agricultural and Biosystems Engineering will thenbe
able to produce the 70 partial- and full-field images collected. Petiole analyses and SPAD
chlorophyll meter data will be used to test the CCCI sensitivity. We plan to test the index on other
crops, specifically vegetables and wheat, as the opportunity arises.
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Figure 1. Image of the experimental field acquired August 19th, 1999. The left half is an enhanced Normalized
Difference Vegetation Index, showing little variation among treatments. The right half of the figure is the recently
developed Canopy Chlorophyll Content Index (CCCI) of the same field, the same day. Low nitrogen plots are outlined
in white,

COOPERATORS: Images were collected in cooperation with The University of Arizona Department of
Agricultural and Biosystems Engincering, funded through a grant from the Department of Energy’s Idaho National
Engineering and Environmental Laboratory. Peter Waller and Christopher Choi were assisted by graduate students
Paul Colaizzi, Julio Haberland, and Michael Kostrzewski in the design and assembly of the precision application and
sensor platform systems. The linear maove irrigation system was provided by Valmont. Tom Thompson of The
University of Arizona Department of Soil, Water, and Environmental Sciences designed the nitrogen treatment
experiment and his graduate student Emily Riley supplied ground truth data on nutrient status. The experimental site,
field operations, and management were provided by The University of Arizona Maricopa Agriculturat Center, Robert
Roth, Director.
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MULTISPECTRAL DATA FOR SOIL MAPPING:
OPPORTUNITIES AND LIMITATIONS

E.M. Barnes, Agricultural Engineer; M.G. Baker, Research Specialist; M.S. Moran and
T R. Clarke, Physical Scientists; and P.J. Pinter, Jr., Research Biologist

PROBLEM: Soil maps derived from random or grid-based sampling schemes are oftenan impoﬁant
part of precision crop management. Sampling and soil analysis to derive such maps require a large
investment of both time and money. Aerial photos have been used as a soil mapping aid for years
(e.g., Bushnell, 1932). Studies have shown such an approach can be useful for defining management
units in precision farming (e.g., Thompson and Robert,1995), but these studies are often limited to
a single field, not an entire farming operation. The objective of this study was to determine if
multispectral airborne (green, red, near infrared, and thermal) and satellite (SPOT and Landsat TM)
data could be used to derive soil maps for a 770 ha research and demonstration farm in Maricopa,
Arizona [Maricopa Agricultural Center (MAC)).

APPROACH: Soil data used in this study were collected by Post et al. (1988) from May 1984 until
January 1987. There were 303 sample locations in the fields considered in this analysis. For each of
these samples, textural fractions of sand, silt and clay were determined and the location recorded in
a UTM coordinate system. Kriging techniques were used spatially to interpolate the data to a 2-m
grid. Individual grids were generated for the sand, silt, and clay percentages. These three grids were
then used to derive a textural classification map of the farm (i.e., class of sandy loam, sandy clay
loam, or clay loam).

Three image data sources were considered in this study:

(1) multi-temporal, aerial-borne digitized video images acquired during the summer of 1954,
(2) a SPOT High Resolution Visible (HRV) image from April 9, 1989, and

(3) aLandsat Thematic Mapper (TM) image taken April 13, 1989.

The images were geometrically registered to the same coordinate system used to identify to the soil
sampling locations (UTM projection, NAD 27 datum). The airborne image was composed from
portions of 56 individual video frames, forming a single mosaic of the study area. Details on the
airborne data set are given by Moran et al. (1996). Both satellite images easily encompassed the
entire study area in a single image frame. Image data corresponding to the location of the soil
samples were extracted in a tabular format so that correlation coefficents could be calculated between
the soil textural percentages (sand, silt, clay) and the spectral bands.

Unsupervised classification was conducted on the images using the Iterative Self-Organizing Data
Analysis Technique (ISODATA) (Tou and Gonzalez, 1974). This technique uses iteration to define
"clusters” of data in multi-dimensional spectral space. A convolution filter was then applied to the
classified images to remove small, spatially discontinuous classes. The classification process was
conducted across two different spatial scales: classification using data for the entire farm (farm-level)
and classification on a field-by-field basis (field-level). For the farm-level classification, the resulting
classes were then assigned to a soil class of sandy loam (SL}, sandy clay loam (SCL), or clay loam
(CL)based on the spectral classes present in two fields that contained a wide range of soil conditions.
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For the field-level classification, soil data within each field were used to assign a spectral class to a
soil textural class.

FINDINGS: Correlation coefficients (r) between the Landsat spectral bands and textural percentages
are shown in Table 1, using data for the entire study area. Results from the other sensor platforms

Table 1. Correlation coefficients between the percent sand, silt, or clay and the Landsat TM bands for the
entire area considered in the analysis.

