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Abstract

While the demand for pollination services have been increasing, continued declines in honey bee, Apis mellifera 
L. (Hymenoptera: Apidae), colonies have put the cropping sector and the broader health of agro-ecosystems at risk. 
Economic factors may play a role in dwindling honey bee colony supply in the United States, but have not been 
extensively studied. Using data envelopment analysis (DEA), we measure technical efficiency, returns to scale, 
and factors influencing the efficiency of those apiaries in the northern Rocky Mountain region participating in the 
pollination services market. We find that, although over 25% of apiaries are technically efficient, many experience 
either increasing or decreasing returns to scale. Smaller apiaries (under 80 colonies) experience increasing returns 
to scale, but a lack of available financing may hinder them from achieving economically sustainable colony levels. 
Larger apiaries (over 1,000 colonies) experience decreasing returns to scale. Those beekeepers may have economic 
incentivizes to decrease colony numbers. Using a double bootstrap method, we find that apiary location and off-
farm employment influence apiary technical efficiency. Apiaries in Wyoming are found to be more efficient than 
those in Utah or Montana. Further, engagement in off-farm employment increases an apiary’s technical efficiency. 
The combined effects of efficiency gains through off-farm employment and diseconomies of scale may explain, in 
part, the historical decline in honey bee numbers.

Key words:  pollination, technical efficiency, returns to scale, data envelopment analysis

Honey bees, Apis mellifera L.  (Hymenoptera: Apidae), are well-
known for producing honey, but they also provide critical ecosys-
tem services through pollination (Goulson 2003, Potts et al. 2010, 
Ványi et  al. 2012). Globally, wild and managed insect pollinators 
contribute approximately $244.7 (USD) billion to the value of 
world agricultural export (Gallai et al. 2009). While 70% of crops 
are dependent on animal pollinators, the estimated dependency of 
global agricultural production on these pollinators has increased by 
56% from 1961 to 2006 (Klein et al. 2007, Aizen and Harder 2009).

Pollination services in the United States are valued at $16 bil-
lion annually, with approximately $12 billion attributable to man-
aged honey bees (Calderone 2012) [Estimates of the global and 
national economic value of pollinators are based on past estimates 
by Gallai et al. (2009) and Calderone (2012). These past estimates 
have been updated to 2017 values using the CPI Inflation informa-
tion from the United States Bureau of Labor and Statistics (BLS 
2017, Marthison 2015). For additional estimates see Southwick 
and Southwick (1992).]. Honey bees are responsible for pollinating 

over 100 commercially grown crops in North America (Kearns et al. 
1998, NRC 2007). Their vital pollination role in U.S.  agriculture 
is highlighted by the revenue attributable to pollination contracts. 
At the industry level, pollination contracts have displaced honey 
production as the main revenue source for the apiary industry 
(Suryanarayanan 2012). This has occurred despite increasing honey 
consumption and value—national honey prices were at an all-time 
high in 2015 (NASS 2015).

While demand for pollination services and honey have both been 
increasing (Aizen and Harder 2009, NASS 2015), the number of 
managed honey bee colonies in the United States has declined (van 
Engelsdorp and Meixner 2010, USDA 2016). Beekeepers continue to 
be affected by colony loss, with a 40.5% annual loss between 2015 
and 2016 (Kulhanek et al. 2017). National colony numbers reached 
a historic low of 2.39 million in 2006 with a slight rebound in 2015 
to 2.59 million colonies (NASS 2007, USDA 2016). While domes-
tic honey supply shortfalls may be compensated for with imports, 
the pollination services gap is more challenging to address. As the 
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acreage of pollination-dependent crops increases, continued declines 
in honey bee colonies may have lasting effects on the cropping sector, 
its economic bottom-line, and the broader health of agro-ecosystems 
(van Engelsdrop et al. 2009).

Existing research on honey bee colony loss has focused primar-
ily on anthropogenic, environmental, agrochemical, and biological 
drivers (e.g., Potts et al. 2010, Vanbergen 2013, Smith et al. 2013). 
Yet economic factors also play a role in managed honey bee col-
ony decline (Smith et al. 2013). Beekeepers who experience colony 
loss often replenish them by purchasing packaged bees or splitting 
existing colonies. These replacement costs can be high relative to 
income, leading some beekeepers to not replace lost colonies or to 
exit the industry (vanEngelsdorp and Meixner 2010). For example, 
although 17% of colonies were lost in 2015, only 9% of colonies 
were replaced, leading to a net decline from 2.82 million in 2014 to 
2.59 million in 2015 (USDA 2016). When beekeepers replenish lost 
colonies, they must determine the economically optimal colony level. 
From 1982 to 2002, the number of U.S. farms reporting apiculture 
activity decreased by nearly 70%. Among farms maintaining honey 
bee colonies, their colony inventory declined over the same period, 
particularly for those with fewer than 5,000 colonies (Daberkow 
et al. 2009).

