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Abstract: Soil erosion by water and wind in US rangelands has serious implications for range-
land health and food security and poses significant hazards to human health and communities. 
Accordingly, understanding how future climate change may impact soil erosion is critical for 
developing appropriate management strategies that mitigate negative impacts to the extent 
practical and potentially build resilience. Here, we review potential impacts of climate change 
on controls of erosion in US rangelands and discuss potential erosion responses. Projected cli-
mate changes are expected to have regionally variable effects on important controls of erosion, 
especially vegetation cover; community composition; frequency, magnitude, and geographical 
range of fire disturbance; and high intensity, erosive weather events, all of which have the 
potential to increase rangeland vulnerability to erosion. We identify knowledge gaps relevant to 
these controls and discuss management considerations to address climate change impacts to soil 
erosion concerns for US rangelands. In order to improve resilience and the efficacy of climate 
change adaptation, we recommend that existing monitoring data be used to create assessments 
of vulnerability, that soil erosion should be explicitly included in management benchmarks and 
decision support tools, and that no-regrets management options be implemented in anticipa-
tion of future impacts.
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Understanding the potential impacts of 
projected climate change on soil erosion 
in US rangelands is critical for developing 
forward-looking, sustainable land man-
agement practices for these high-value 
ecosystems. Rangelands cover approxi-
mately ~31% of total US land area (Havstad 
et al. 2009)—about 60% of western states 
(figure 1)—and provide a critical resource for 
food production in addition to other high-
value ecosystem services (Mitchell 2000). 
Criteria for delineating rangelands vary 
depending on source (Lund 2007; Reeves 
and Mitchell 2011), but in general they can 
be defined as arid and semiarid systems with 
low primary production because of highly 
variable precipitation (Havstad et al. 2009; 
Briske et al. 2015). Rangelands are largely 
vegetated by grasses, forbs, and shrubs, but 
include diverse subenvironments distributed 
over the western United States, each with 
unique ecologies and management concerns 
(figure 1). Because they exist near physiolog-
ical thresholds, rangelands are highly sensitive 
to climatic stressors; consequently, rangelands 

and the communities and industries they 
support are particularly vulnerable to climate 
change (Archer and Predick 2008). 

Predicting how rangelands will respond to 
climate change is difficult because of often 
large uncertainties in climate projections 
(Wuebbles et al. 2017), spatial variability in 
responses across vegetation communities 
and soil types (Webb et al. 2012; Briske et 
al. 2015), and ecogeomorphic feedbacks 
that may produce threshold-type responses 
(Archer and Predick 2008; Okin et al. 2018). 
Still, projected climate trends provide a useful 
framework for identifying potential impacts 
and highlighting knowledge gaps, research 
foci, and management considerations. Several 
reviews have discussed critical impacts of 
climate change on rangelands, including 
assessments for plant community responses 
(McKeon et al. 2009; Webb et al. 2012; 
Polley et al. 2013; Briske et al. 2015), eco-
system services (Palmquist et al. 2016; Boone 
et al. 2018), and livestock production systems 
(Howden et al. 2008; McKeon et al. 2009), 
as well as socioeconomic impacts and adap-

tation strategies (Thornton et al. 2009; Joyce 
et al. 2013; Webb et al. 2013). Fewer papers, 
however, (Nearing et al. 2005; Munson et 
al. 2011; Zhang et al. 2012; Pu and Ginoux 
2017) have focused specifically on how cli-
mate change will impact key geomorphic 
processes such as soil erosion, and these are 
largely regional- or process-specific. 	

A significant portion of US rangelands are 
already vulnerable to soil erosion (Weltz et 
al. 2014). Soil erosion by water and wind is 
an important agent of land degradation that 
impacts nutrient availability, forage produc-
tion and food security, and poses serious 
hazards to human health and communities. 
Conceptually, soil erosion on rangelands 
can be framed as a climate- and land 
management-driven balance between (1) 
largely biotic controls that resist sediment 
detachment and transport, e.g., vegetation, 
ground cover, and soil organic matter; and 
(2) abiotic processes that drive erosion, e.g., 
rainfall, overland flow, wind, and disturbance 
(Pierson et al. 2011; Turnbull et al. 2012; 
Williams et al. 2014b, 2016b). Rangelands 
are often sparsely vegetated, and the amount, 
type, and distribution of vegetation and 
ground cover strongly control infiltration, 
soil retention, and exposure of soils to poten-
tially erosive rainfall and winds (Okin et al. 
2006, 2018; Webb et al. 2014; Pierson and 
Williams 2016). Runoff, waterborne soil 
loss, and wind-driven sediment transport are 
typically low on well-vegetated sites. Cover 
reductions associated with land use- and/
or climate-driven disturbances commonly 
result in amplified runoff and water erosion 
and greatly increase potential for aeolian 
transport and dust emission (Turnbull et al. 
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2008; Pierson et al. 2011; Field et al. 2012; 
Turnbull et al. 2012; Williams et al. 2014b; 
Okin et al. 2018; Webb and Pierre 2018). 
In addition, disturbances such as wildfire 
and infrastructure development (e.g., for 
oil and gas extraction) can increase risks of 
runoff, flooding, and water and wind ero-
sion events during recovery periods, which 
can be prolonged by drought (Sankey et al. 
2009; Wagenbrenner et al. 2013; Miller et al. 
2012; Pierson and Williams 2016). Further, 
plant community transitions that increase fire 
activity pose an even greater risk for long-
term soil loss through frequent repeated 
burning (Pierson et al. 2011; Wilcox et al. 
2012; Williams et al. 2014b, 2016c). 