Spectral Region
Blue Green Red NIR SWIR]1 Thermal SWIR2

r(%Sand,Band)  0.296 0380 0462 0493 0.526 -0.053 0.572
r(%Silt,Band) -0.268 -0.346 -0426 -0466  -0.502  0.001 -0.547
r(%Clay,Band) -0.309 -0.394 -0473 -0.494 -0.524  0.094 -0.568

were very similar. With the exception of the thermal bands, all of the coefficients are significantly
different from zero (p = 0.05). Also note that r values tend to increase in magnitude with increasing
wavelength (excluding thermal data) for all sensor systems. Additionally, sand is positively correlated
with reflectance, while sand and clay show a negative correlation.
While statistically significant, the correlation coefficients indicate
that typically less than 30 percent of the variation in any given
band can be attributed to differences in soil texture.

Explanation for the remaining variation can be partially found by
viewing the gray scale images in the near infrared (NIR) portion
of the spectrum from the airborne sensor in figure 1. The
numbers shown on the figure are field identifiers. In this figure
there are several differences in reflectance levels that are not
related to soil texture. The two dark rectangles in field 35 are
due to irrigation in progress. There is also a distinct "corner"” in
the upper center portion of the field that is an artifact of the
individual frames used to create the image (also visible in field
20). Field 37 appears consistantly brighter than field 36 which is
an artifact of using different image dates in the mosaic and
different tillage conditions in both fields. Similar confounding
factors also were found in the SPOT and LandSat scenes;
however, there were no moasicing problems in the satellite

23 222 2019

. . X > ! Figure 1. Near infrared image from
images as the farm is contained in a single frame. Other the airborne sensor of the study area.

interfering factors found during the course of the analysisinclude Note numbers are field identification
row direction (north to south versus east to west), tillage numbers.

condition (e.g., freshly tilled or rain compacted surface), and seed bed preparation (flat versus raised
beds).
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All of these factors also impacted the results of the unsupervised classification procedures as
evidenced in Table 2, where none of the images were classified with accuracies much higher than 50
percent when the procedures were executed for the entire farm. However, there was a signficant
improvement when the classificaiton was conducted on a field-by-field basis (Table 2). The increase

Table 2. Accuracy assement results from the unsupervised spectral classification procedures.

Sensor System
Airborne SPOT Landsat
Classification Level Percent of points correctly classified.
Farm 51 50 48
Field 81 88 92

in accuracy can be attributed to the fact that surface conditions are much more consistant within a
field as they typically receive the same tillage practices at the same time. The results of the field-by-
field classification from the airborne data is shown in figure 2 (similar results were obtained with
Landsat and SPOT). For comparison purposes, the soil map based on the kriging procedures is also
presented in the figure, Overall there is good agreement in the majority of the spatial patterns
between the two methods. Some of the sandy loam areas that appear in field 30 on the map derived
from the airborne data that are
not in the kriged map and canbe
attributed to small grain residue
in this field. The residue gives
the soil a "brighter” appearence,
which is also characteristic of
soils with higher sand content at
this site. It was determined that
the area percent classified
differently from the kriged map
3 were 30, 23, and 27 for the
30 airborne, SPOT, and Landsat
derived maps, respectively.

More soil samples are needed to

i3 022 2110 19

® determine if the differences

. : v R u between theimage-derived maps
a) Airborne data b)Interpolated soil samples and the kriged map are due to
Figure 2. Soil map derived from the airborne data using unsupervised errors in the kriged map or in
classification on a field-by-field basis (a) and the map derived from the the classified images for cases
kriging procedures (b). where there were no known

confounding factors. However,
it is speculated that patterns derived from the images in fields with uniform soil surfaces are more
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accurate than those from the interpolated data. Additionally, only 60 soil sample locations were used
in generating the image-based maps, while 303 locations were used for the kriged map. The number
of points needed for the image-based method could have been substantially reduced if the soil surface
had been uniform across the farm.

INTERPRETATION: Many factors can impact a soil's apparent reflectance that are not related to
the soil's physical properties (e.g., tillage patterns, residue, row direction). Therefore, the use of
multispectral imagery is best suited for large fields that have a uniform soil surface at the time of
image acquisition. It is also necessary that the soil property of interest exhibit a spectral response.
If such conditions are present, the number of soil samples needed to map soil properties can be
significantly decreased when compared to spatial interpolation techniques. In this study, a general
trend was that high sand content was associated with higher reflectance levels; however, this result
was specific to the study site and it is not implied that such a spectral response will be true of soil at
other locations.

FUTURE PLANS: A similar study is planned for 2000 where fallow fields at MAC will be cultivated
just prior to image acquistion so the fields will have similar surface conditions. It is hoped that
imagery will be available from one of the satellites' recently launched cables of providing 4-m spatial
resolution data in the NIR, red, and green spectral regions,

REFERENCES:
Bushnell, T.M. 1932. A new technique in soil mapping. American Soil Survey Association Bulletin
13:74-81.