In 2012, there were 115,000 to 125,000 North American bee-
keepers. Ninety-four percent of these were hobbyists (having fewer 
than 25 colonies) who did not offer pollination services to cultivated 
crops (NRC 2007, NHB 2017). In fact, Daberkow et  al. (2009) 
report that approximately 50% of beekeepers have only one to four 
colonies. This leaves much of the commercial honey production and 
pollination work to larger apiary firms. Only 10% of beekeepers 
are classified as commercial, i.e., having 300 to 60,000 colonies 
(Daberkow, et al. 2009). Yet most of these commercial apiaries pri-
marily produce honey, leaving only 1,600 commercial beekeepers 
that migrate (i.e., truck their colonies between agricultural regions) 
to pollinate crops throughout the United States (Horn 2006, Jabr 
2013, Mairson 1993, Bond et al. 2014).

The biggest pollination market in the world is for California 
almonds. California almond growers provide 80% of the world’s 
almond supply, and 100% of domestic supply (Ward et al. 2010). 
California almond production has doubled in the last 10 yr, from 
915 million pounds in 2005 to 1,850 million pounds in 2015 (USDA 
2015). Over the last 20 yr, the number of managed honey bees 
required to pollinate California’s almond crop has risen exponen-
tially, requiring more than half of all pollinating honey bee colonies 
in the United States (Champetier de Ribes 2010, Souza 2011, Project 
Apis m. 2012, Rucker, Thurman and Burgett 2012). Most varieties 
of almonds are 100% reliant on honey bee pollination (Klein et al. 
2007). Two-thirds of almond pollinating colonies come from out-of-
state. This amounts to the vast majority of the 1,600 beekeepers who 
migrate to California each year, pollinating additional crops as they 
travel to and from the almond bloom (Jabr 2013, Bond et al. 2014). 
Roughly 900,000 acres of almonds are pollinated by at least 1.6 mil-
lion honey bee colonies (Johnson and Corn 2015).

Almond pollination revenue is essential to the apiary industry. 
Almond growers pay the highest average pollination fees to beekeep-
ers, making the crop a top priority for almost all beekeepers that 
participate in the pollination market (Burgett 2011, Sagili and Caron 
2017). Pollination fees for almonds have been steadily increasing 
since 2005, due in part to increasing acres planted to almonds (Ward 
et al. 2010). Because of this trend, income from almond pollination 
exceeds income from honey production in the United States  bee-
keeping industry (Traynor 2017). Many commercial pollinators in 

the United States cover a large portion of their annual colony main-
tenance cost by pollinating almonds (Sumner and Boriss 2006).

Despite the potentially serious consequences of dwindling honey 
bee stocks in the United States, in-depth analyses of the pollination 
services market are largely missing from the literature (Rucker et al. 
2012). Enhanced economic understanding of this market could bene-
fit existing and future beekeepers (Burgett 2011). More specifically, 
a better understanding of the economic behavior and performance 
of beekeepers is essential to explaining and forecasting the scarce 
supply of colonies for pollination services (Champetier 2010). This 
is especially true in the northern Rocky Mountain region, where eco-
nomic information on the beekeeping industry is lacking compared 
to information available for California and the Pacific Northwest, 
where ongoing surveys provide critical market insights (Caron et al. 
2012, CSBA 2017). Given that commercial beekeepers in the north-
ern Rocky Mountain region have the largest share of colonies in the 
United States—as well as larger operations, on average, than those 
in other regions (Daberkow et al. 2009)—this lack of information 
is surprising.

To better understand the potential economic causes of declin-
ing honey bee stocks, using the northern Rocky Mountain region 
as a case-study, we use data envelopment analysis (DEA) to meas-
ure the technical efficiency, returns to scale, and factors influencing 
efficiency of beekeepers who participate in the pollination services 
market. Rucker et al. (2012) hypothesized large economies of scale 
available to beekeepers providing pollination services, but this asser-
tion has not yet been empirically tested. The existence of either pro-
duction inefficiencies or decreasing returns to scale could discourage 
beekeepers from expanding their pollination services to meet the 
demands of an expanding almond industry; likewise, increasing 
returns to scale may create market-entry barriers for new beekeepers. 
Therefore, an in-depth analysis of beekeepers’ technical efficiency at 
producing outputs from inputs is necessary. To our knowledge, no 
study has previously attempted to measure the efficiency of beekeep-
ers engaged in the pollination market.

Material and Methods

In 2014, we mailed a survey to a random sample of 585 beekeep-
ers, including 120, 323, and 142 beekeepers from Montana, Utah, 
and Wyoming, respectively, using the Dillman (1978) method. We 
received 257 completed surveys, with 41 from Montana, 140 from 
Utah, and 76 from Wyoming, resulting in an overall response rate 
of nearly 44%. This is above the median response rate for surveys 
mailed to business managers (Anseel et al. 2010).

The survey was six pages long, assembled as a booklet. 
Beekeepers were asked about their beekeeping business location, 
number of honey bee colonies managed, pollination contract status 
and colony rental fees, pollination service destinations, crops pol-
linated, cooperative transport arrangements, years of business oper-
ation, and income earned from off-farm employment. Specific costs, 
such as queen bee replacement and amount spent on hive repairs in 
2013 were also gathered along with demographic information such 
as education, age, gender, race, and ethnicity. Hive repair, though not 
explicitly defined in the survey, encompasses tasks such as repairing 
or replacing damaged wood and wire in a hive.