Moran, S.M; Clarke, T.R.; Qi, J.; and Pinter, Jr., P.J. 1996, MADMAC: A test of multispectral
airborne imagery as a farm management tool. In Proc. of the 26th Symposium on Remote Sens.
Environ,, March 25-29, Vancouver BC. pp. 612-617.

Post, D.F., Mack, C.; Camp, P.D.; and Suliman, A.S. 1988, Mapping and characterization of the
soils on the University of Arizona Maricopa Agricultural Center. Proceedings of Hydrology and
Water Resources in Arizona and the Southwest, Arizona-Nevada Academy of Science 18:49-60.

Thompson, W.H., and Robert, P.C. 1995. Evaluation of mapping strategies for variable rate
applications. In Site-Specific Management for Agricultural Systems, P.C. Robert, R.H. Rust, and
W.E. Larson,editors. ASA-CSSA-SSSA, 677 S. Segoe Rd., Madison WI 53711. pp. 303-323.
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DEVELOPMENT OF A MODELING AND SENSOR SYSTEM TO PROVIDE
INFORMATION FOR PRECISION CROP MANAGEMENT

E.M. Bames and D.J. Hunsaker, Agricultural Engineers;
T.R. Clarke and M.S. Moran, Physical Scientists;
Stacy Richards, Research Lab Assistant; and P.J, Pinter, Jr., Research Biologist;

PROBLEM: Precision farm management requires timely, georeferenced information on crop and
soil conditions. In this management system, the crop is given what it needs based on the current soil
and environmental conditions so that economic return (not necessarily yield) is optimized. Cost
efficient methods to provide this information are lacking at the present time. The objective of this
project is to provide the tools needed economically to manage crop inputs at a very fine scale
(potentially as small as 1 m).

APPROACH: To provide real-time management information, a combined sensor- and modeling-
based approach has been under development. This project is part of a cooperative study, primarily
funded by the Idaho National Environmental and Engineering Laboratory (INEEL). The U.S. Water
Conservation Laboratory is providing the expertise on the remote sensing components of the study
and assisting in the execution of field experiments to collect the data needed to validate and develop
the system. The University of Arizona is working on the hardware design of a carriage for the sensor
and developing techniques to provide an interface between the remotely-sensed data and an energy
and water balance model called ENWATBAL (Lascano and van Bavel, 1987). Texas A&M
University is providing the expertise on ENWATBAL and conducting a concurrent experiment in
Texas. The project also is enhanced by the participation of two private companies, Valmont, which
is providing a linear move irrigation system for the project, and CDS Ag. Industries, which is
providing an injection pump.

The project began in 1998 with cotton and barley field experiments during which agronomic and
hand-held radiometer data were collected. These data were used to begin formulation of quantitative
relationships between spectral response and crop condition (see Barnes et al., 1998). Concurrent
with these experiments, construction proceeded on a system to allow the linear move irrigation
system to serve as a remote sensing platform named Agricultural Irrigation Imaging System (AgIIS,
i.e, “Ag Eyes”). AglIIS was completed in time for the 1999 cotton season and was able to provide
images in the red, green, red-edge, near infrared (NIR), and thermal portions of the spectrum.
Various components of the hardware aspects of the system are under consideration for patents by The
University of Arizona and so a detailed description is not possible at present. During the growing
season, the AgIIS was used to obtain images at a minimum of weekly intervals, with as many as three
images per week during the period of rapid crop development,

A Latin square experimental design was used during the 1999 cotton season with four treatments:

(1) control (WN, optimal conditions); (2) low nitrogen (Wn, 50% optimal plant requirements); (3)
low water (WN, decreased irrigation frequency, allowing the plants to become water stressed three
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times during the season); and (4) low water
and low nitrogen (wn). A diagram of the
treatment layout is provided in Figure 1.

1:WN 2:Wn 3:wN 4:wn

Soil moisture levels were monitored in

| N every plot using a neutron probe at a
5-wN 6:wn TWN 8-Wn minimum of weekly intervals (2 access
tubes per plot). Additionally, two plots
were heavily instrumented with TDR
f probes in 4 locations at 4 depths (5, 10, 15

9:'Wn | [10:wN [11:wN | 1 12:WN and 20 c¢m). The probes were used to
determine the soil surface moisture content
at hourly intervals using an automated data
acquisition system. Stem flow gages also
were added to these plots to measure the
cotton's daily transpiration rate. The plants
22m were sampled weekly for nitrate status,

Figure 1. Plot numbers and treatment codes for the 1999 cotton leaf area index (LAI), leaf, stem, and boll
experiment (sce text for an explanation of the treatment codes). dry weights, plant height, and percent

canopy cover.