Two methods are commonly used to assess a firm’s technical 
efficiency (i.e., a firm’s ability to produce maximum output from a 
given set of inputs): stochastic frontier analysis and DEA. Stochastic 
frontier analysis uses a parametric approach to estimate a produc-
tion frontier and resulting efficiency measures (Jondrow et al. 1982).  
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The method requires the production technology to be specified a pri-
ori, which can be problematic. In many cases, the production tech-
nology’s functional form is unknown, as is the case with beekeeping 
operations that provide pollination services. Alternative functional 
forms can lead to divergent conclusions, so an incorrectly assumed 
specification can be problematic (Giannikas et al. 2003).

A second method to measure efficiency is DEA. Unlike stochas-
tic frontier analysis, DEA is a nonparametric approach that meas-
ures technical, scale, and economic efficiencies (Charnes et al. 1978, 
Banker et  al. 1984, Charnes et  al. 1994). Linear programming is 
employed in DEA to generate an efficiency frontier and then meas-
ure, for each firm or decision-making unit (DMU), its Euclidian dis-
tance to the frontier, which is based on the DMU’s quantity of output 
achieved from their chosen inputs. We measure output technical effi-
ciency of the Farrell (1957) type as described in more detail below 
(Färe et al. 1985).

The concept of technical efficiency was first shared by Galenson 
and Leibenstien (1955), with the first empirical application con-
ducted by Farrell (1957). Technical efficiency measures the ability of 
a DMU to produce maximum output given a set of inputs (Farrell 
1957). Farrell’s measure of output technical efficiency for a DMU 
is defined as the amount by which the DMU’s quantity of output 
is less than the potential quantity of maximum output given a cer-
tain combination of inputs. The maximum output, a point on the 
non-parametric frontier, is jointly determined by the output of simi-
lar, yet technically efficient DMUs.

Technical efficiency has been estimated for a wide variety of 
economic sectors, such as banking (Miller and Noulas 1996, Färe 
et al. 2004), hospitals (Varabyova and Schreyögg 2013), and swine 
production (Sharma et al. 1999). It has also been used to explore 
research questions about drivers of efficiency, such as gender in agri-
culture (Seymour 2017) and farm size (Helfand and Levine 2004). 
Relatively few studies have measured technical efficiency in the bee-
keeping industry. These previous studies have focused only on honey 
production in developing countries, and without consideration of the 
pollination services market (Habibullah and Ismail 1994, Aburime 
et  al. 2006, Olarinde et  al. 2008, Abdul-Malik and Mohammed 
2012). These studies have also primarily used stochastic frontier 
analysis to measure honey production efficiency, an approach that 
requires them to assume in advance a shape for the production func-
tion (e.g., a Cobb-Douglas function), even though the true produc-
tion function is rarely known. Given the limitations of stochastic 
frontier analysis when the true production relationship is unknown, 
we use DEA to measure the technical efficiency of beekeeping opera-
tions in the northern Rocky Mountain region that produce not only 
honey but also pollination services, specifically for almonds.

The DEA framework considers n DMUs, each producing k out-
puts from r inputs. For DMU i, the value of output technical effi-
ciency, θ̂i , is determined by the following linear program, which is 
calculated for each of the n DMUs separately:

	 ˆ max
,

θi i
i

=
θ λ

θ 	 (1)

	 s t. .θ λi iY Y≤

	 X Xi ≥ λ

	 λi ≥ 0

	 N ′ =1 1λ

Where Yi is a (k × 1) vector of outputs produced by the ith DMU 
using Xi, an (r × 1) vector of inputs. Y is the (k × n) matrix of the 
outputs and X is the (r × n) vector of inputs for all n DMUs in the 
sample. λ is the (n × 1) vector of weights attached to each of the n 
DMUs (λi). N1 is an (n × 1) vector of unit values. The value, 1− θ̂i ,  
represents the proportional increase in the amount of outputs that 
the ith DMU could produce from the same level of inputs if it were 
technically efficient. If θ̂i  = 1 then the ith DMU is on the frontier and 
is technically efficient. If θ̂i  > 1 then the ith DMU is technically inef-
ficient (note that the Farrell measure is the reciprocal of the Shepard 
output distance function).

In our study, multiple outputs can be generated from the single 
input of honey bee colonies owned. The most economically import-
ant outputs to an apiary are pollination contracts and honey produc-
tion (e.g., Frazier et al. 2012) (Due to DEA’s sensitivity to outliers, 
other outputs such as value-added wax products and selling of bees, 
which are not common among the beekeepers we surveyed, cannot 
be included in the analysis.). Although the quantity of honey pro-
duction is straightforward to measure (e.g., pounds per colony), the 
quantity of pollination services is not. Pollination contracts explicitly 
define the number of colonies that will be delivered to a customer’s 
field or orchard, so we use the number of colonies devoted to pollin-
ation as a proxy for pollination output (Champetier 2010). Because 
the almond industry is the top employer of pollination services from 
managed honey bees in the United States (Sagili and Caron 2017), 
we focus on the number of colonies devoted to almond pollination, 
in accordance with survey results (Five beekeepers in our sample 
reported pollinating other crops in addition to almonds. When we 
attempted to include these other crops in the analysis as additional 
outputs, these five observations were identified as outliers and thus 
recommended for omission from the DEA analysis. As a result, we 
excluded pollination of other crops from our analysis. Although 
this only affected five apiaries, the omission of their pollination of 
other crops could artificially reduce our estimates of these apiaries’ 
efficiency.).

A variable returns to scale specification allows the DEA model 
to also estimate each DMU’s returns to scale (Färe et al. 1985). By 
measuring the ratio of θ̂i estimated under the assumption of vari-
able returns to the θ̂i estimated under the assumption of constant 
returns to scale, a scale efficiency measure is generated. Scale effi-
ciency measures the impact of scale on the productivity of a DMU. 
When the scale efficiency is equal to one, then constant returns to 
scale prevails for that DMU. If the scale efficiency measure is less 
than one, then either increasing or decreasing returns to scale exists. 
Which of these two a DMU experiences cannot be inferred from the 
magnitude of the scale efficiency measure itself, but instead depends 
on the DMU’s location on the variable returns to scale frontier.

DEA analysis tends to be sensitive to outliers, so we use the FEAR 
package in R to conduct an outlier analysis (following Wilson 2008). 
Results of this analysis influence which DMUs are included in the 
final DEA analysis, and hence the regression analysis described next.

To account for exogenous factors that may influence the DEA 
measure of technical efficiency, we conduct a two-stage regression 
analysis. In the first stage, we regress the θ̂i for each DMU on covari-
ates of interest. In the second stage, to ensure statistical efficiency, 
we use a double-bootstrap procedure to correct for serial correla-
tion between the n θ̂i  (Simar and Wilson 2007). This procedure uses 
truncated regression and bootstrapping to overcome unknown serial 
correlation in the following equation:
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	 θ̂ β εi i iz= + 	 (2)

where zi is a (1 × q) vector of covariates or environmental variables 
exogenous to the DMUs, β is a (q × 1) vector of parameters, and εi 
is an error term assumed to be normally distributed with left-trunca-
tion at ( )1 − ziβ and variance σ 2 .

The DEA literature suggests that, for agricultural applications, 
a DMU’s chosen inputs, resulting outputs, and associated technical 
efficiency may be influenced or correlated with factors such as loca-
tion, income, years in farming, non-farm income, purchasing power, 
and capital-sharing arrangements (e.g., Hansson 2007, Afonso 2008, 
Olson 2009, Larsén 2010). Particular to the beekeeping industry, we 
hypothesize that location, years of operation, hive repair costs, use 
of a transportation cooperative, revenue from pollination services, 
potential revenue from unsold honey, and off-farm employment may 
influence a DMU’s technical efficiency.

Hansson (2007) showed that location significantly influences 
technical efficiency for dairy farms in Sweden. We include the United 
States state in which a beekeeping operation is located as a covariate. 
The hypothesis is that beekeepers located in states with closer prox-
imity to California will be more efficient due to easier access (i.e., 
lower transportation costs) to almond orchards and thus a stronger 
position for securing pollination contracts.

The length of time a beekeeper has been in operation may influ-
ence technical efficiency in two ways. As tenure increases, a DMU 
may learn from past experiences and become more efficient. Yet, 
newer DMUs may bring with them new technology that increases 
technical efficiency. Olson (2009) found empirical evidence that 
an increase in years of farming moderately decreases technical effi-
ciency. To determine in which direction the tenure of a beekeeping 
business affects technical efficiency, we include the number of years 
in operation in the second-stage analysis.

Hive maintenance and repair are necessary activities to sustain 
a beekeeping operation’s honey production and pollination ser-
vices (Walker et al. 2014). An example hive-maintenance activity is 
replacing frames every 5 yr in an effort to control brood diseases 
(Walker et  al. 2014). We therefore include per-colony expenditure 
on hive repairs in our model and hypothesize that it increases DMU 
efficiency.

Larsén (2010) found that farmers involved in machinery-sharing 
arrangements also enjoyed higher farm efficiency. Parallels in the 
beekeeping industry, which we include in our model, are being a 
member of a colony-transportation cooperative during the pollin-
ation season.

Olson (2009) found that on-farm income is negatively related to 
the technical efficiency of farms, suggesting that higher-income farms 
are actually less technically efficient than lower-income farms. We are 
interested to see if income generated from a beekeeping operation has 
the same relationship to efficiency. Since some beekeepers involved in 
the pollination industry only generate revenue from pollination ser-
vices (meaning no revenue is generated from selling honey), the metric 
we use in the regression analysis is revenue generated from pollin-
ation service per colony. Revenue from pollination services per colony-
squared was also used as a covariate in the second-stage analysis.