13:wn | [14WN ||15:wn | [16:wN || 220

FINDINGS: Analysis of all of the data collected during the experiments is still in process; however,
initial results are encouraging. Figure 2 {color appendix) provides a comparison of a true color
photograph of the field taken from a helicopter on October 1, 1999, and images from AGIIS acquired
four days prior to the flight. The photograph was scanned at an approximate spatial resolution of
10 cm and AgIIS provides 1 m resolution, By this time in the season, most of the low nitrogen and
water plots showed some signs of decreased leaf area. In the images, a higher canopy density is
evident by intenser shades of green in the photograph (Fig. 2a) and intenser shades of red in the false
color composite (Fig. 2b). Note that the spatial patterns in these two images are similar. The other
images in Figure 2 provide a sample of the different spectral regions available from AgllS. The
visibile and NIR gray scale images (Fig. 2 ¢ - f) were contrast stretched so that the minimum
reflectance corresponded to black and maximum reflectance to white. The thermal band (Fig. 2g)
represents the coolest condition as black and warmest as white. The ratio vegetation index (RVI=
NIR/Red) has a color map applied so that low values are red and high values are green.

The ability to obtain images of a field is useful only if the images can be related to management
information. To demonstrate the potential information from the system, Figure 3 (color appendix)
provides two false color composite images from AglIS on August 19. This day was selected because
the low nitrogen treatments were established and the high water plots were irrigated three days
earlier, but the low water plots were not. In the standard color infrared image of Figure 2a, most of
the color patterns in the image are related to variations in canopy density (brighter red corresponds
to a denser canopy); and there are no distinct signs of the experimental treatments. However, many
of the color pattens in Figure 2b can be related to the treatments, In this figure, the canopy
chlorophyll content index (CCCI) is displayed red (Clarke and Barnes, “A new canopy chlorophyl
content index for cotton,” this report), which can be related to crop nitrogen status in this experiment.
The ratio vegetation index (RVI = NiR/red) is displayed as green, and the crop water stress index
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(CWSI) (Idso et al., 1981) displayed as the blue band. Therefore, the control plots (WN) appear
green as CCCI and CWSI are low under non-stressed conditions and RV is higher for high canopy
densities. A majority of the low nitrogen plots have a orange tint (higher CCCI values), while the low
water plots have a blue tint (higher CWSI values). Plot 13 (lower left corner, wn) has a strong pink
tint, as this plot had a low canopy density. The ability to distinguish between canopy density and two
crop stresses demonstrates the progress being made in this study to extract more exact information
about crop status than has been possible in the past.

INTERPRETATION: The system under development will provide farmers and agricultural
consultants with a simple, cost effective data source to map spatial variations in crop water and
nitrogen levels. These data will have the potential to serve as an integral part of a decision support
system for precision crop management.

FUTURE PLANS: Work will continue to integrate the sensor information with simulation models
to provide decision support in water and nitrogen management. Related studies will begin during the
1999-2000 growing season using AgIIS to determine the feasibility of remote sensing and modefing
technologies to provide information relevant to quality management in broccoli.

COOPERATORS: Peter Waller, Chris Choi, Mark Riley, Tom Thompson, Paul Colaizzi, Julio Haberland, Mike
Kostrzewski, and Emily Riley, University of Arzona, Tucson AZ; Robert Lascano and Hong Li, Texas A&M
University, Lubbock TX; Jack Slater, INEEL, Idaho Falls ID; Jim Phene, Valmont Industries, Valley NE; Yim Stubbs,
CDS Ag Industries, Chino CA.
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Figure 2. Comparison of a true color photograph (a) acquired October 1 to images from AglI8 acquired September
27. The false color composite is a display of the NIR image (near infrared, d) as red, the red image (c) as green, and
the green image (d) as red. RV is the ratio of NIR to red.

Figure 3. A standard color infrared image (a)
siilar to fig. 2b and an “indices” false color
composite image (b) from AgllS on August 19
Treatment codes have been overlaid on the
indices image. In b, CCCI is displayed as red,
RVT as green and CWSI as blue.

(a) NIR, Red, Green false (b)Y CCCI, RVI, CWSI false
color composite color composite
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DETERMINING CROP WATER STRESS FROM CROP TEMPERATURE
VARIABILITY

R.B. Bryant, Physical Science Technician; M.S. Moran and T.R. Clarke, Physical Scientists;
and P.J. Pinter Jr., Research Biologist

PROBLEM: Detection of plant water status is of primary importance for efficient and economic
irrigation schedufing. Thermal infrared data in the wavelength band 8-13 pum have been found to be
particularly well suited for crop water stress detection. Two of the most commonly used thermal
indices for irrigation scheduling are the crop water stress index (CWSI) (Jackson et al, 1981) and the
thermal kinetic window (TKW) (Burke et al,, 1988). These physical indices are based on a
comparison of the canopy temperature with the air temperature (in the case of CWSI) or the optimal
temperature of a given crop (in the case of TKW). For both indices, it is necessary to converi the
digital number (dn) recorded by the optical sensor to “true” or kinetic crop temperature (Ty), which
is defined as the temperature measured with an accurate in sifu thermometer in good contact with the
crop. This conversion requires that the airborne optical sensor be calibrated (to convert dn to at-
sensor radiometric temperature Ty'), the atmospheric attenuation of the sensor signal be known (to
convert Ty to surface radiometric temperature Ty), and the surface emissivity be known (to convert
T 1o Ty). More often than not, airborne sensors are not calibrated; there is no information on
atmospheric scattering and absorption; and there is only a rough estimate of surface emissivity.

APPROACH: The approach proposed here is based on the assumption that a crop with full cover
and adequate water should display a normal distribution of thermal dn’s. Since the thermal image
data of a well-watered crop tends toward a fixed value (the mid-range of its thermal kinetic window),
it can be assumed that the data will be normally distributed if there are no other factors affecting the
variability of the data (e.g., a bare spot in the field). Presumably, the further a data set of crop
temperatures deviates from a normal distribution, the greater will be the plant water stress inthe field.
This is because, as water conditions for photosynthesis become sub-optimal, soil properties and
genetic properties of individual plants will begin to influence the ability of the plant to stay within its
thermal kinetic window.

We used this theory to derive an index based on the deviation of the shape of a histogram of the
image data from the shape of a normally distributed histogram generated from the variance and mean
of the thermal image data. In order to make the shape of each histogram comparable across different
images regardless of standard deviation, the y axis of each histogram (i.e., the frequency for image
data histogram and distribution for the generated histogram) was converted to a normalized frequency
(7)) and a distribution (dist,) ranging from 0 to 1, where f, = (frequency - minimum frequency) /
(maximum frequency - minimum frequency), and dist, = (distribution - minimum distribution) /

( maximum distribution - minimum distribution), thus allowing comparison of curve shape rather than
dn distribution. To compute the Histogram-derived Crop Water Stress Index (HCWSI), we summed

it
HCWSI = ), abs(f, - dist,), M
t=dhtys,

the absolute difference between f, and dist, for each dn, where dn,;, and dn,,, are the minimum and
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maximum values of dn in the image. Graphically, HCWSIis the area represented by the shaded zones
in Figure 1.

According to our theory, a recently irrigated field would have a relatively uniform thermal profile
which would result in a histogram that was close to normal. A purely normal curve would have an
index of 0.0 so a recently irrigated field would have a low HCWSI number. If the same field were
to experience water stress, then the thermal profile would exhibit more heterogeneity and its
histogram would deviate more from a mathematically normal curve. Its HCWSI should be higher
than the HCWSI calculated from a recently irrigated field.

Figure 1, Example of a histogram from a thermal image of a well-watered crop (lefl) and a water-stressed crop (right),
where the x-axis is image dn and the y-axis is normalized frequency and distribution. The jagged line is actual data
and the smooth line is a mathematically normal histogram generated from the variance and mean of actual data. The
integration of the gray area is the HCWSL

FINDINGS: The images used in this analysis were from overflights of The University of Arizona's
Maricopa Agriculture Research Center during the summer of 1994 as part of the Multi Spectral
Airborne Demonstration at Maricopa Agricultural Center (MADMAC) (Moran et al., 1996). We
chose three production cotton fields with 100% vegetation cover for demonstration of HCWSI, Field
31 was Upland Cotton (Gossypium hirsutum L.) and Fields 33 and 34 were planted with Pima Cotton
(Gossypium barbadense). The soil at the east end of Field 33 (Border 2) was substantially more
sandy than that of all other field borders. We extracted data for three irrigation borders in three fields
from the thermal images with a size of 75x75 pixels which corresponded to ground dimensions of 150
x 150 meters. A histogram of each border was generated on each date using the dn range number
(dn,-dn,;,) for the number of bins and £, values 0-1 along the y-axis. Next, the variance and mean
of each extracted data set were used to generate a histogram with a mathematically normal
distribution. Using eq. (1), the HCWSI was generated for each temporally different image of each
border resulting in a seasonal time series of HCWSI for each field border (Fig. 2).

Since the fields we analyzed were production crops which were regularly irrigated, the plants should
not have been subjected to severe or prolonged water stress during the season. Field notes taken
during the time of overflight indicated wilted plants in Fields 33 (Borders 3 ,4) and 34 (Border 2) only
on one of the six dates analyzed, DOY 193. The HCWSI on that day for Fields 33 and 34 tended to
be higher than the other dates for analyzed.
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Irrigation occurred on DOY 199, and, according to the HCWSI, all borders in Field 34 recovered by
the time of the next overflight on DOY 202. Plants in Field 33 apparently recovered more slowly.
In fact, Border 2 retained a higher HCWSI for the rest of the season. This border was considerably
more sandy than Borders 3 and 4, so there was a possibility that even when it was well irrigated the
plants were still stressed and the thermal profile was still not normally shaped. This hypothesis was
supported by the fact that Border 2 on DOY 235 still had a relatively high HCWSI (4.1) only two
days after irrigation. It also had the highest HCWSI of all the borders on DOY 193 (10.6) so there
is a possibility that permanent damage to the crop had occurred.