Many beekeepers in our survey noted that they produce honey 
but do not sell it. Although we did not explicitly ask survey respond-
ents how they use this unsold honey, many beekeepers voluntarily 
indicated that they use the honey for personal use or gifts. This lack 
of marketing may be a symptom or an indicator of general ineffi-
ciencies within an apiary operation. We therefore included the value 
of unsold honey in our regression model, calculated by multiplying 

average price received for honey through a cooperative by the num-
ber of pounds not sold (The price from a honey cooperative was 
used since it cannot be assumed that a beekeeper would be able to 
sell honey through other, more lucrative channels. Selling honey 
through a cooperative may be the most reliable option for sell-
ing honey. The price of a pound of a honey was obtained through 
personal communication with the Sue Bee Corporation’s Honey 
Marketing Division.).

Regarding off-farm income, Larsén (2010) found that farmer 
participation in off-farm employment was associated with a weak 
increase in technical efficiency of farms in Sweden. We therefore 
included off-farm income as a binary variable. Equation 3 represents 
the final specification used in our regression analysis of technical 
efficiency.

	 θ̂ β β β β β β
β

= + + + + +

+
0 1 2 3 4 5

2

location tenure repair transcoop rev

rev 66 7 8+ + +unsoldhoney offfarmβ β ε
(3)

Where location is the beekeeper’s business home state, tenure is the 
years of continual operation, repair is the annual average amount 
spent on repairing hives, transcroop is a dummy variable indicat-
ing the use of a transportation cooperative agreement (1 = transport 
cooperative agreement, 0 = otherwise), rev is the revenue per colony 
from pollination services, rev2 is the square of per-colony revenue 
from pollination services, unsoldhoney is the value of honey pro-
duced but not sold, offfarm is a dummy variable indicating whether 
a beekeeper earns income from off-farm employment (1 = off-farm 
employment, 0 = otherwise), and ε  is an error term.

Results

Survey Results
A summary of survey responses for all respondents, irrespective of 
their participation (or lack thereof) in the provision of pollination 
services, is provided in Table 1.

Beekeepers in our survey manage over 180 colonies, on average, 
and produce almost 13,000 pounds of honey per year. Their apiar-
ies have been in operation, on average, for nearly 14 yr with half 
of beekeepers reporting income earned from off-farm employment. 
Regarding hive maintenance, beekeepers in the sample reported 
spending nearly $33 per colony per year on hive repairs (Table 1).

Also from Table 1, only 12% of beekeepers in the sample are 
involved in the pollination market. This finding is in line with previ-
ous research (e.g., NRC 2007), and suggests the potential for more 
beekeepers to supply honey bee colonies for crop pollination, if eco-
nomic conditions allowed.

The same honey bee colony can be hired to pollinate multiple 
crops throughout the year, each with different pollination needs, tim-
ing, location, and market value. Almonds are the most commonly 
contracted crop for pollination among beekeepers in our sample, 
with beekeepers sending an average of 1,084 colonies to pollinate 
almonds (only five beekeepers in our sample send their colonies to 
pollinate other crops) (Table 2). This finding is consistent with other 
literature that highlights the almond industry’s strong influence 
on the pollination market (e.g., Champetier de Ribes 2010, Bond 
et al. 2014). We therefore focus attention from this point forward, 
including in the DEA analysis, on pollination contracts with almond 
orchards. This provides a consistent measure of output productiv-
ity across otherwise diverse beekeeping operations. Table 2 provides 
summary statistics of inputs and outputs for the 30 beekeepers in 
our sample that have pollination contracts.
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The average number of colonies managed by beekeepers who 
enter pollination contracts is 1,304 (Table 2), which is seven times 
larger than the average of 184 colonies among all beekeepers in our 
sample (Table 1). This suggests that a large number of colonies may 
be necessary to achieve economic viability in the pollination market. 
Similarly, the amount of honey produced, on average, by beekeepers 
with pollination contracts is over 83,000 pounds per year (Table 2), 
which is also nearly seven-times higher than the 12,000 pounds pro-
duced on average among all beekeepers in our sample (Table 1). This 
difference in total honey production seems to be due primarily to 
the total number of colonies, since the average amount of honey 
produced per colony is not notably different for beekeepers with 
pollination contracts versus all beekeepers in our sample (64 versus 
65 pounds per colony, respectively).

Our survey results also provide information about socioeconomic 
and geographic variables that may influence or reflect the efficiency 
of our 30 beekeepers’ pollination and honey enterprises. Among the 
77 Wyoming beekeepers who responded to the survey, 14 (i.e., 18%) 
have pollination contracts, a larger proportion than respondents in 
either Montana (14%) or Utah (7%) (Tables 1 and 2). In addition, 
the average length of time that an apiary has been in business is dras-
tically longer for those participating in the pollination market than 
for the overall sample, 35 yr versus 13 yr, respectively.

Among beekeepers that have pollination contracts, less than a 
quarter receive income from off-farm employment, as compared to 
half of all beekeepers (Tables 1 and 2). Thus, most beekeepers who 
participate in the pollination market rely upon their apiary business 

as their only form of income. Lastly, the amount that beekeepers 
with pollination contracts report spending on hive repair (per col-
ony) is much smaller than that reported for the entire sample—$10 
versus $33 (Table 2 versus Table 1). This suggests that a beekeeper’s 
per-colony repair cost might decrease as the number of colonies in 
their apiary increases, perhaps due to size efficiencies (e.g., spreading 
any fixed-costs of repair over more colonies, or being able to buy 
repair materials in bulk). Next, we report measures of technical and 
scale efficiencies for our sample of 30 beekeepers engaged in pollina-
tion contracts.

DEA Efficiency Measures
Recall that the outputs of interest are honey production and 
almond pollination. A  small number of beekeepers also pollinate 
other crops (e.g., apples and cherries), but attempts to include this 
characteristic caused the FEAR analysis to identify them as outliers. 
Therefore, pollination of other (non-almond) crops is not included 
as an output in the DEA analysis. Non-almond crops typically 
demand pollination at different times of the year than almonds, 
so our exclusion of these outputs should not influence an engaged 
DMU’s efficiency measures relative to those that engage strictly in 
almond pollination.

Based on a FEAR outlier analysis of the 30 DMUs engaged in 
almond pollination, four of the DMUs were deemed outliers and 
omitted from the analysis. The two-stage DEA analysis was then 
conducted on the remaining 26 DMUs. Technical efficiency results, 
along with scale and returns-to-scale measures, are shown in Table 3.

Table 1.  Survey-response summary statistics for entire sample, irrespective of pollination contract participation (in USD)

Variable No of observations Average SD Min Max

Apiary location
  Montana 41 0.16 0 1
  Utah 139 0.54 0 1
  Wyoming 77 0.30 0 1
Number of colonies in 2014 257 187 783 0 8,000
Total pounds of honey production in 2013a 251 12,238 58,056 0 500,000
Years in operation 241 13.7 17 0 98
Receive wages from off-farm employment 128 0.50 0 1
Hive repair cost per colony in 2014 $33 62 $0 $500
Pollination contract in place in 2014 30 0.12 0 1

aThe survey was sent to respondents in the fall of 2014. Therefore, the total number of pounds of honey was not known for 2014.

Table 2.  Survey response summary statistics for beekeepers with pollination contracts—inputs, outputs, and other variables of interest 
(in USD)

Variable No of observations Percentage of Sample Average SD Min Max

Crop pollination
  Almonds 30 100% 1,084 1,535 20 8,000
  Apples 5 17% 2,160 3,293 300 8,000
  Cherries 4 13% 430 591 54 1,300
  Other 4 13% 57 10 50 64
Total honey production per year (lbs) 30 83,502 123,112 125 500,000
Apiary location
  Montana 6 20%
  Utah 10 33%
  Wyoming 14 47%
Total number of colonies owned 30 1,304 1,583 26 8,000
Years in operation 30 35 28 4 96
Receive wages from off-farm employment 7 23%
Hive repair cost per colony 30 $10 $14 $0 $63
Pollination fees collected per colony 30 $116 $43 $36 $212
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Technical Efficiency
Technical efficiency scores for the 26 DMUs (Table 3) range from 
fully efficient (1.00) to the least efficient DMU (3.03). Twenty-seven 
percent of all DMUs are fully efficient, and another 46% are nearly 
efficient with technical efficiency scores between 1.00 and 1.50. Only 
12% of the DMUs have a technical efficiency score exceeding 2.00, 
indicating greater levels of inefficiency. Recall that technical effi-
ciency indicates the extent to which a firm should be able to increase 
outputs (proportionally) given their chosen input level (i.e., size).

These results suggest that many of the sampled beekeepers in 
the northern Rocky Mountain region are relatively efficient in using 
their colonies for honey production and almond pollination. Both 
the smallest beekeeper (26 colonies) and largest beekeeper (3,500 
colonies) are efficient. Based on a univariate regression, there is no 
significant relationship between the size of a DMU and their level of 
technical efficiency.

Scale Efficiency
The scale efficiency and returns-to-scale scores in Table 3 show that 
many DMUs, especially those with 80 to 1,000 colonies, have a scale 
efficiency of 1.00 and thus enjoy constant returns to scale. Beekeepers 
with constant returns to scale could double their inputs with a con-
comitant doubling of their outputs. This implies they are located 
on the horizontal portion of their long-run average cost curve, with 
no immediate incentive to adjust their scale of operation (Pindyck 
and Rubinfeld 2001, p. 228). Table 3 also reveals that DMUs with 
fewer than 80 colonies experience increasing returns to scale. These 
beekeepers operate on the downward sloping portion of their long-
run average cost curve, where they can reduce long-run average cost 
by increasing their scale of operation. Finally, Table 3 reveals that, 
with only a few exceptions, DMUs with more than 1,000 colonies 

tend to experience decreasing returns to scale and are located on the 
upward-sloping portion of their long-run average cost curve. These 
beekeepers could reduce long-run average cost by decreasing their 
scale of operation. In the long run, we would expect these larger 
apiaries to reduce their colony stock (and all other inputs) in order 
to move from decreasing to constant returns-to-scale, which may 
help explain the United States trend of decreasing colony numbers 
(Daberkow et al. 2009). In turn, we would expect smaller apiaries 
to either increase their colony stock (and other inputs) to move from 
increasing to constant returns-to-scale or exit the industry.