The HCWSI of Border 3 in Field 33 was highest on DOY 193 when leaf wilting was recorded in the
field notes. According to subsequent HCWSI values, it took several weeks for the plants to recover
completely from the severe wilting on DOY 193. That is, HCWSI values were still somewhat high
(3.7 and 3.9 on DOYs 202 and 214), and finally reached a low HCWSI value of 1.2 on DOY 235.

Plants in Field 31 exhibited very little stress according to the HCWSI, Borders 3 and 4 on DOY 193
showed elevated numbers of HCWSI=3.2. We inspected the images and found that these borders had
a north/south line of elevated dn probably due to irrigation problems. The only other border with a
noticeably increased index was Border 2 on DOY 214. This also may have been due to irrigation
problems.

INTERPRETATION: The HCWSI is a crop stress index based on within-field thermal variability
that circumvents the need for ancillary meteorological data, complex atmospheric measurements, and
knowledge of surface emissivity. Preliminary results from this study indicate that the HCWSI was
sensitive to both early and chronic crop stress, and to irrigation non uniformity (e.g., skipped or
partially irrigated fields).

FUTURE PLANS: This study was constrained by the fact that we had only qualitative field notes
and no direct information on the water needs of the crop at the time of the overflights. Irrigation
schedules and weather conditions were known, but this was not enough information to estimate the
water needs of each border. Also, this study considered only fields with full-cover cotton canopy.
1t is not known if other crops and other field conditions, such as partial canopy closure, high winds,
and nitrogen stress, affect the HWCSI to make it less effective as a general index for crop water
stress. Another study should be conducted in which quantitative information on crop water stress
is obtained at the same time as the acquisition of the thermal images.

COOPERATORS: Jiaguo Qi, Michigan State University, East Lansing ML
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COMBINING SATELLITE IMAGERY WITH PLANT GROWTH AND SOIL WATER
MODELLING FOR MULTL-YEAR SIMULATION OF GRASSLAND CARBON AND
WATER BUDGET

Y.P. Nouvellon, Research Associate; M.S. Moran, Physical Scientist;
and R.B, Bryant and W. Ni, Biological Science Technicians

PROBLEM: Vegetation and soil functioning models have the ability to describe meaningful
management processes and variables such as plant growth, crop yield, and soil water budget.
Operational applications, however, have been hampered by our inability to provide a spatial
distribution of the complete set of required model input parameters. This explainsthe growing interest
in developing methodologies to incorporate remote sensing information in vegetation functioning
models. In this work, we refined a Soil-Vegetation-Atmosphere-Transfer (SVAT) model to work
on a spatially-distributed basis, continuously over multi-year periods, over a semi-arid grassland
watershed, the Walnut-Gulch Experimental Watershed (WGEW) in Southeast Arizona.

APPROACH: The SVAT model used in this study (Nouvellon et al., 1999a, and Fig. 1) is driven
by standard daily meteorological data and simulates the biomass dynamics of green shoots, dead
shoots, and living roots on a daily basis (plant growth submodel). Plant transpiration, soil
evaporation and soil water fluxes also
are simulated in a water budget

submodel. Gross photoeymtheris prlg @L Transpisation

The main processes simulated in the

plant growth submodel are Evaporation Precipitation

photosynthesis, photosynthate Allocation

partitioning between aerial and below-

ground compartments, translocation of Liter N P— Raatt

carbohydrates from roots to shoots at  jeoductim  FeREI® e ]

the regrowth period, respiration, and ’ ! {
senescence. The water balance Senescence [Ty Pecdsin
submodel uses a simplified two-layer o |
canopy evapotranspiration model : Rodt !
where the soil profile is divided into s xtraction } dminge

three layers. The main processes

simulated are the water infiltration and

percolation in the soil profile, the

evaporation from the soil and fromthe Figure 1: Schematic representation of the plant growth and water
sparse grass canopy (using the budgetmodels.

Penman-Monteith equation), the

canopy stomatal control, and the root

water uptake in each soil layer,
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The SVAT model was combined with a physically-based Radiative Transfer Model RTM {the
Markov Chain of Canopy Reflectance (MCCR) model (Kuusk, 1995)] through the green Plant Area
Index (PAI) simulated by the plant growth model. The MCCR model accounts for the non-random
pattern of leaf distribution through the incorporation of a Markov model for gap fractions
computation. The parameters of the Markov model and those used to describe the Leaf and Stem
angle distribution (LSAD) were derived from extensive measurements of canopy structure and gap
; frac "*r}fn‘ on sirious sites in Northern Mexico and Southeast Arizona (Nouvellon et al., 1999b).