The scale efficiency results provide empirical evidence to inform 
Rucker et al.’s (2012) hypothesis that ‘large economies of scale are 
available to beekeepers’. Our results suggest large economies of scale 
are available primarily to beekeepers with fewer than 80 colonies, 
but not for larger operations with more than 1,000 colonies, limiting 
the hypothesis to a small range of apiaries.

To determine factors correlated with or influencing technical effi-
ciency in beekeeping, we look next at the results of the two-stage 
regression approach introduced earlier (Simar and Wilson 2007).

Regression Results
Results for the two-stage model specified in equation 3 are reported 
in Table 4.

Results from the two-stage regression indicate that location of a 
beekeeping operation has a significant impact on its technical effi-
ciency. Specifically, beekeepers with apiaries located in Wyoming 
are more efficient than similar operations located in either Utah or 
Montana. This is not fully consistent with our initial hypothesis, given 
Utah is located closer to California than Wyoming. We will therefore 
explore potential reasons for this finding in the next section. Lastly, 
beekeepers that report receiving income from off-farm employment 

Table 3.  DEA results for technical efficiency and returns to scale

Observation Input Outputs Efficiency scores

DMUi Number of colonies Honey production (lbs) No. colonies in almond pollination Technical Scale Returns-to-scale

1 26 1,060 20 1.000 0.769 Increasing
2 40 1,400 23 1.546 0.889 Increasing
3 80 8,000 80 1.000 1.000 Constant
4 120 5,000 64 1.876 1.000 Constant
5 140 5,700 96 1.458 1.000 Constant
6 150 3,800 50 3.003 1.000 Constant
7 200 12,000 200 1.000 1.000 Constant
8 300 9,900 125 2.400 1.000 Constant
9 400 20,000 300 1.333 1.000 Constant
10 450 6,000 400 1.125 1.000 Constant
11 500 15,000 350 1.429 1.000 Constant
12 600 15,600 500 1.200 1.000 Constant
13 700 12,300 500 1.401 1.000 Constant
14 1,000 4,500 350 2.857 1.000 Constant
15 1,000 78,000 900 1.085 0.976 Decreasing
16 1,000 44,000 800 1.250 1.000 Constant
17 1,000 24,000 700 1.429 1.000 Constant
18 1,100 97,000 900 1.027 0.906 Decreasing
19 1,200 100,000 1,200 1.000 1.000 Constant
20 1,200 95,000 850 1.152 0.912 Decreasing
21 1,500 95,000 1,200 1.209 0.968 Decreasing
22 1,600 77,000 1,000 1.541 0.963 Decreasing
23 1,700 91,000 1,700 1.000 1.000 Constant
24 2,200 120,726 1,800 1.155 0.945 Decreasing
25 2,200 200,000 1,800 1.000 0.909 Decreasing
26 3,500 200,000 3,200 1.000 0.914 Decreasing
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are more technically efficient than those that report no off-farm 
employment. No other covariates were statistically significant at the 
0.05 or 0.01 level, despite this being the best-performing model.

Although the remaining covariates are statistically insignificant, 
their signs are generally as expected. For example, the negative sign 
on years in operation implies that, as years in operation increases, 
the magnitude of an apiary’s technical efficiency score decreases, 
which means their technical efficiency increases. Hive repair 
expenditure per colony also has a negative sign, implying increased 
technical efficiency with increased expenditure. Similarly, pollin-
ation revenue per colony has a negative sign. One of the few covari-
ates with a positive sign is the use of a transportation cooperative, 
which suggests that participation increases the technical efficiency 
score, or decreases efficiency. Again, however, none of these covari-
ates are statistically significant at the 0.01 or 0.05 level. Other 
factors, such as apiary revenue and hours of hired labor, appear 
to be correlated with technical efficiency measures. Unfortunately, 
such factors are endogenous (i.e., they are determined simultan-
eously with technical efficiency) and therefore cannot be included 
in the analysis (Antonakis et  al. 2010). For example, technical 
efficiency may influence a firm’s decision to hire labor, but hired 
labor may in turn influence a firm’s technical efficiency. The direc-
tion of causality cannot be teased apart, so this factor cannot be 
used in our regression model. Even a simple correlation coefficient 
between these factors and technical efficiency should not be trusted 
(Antonakis et al. 2010).

Discussion

Our results show that, although there is no statistically significant 
relationship between technical efficiency and apiary size (Table 3), 
larger operations (more than 1,000 colonies) experience decreasing 
returns to scale, and should decrease their colony stock (and other 
inputs) in order to minimize long-run average cost and thus maxi-
mize profit (Pindyck and Rubinfeld 2001, p.  198). The long-term 
decrease in honey bee colonies might therefore be due in part to 
beekeepers moving increasingly towards more optimal scales of pro-
duction. One potential cause of decreasing returns to scale for larger 
apiaries may relate to be the managerial challenges of preventing 
pests, pathogens, and other stressors at larger scales of operation. 
Hive inspection is considered a best practice for preventing disease 
and increasing bee health (Formate and Smulders 2011). As an api-
ary’s colony numbers grow, a beekeeper’s ability to implement best 
practices, such as frequently inspecting colonies, may be hindered. 

This and other costs of becoming ‘too big’ may incentive a beekeeper 
to maintain lower colony numbers.

Technical efficiency of beekeepers in this region is also affected 
by off-farm employment and location. Income from off-farm 
employment may increase the purchasing power of an apiary, which 
has been shown to affect technical efficiency (e.g., Afonso 2008). An 
alternative or additional hypothesis is that, by working off farm, a 
beekeeper is at less risk of over-investing their time in the apiary. Yet, 
they must not be so distracted by off-farm employment that they 
neglect their hives. Since off-farm employment most likely distracts 
from apiary management, these beekeepers may be constrained by 
time to keep a smaller operation. This smaller colony stock may help 
avoid decreasing returns to scale, resulting in lower average cost and 
higher profit. Overall, however, off-farm employment may be con-
tributing to smaller honey bee stocks in the region.

Our results indicate that Wyoming’s apiaries are more technic-
ally efficient than those in either Montana or Utah. This could be 
due to greater efficiency in honey production or pollination services. 
Wyoming’s average honey yield per colony is higher than Utah’s (77 
versus 42 pounds per colony, respectively), and similar to Montana’s 
(83 pounds) (USDA 2016). Regarding pollination, Wyoming apiar-
ies contracted, on average, over 750 colonies (per apiary) to pollin-
ate almonds, while those in Montana contracted, on average, 616 
colonies. This is despite Wyoming apiaries being smaller, on average, 
than Montana (1,445 versus 1,674). Beekeepers in Utah contracted 
the most colonies to pollinate almonds, nearly 1,010 colonies per 
apiary, on average (out of the 1,122 colonies owned per apiary). Yet 
Wyoming produces enough additional honey per colony compared 
to Utah (77 compared to 42 pounds per colony per year, respect-
ively) to make the former more efficient overall. Together, these 
factors may explain why technical efficiency levels are higher in 
Wyoming—more honey production per colony and more colonies 
under almond pollination contracts per apiary.

Additional location-related factors that should be explored in 
future research include the relative health of bees in different states, 
the availability of higher quality pollen or nectar, and the extent or 
strength of social networking among beekeepers (as well as with 
potential clientele). These factors would require more-in-depth 
data collection, beyond a traditional survey, but could provide add-
itional insights about why a beekeeper’s location in Wyoming versus 
Montana or Utah is correlated with their technical efficiency.

The results of our study suggest that economic factors—most not-
ably diseconomies of scale–may be incentivizing beekeepers with more 
than 1,000 colonies to decrease their scale of operation. At the same 
time, beekeepers with fewer than 80 colonies should be experiencing 
economic incentives to expand their operation due to increasing returns 
to scale, but may be limited by available funds (a hypothesis that remains 
to be tested), and could potentially leave the industry as a result.

Current and future policies aimed at increasing the supply of 
honey bee colonies should be sensitive to the potential for apiary 
expansion to eventually encounter decreasing returns to scale. The 
smallest of commercial apiaries, though, are consistently experi-
encing increasing returns to scale, signaling an opportunity to gain 
additional honey bee colonies through carefully planned growth 
and available agricultural loans. Daberkow et al. (2009) found that 
the declining stock of honey bee colonies is driven by apiaries with 
fewer than 5,000 colonies. Our analysis focused entirely on apiar-
ies with fewer than 5,000 colonies, and yet still found diversity in 
returns-to-scale. Targeting beekeepers with fewer than 80 colonies 
for incentives to increase their colony numbers shows some poten-
tial for raising the honey bee stock while also increasing their scale 
efficiency.

Table 4.  Regression results for technical efficiency

Variable Coefficient

Utah 3.164882*
Montana 4.067009†

Years in operation −0.000763
Hive repair expenditure per colony −0.025163
Uses transportation cooperative 0.798703
Pollination revenue per colony −0.154470
Pollination revenue per colony squared 0.000368
Potential revenue from unsold honey −0.000082
Off-farm employment −2.546698*
Constant 12.85779*
Sigma 0.143365

An increase in the efficiency score indicates increasing inefficiency.
*Significant at the 0.05 level. †Significant at the 0.01 level.
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Although this study uses well-established methods for calculating 
DEA efficiency scores and a robust regression approach, the small 
sample of apiaries on which it relies (n = 30) likely limited our abil-
ity to identify more statistically significant covariates. Studies have 
also shown that, with smaller sample sizes, DEA tends to overesti-
mate efficiency (Alirezaee et  al. 1998, Zhang and Bartels 1998). 
Thus, our analysis likely overestimates the technical efficiency of 
beekeeping operations in the Rocky Mountain region. However, the 
relative ranking of DMUs to each other is still valid (Zhang and 
Bartels 1998). Furthermore, the tendency to overestimate efficiency 
can be partially mitigated by analyzing fewer inputs and outputs, 
i.e., aggregating them into fewer categories (Alirezaee et al. 1998), as 
we have done in this study. Future research should nonetheless focus 
on obtaining larger samples of apiaries that are involved in pollin-
ation services, not only within the Rocky Mountain region, but also 
for other regions, to better understand the role of economic factors 
in the long-term decline of honey bee stocks in the United States.
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