]

. " Landsat Thematic Mapper (TM) images obtained during the summer growing seasons of ten

consecutive years (1990-1999) were used to calibrate the SVAT model. The SVAT model was
applied over the grassiand areas of the WGEW (selected using a digital vegetation map), using soil
texture parameters provided by a digital soil map and daily meteorological data measured at the
Kendall site from June 1990 through August 1999 (Fig. 2). At each satellite overpass, NDVI were
simulated by the combined SVAT-RTM (in the same sun/view zenith angles configuration as the
corresponding measurements) and compared to ND VI calculated from reflectances measured by TM
sensor and corrected for atmospheric effects. Spatially unknown initial conditions and parameters
were estimated using an iterative procedure based on the simplex method that minimizes the
difference between simulated
and measured NDVI,

Parameters and initial
conditions chosen to be re-
parameterized / re-initialized
were such that (1) the model is
highly sensitive to them, (2)
they are spatially variable, and
(3) they are difficult to obtain
by direct measurement at the
regional scale. Following a
sensitivity analysis and taking
into account the above criteria,
initial living root biomass
(BR,,) and maximum light use
efficiency (gg“""‘) were selected Figure 2: Synoplic view of the approach used to refine the plant growth/ soil

to be initialized and guerbudget model to work on a spatially distributed basis using time series of
parameterized respectively. Tandsat TM images.

FINDINGS: Biomass measurements obtained at the Kendall site from 1990 to 1992 were used to
evaluate model results obtained without calibration and with calibration using TM images. Daily
simulations of biomass obtained for the Kendall site for the ten-year period using two a-priori sets
of possible values of e, and BR,;were compared to aboveground biomass measured from 1990 to
1992 (Fig 3). Reflectances and ND VI simulated by the combined SVAT-RTM for these two a-priori
parameter sets also were compared to TM-derived red and NIR reflectances and NDVI (mean values
of reflectance and NDVI of the pixels that includes the Kendall site). The first set of a-priori values
of &, and BRy; resulted in overestimation of measured aboveground biomass (RMSE 0f20.0 g m™?)
and NDVI (RMSE of 0.065). Underestimation of biomass and NDVI resulted from the second set
(RMSE of 18.8 g m™ and 0.068, respectively). These results show that SVAT errors due to uncertain
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values of ., and BR; strongly propagate in the RTM resulting in a high sensitivity of NDVI to
model errors.
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Figure 4 presents the simulation results obtained after model calibration. The results show that, after
calibration, simulated aboveground biomass was in good agreement with measurements and with an
RMSE of only 11.7 gm™2.

INTERPRETATION: In this study, a coupled SVAT-RTM was run on a spatially distributed basis
with assimilation of a ten-year time series of Landsat TM data. It was shown that satellite derived
NDVI could be used to control the simulation of the coupled model through a calibration procedure
which gives the estimation of two spatially variable initial conditions and model parameters. The
results obtained suggest that the
approach using both modeling and
remote sensing may prove more
useful in grassland management
than either of them used alone. It
also can provide spatially-
distributed information about
vegetation [e.g., maps of biomass
obtained at a daily time step (Fig.
5)] and soil conditions for day-to-
day grassland management.

Figure 5: Map of simulated above-ground biomass (DOY 249, year 1992)
on grassland areas of the WGEW.

FUTURE PLANS: We are currently initiating several works in order (1) to incorporate a runoff’
model in the grassland model; (2) to test more robust and faster calibration procedures; (3) to use
both optical thermal and microwave remote sensing data; and (4) to address the problem of how
meteorological data cbtained at discrete locations can be used on a spatially distributed basis.
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SPECTRAL REFLECTANCE PROPERTIES OF INSECT TRAPS

P.J. Pinter, Jr., Research Biologist; S.M. Gerszewski, Biologica! Technician;
C.C. Chu, Research Entomologist; and T.J. Henneberry, Research Biologist

PROBLEM: A passive insect trap was recently developed for monitoring populations of silverleaf
whiteflies (Bemesia argentifolii Bellows and Perring) and other insectsin cotton and other field crops (Chu
etal 1998). Called the CC Trap after the initials of its inventor, C. C. Chu, the design of this new trap was
based on insect behavior, primarily the attraction of insects to certain colors. No sticky materials,
pheromones, or baits are used in its operation. From 1996 through 1699, scientists tested the trap
efficiency in catching insects in the United States, India, and the People’s Republic of China. The purpose
of the U.S. Water Conservation Laboratory’s involvement was to characterize the spectral properties of
variously colored trap bases and relate the findings to trap performance.

APPROACH: The CC insect trap consists of a clear plastic trap top to

admit light for insect orientation into the trap, a deflector plateto reduce

escape of trapped insects, and a colored trap base that has an opening

for insect entrance (Fig. 1). Nine different trap base colors were

studied. These are described intheMonsanto Plastic (1993) color chart

as white, rum, red, yellow, lime green, spring green, woodland green /
(dark green), true blue, and black.

A Personal Spectrometer IT (PSII, Analytical Spectral Devices, Inc,,
Boulder, Colorado) was used to obtain spectral data from trap bases
that were illuminated by midday, direct beam sunlight and diffuse sky
irradiance. The spectroradiometer has a nominal 350 to 1050 nm
spectral response, 1.4 nm sampling interval and approximately 3 nm-
spectral resolution. Fiber optics on the PSII were equipped with 10°  Figure 1. The CC insect trap.
field-of-view foreoptics. Measurements were made with the optics

oriented normal (perpendicular) to the outside surface of the trap base.

Reflectance factors were computed as the ratio of directional radiances of the trap base to irradiances
estimated from frequent measurements over a calibrated BaSO, reference panel. Reflectance of the abaxial
(under) surface of field-grown cotton leaves was used as a reference for comparison with colored trap
bases.

FINDINGS: The differently colored plastic traps had spectral reflectance characteristics which varied
considerably across the visible (400 to 700 nm) and near-infrared (700 to 1050 nm) portions of the
spectrum. The different spectral shapes could be roughly associated with trap efficacy. We observed, for
example, that the three most attractive trap colors for whiteflies and leafhoppers (lime green, spring green,
and yellow in Fig. 2) had reflectances that were relatively low in the blue (400 to 460 nm) and higher in
the green, yellow, and orange spectral regions (490 to 600 nm). It is relevant to note that the abaxial
surfaces of green cotton leaves (also shown in Fig. 2) have a small peak at 550 nm that was spectrally
similar to the prominent peaks measured on the lime green and spring green trap bases. Green cotton
leaves also had low blue and red reflectances as well as high NIR reflectances. Thus the lime green and
spring green trap bases seemed to mimic green leaves in an abstract sense. The lime green and spring green
colored traps differed considerably from the yellow colored plastic trap and the commercially available,
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yellow cardboard sticky trap (not shown
in figures) by having relatively low
reflectances in both the red (600 to 700
nm) and red to NIR transition (700 to
740 nm) spectral regions. The yellow
trap base had low blue reflectance, and,
although lacking a peak in the green
region (500-550 nm), displayed overall
high reflectances beginning at 580 nm
and continuing upwards into the NIR
region. We found that the least
attractive trap colors for whiteflies and
leathoppers (Fig. 3) had either very low
reflectance at all wavelengths (e.g..,
black and dark green) or had moderately
high reflectance in the blue (400 to 480
nm, e.g., true blue trap) or red regions of
the spectrum (600 to 700 nm, eg. red
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Figure 2. Spectral properties of CC trap base colors yellow, lime
green, spring green, and white in reference to the abaxial surface

trap). of a cotton leaf.
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Figure 3. Spectral reflectance of CC trap base colors true blue,

rum, dark green, black, and red.

INTERPRETATION: The
reflectance factors that we measured
from the most attractive trap base
colors (lime green, spring green, and
yellow) for the silverleaf whitefly and
leathoppers were somewhat similar to
the spectral properties of healthy green
cotton leaves (i.e., low reflectance inthe
blue, high NIR reflectance). Spectral
properties of leaves and canopies vary
with age and environmental conditions,
and this may alter the time course of
plant attractiveness to insects that use
color clues in selecting host plants. We
have observed, for example, that as
cotton becomes nutrient stressed the
green/yellow-green peak tends to
become amplified slightly compared
with the red (data not shown) although
it never becomes as exaggerated as that
observed in the lime and spring green
traps.

In a previous, unpublished study (Pinter, 1994}, we examined the high resolution spectral properties of
cotton leaves coated with honeydew produced by actively feeding silverleaf'whiteflies. 'We found that the
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honeydew caused higher reflectance inboth the visible and NIR wavelengths. However, theincreases were
much greater in the blue and red regions than in either the green or NIR. The honeydew varnish also acted
like a spectrally selective mirror so that this effect was accentuated when the leaves were viewed in the
forward scattering direction (i.e., so that some sun glint could be seen on the leaf surface). Such changes
in leaf spectral properties caused by honeydew may “signal” the presence of high larval densities to
migrating adult whiteflies enabling them to avoid areas where resources are already being exploited.
Further examination of links between trap performance and spectral deterrents or aftractants could lead
to improved traps having different construction materials or colors and could improve our basic
understanding of insect migration and colonization behavior. Additional research also may provide insight
on why some insects are attracted to plants experiencing water or nutrient stress and why some crop
cultivars seem more attractive to certain insects.

FUTURE PLANS: A manuscript on the spectral properties and efficacy of the CC Trap has been
prepared and submitted (Chu et al).

COOPERATORS: Kai Umeda, University of Arizona, Maricopa County Extension Service, Phoenix AZ,
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