Predicting climate change impacts on 
rangeland soil erosion and identifying 
appropriate management strategies requires 
understanding the effects of climate on both 
resisting and driving controls. This paper 
provides a broad overview of the potential 
impacts of climate change on these con-
trols for US rangelands. We then highlight 
potential water and wind erosion responses 
and identify key knowledge gaps regarding 
climate change-driven increases in erosion. 
Finally, we discuss current and future man-
agement considerations. 

	

Climatic Setting and Observed and 
Projected Climate Changes
US rangelands include portions of the Great 
Plains, Intermountain West, Great Basin, and 
Desert Southwest. These regions are most 
commonly characterized by arid to semiarid 
climates, but precipitation and temperature 
vary across season, elevation, and geography. 
Climatic variations and extremes are com-
mon in these areas and can include multiyear 
droughts, large wildfires, floods, convective 
storms, and the passage of frontal systems 
that produce regional dust storms (Brazel 
and Nickling 1986; Herring et al. 2018). 

There is very high confidence that tem-
peratures across most US rangelands have 
been warming over the past century, a trend 
that has intensified in recent decades (Vose et 
al. 2017). (Wuebbles et al. [2017] define “very 
high confidence” as strong evidence and 
high consensus among projections. “High 
confidence” is defined as having moderate 
evidence and medium consensus. “Medium 
confidence” is defined as having suggestive 
evidence but competing schools of thought. 
“Low confidence” is defined as having 
inconclusive evidence and disagreement 
among experts.) Indeed, some of the most 
pronounced increases in both winter and 
summer temperatures over the past 30 years 

have occurred over the western half of the 
country (Vose et al. 2017). A lengthening of 
the frost-free season by 7 to 17 d y–1 has also 
been observed (Hibbard et al. 2017). Output 
from the Coupled Model Intercomparison 
Project (CMIP5) suggests that mean tem-
peratures across the West could increase by 
~3.3°C (6°F) by the mid-21st century, and 
~5°C (9°F) by late-21st century (figure 2) 
under the Representative Concentration 
Pathway 8.5 (RCP8.5) (Vose et al. 2017), 
which is consistent with observed increases 
in global carbon (C) emissions over the 
past 15 to 20 years (very high confidence) 
(Wuebbles et al. 2017). Under this scenario, 
widespread increases in temperature are 
projected across all seasons, especially sum-
mer and fall (figures 2 and 3). Such increases 
could affect soil erosion processes through 
impacts on evaporative stress and soil mois-
ture deficit (medium confidence), growing 
season length (low confidence), and plant 
community structure (high confidence) 
(Blumenthal et al. 2016; Hibbard et al. 2017; 
Wehner et al. 2017).

Observed changes in annual precipitation 
have been more varied across US rangelands, 
with drying in much of the Southwest and 
Intermountain West and wetter conditions 
across much of the Great Plains (medium 
confidence) (Easterling et al. 2017). Patterns 
are even more heterogeneous at seasonal 
time scales, with drying in the Southwest 
observed during spring and summer and 
drying in the Northwest and Intermountain 
West observed during winter (see Easterling 
et al. [2017] for detailed maps). It should be 
noted that projections for annual precipita-
tion by the mid-21st century under RCP8.5 
are more uncertain than those for tempera-
ture but suggest significant drying in the 
Southern Plains and Southwest and slight 
increases in precipitation over portions of 
the Northern Plains and Northwest (figure 
2) (Greene and Seager 2016). Midcentury 
projections under RCP8.5 for seasonal pre-
cipitation suggest that much of the Southwest 
will have drier winters and springs but wetter 
summers; much of the Southern Plains will 
have drier springs and summers with dry-
ing across all seasons in southeast Texas; the 
Northern Plains will have wetter springs and 
drier summers; and the Northwest, while 
more spatially variable than other regions, 
will have generally wetter winters with some 
drying in fall and spring (figure 3) (Swain 
and Hayhoe 2015). Other observed trends 

Figure 1
Land cover classifications of the western United States based on the National Land Cover 
Database (2011). Rangeland, represented here as shrub/scrub and herbaceous land cover, 
represents 55.22% of the total land area of the western contiguous United States. Source: 
Homer et al. (2015). 
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that are projected to continue through mid-
century include increased frequency and 
intensity of heavy rainfall events (figure 4; 
high confidence) and a higher proportion of 
precipitation falling as rain instead of snow 
(high confidence) (Easterling et al. 2017). 
Climate change is also thought to be affect-
ing the frequency, intensity, and location of 
extreme events that may impact erosion, such 
as large fires (medium confidence), severe 
thunderstorms (low confidence), and severe 
winter storms (low confidence) (Kossin et al. 
2017; Wehner et al. 2017). 

Surface wind speeds, beyond those during 
severe thunderstorms, were not addressed in 
detail by Wuebbles et al. (2017). However, 
Vautard et al. (2010) report that surface winds 
have declined across the northern midlati-
tudes over the past 30 years, a “stilling” of 10% 
in the United States. Large-scale circulations 
explain a portion of these changes, but so too 
may increased surface roughness due to land 
use change and land cover change (Vautard 
et al. 2010; Cowie et al. 2013). Patterns of 
seasonal wind speed projections for the mid-
century are consistent with these evaluations 
(figure 3). Much uncertainty remains, how-
ever, about the complex physical connections 
between climate change, wind speed, and 
other extreme weather events (Seneviratne 
et al. 2012). What is certain is that wind and 
water erosion responses to climate change 
will be variable across US rangelands. Figure 
4 summarizes key observed and midcentury 
climate change projections that may be par-
ticularly impactful for future trends in erosion.

	
Potential Impacts of Climate Change on 
Controls of Erosion 
The potential for climate change to impact 
soil erosion from rangelands depends on its 
broad-scale effects on resisting and driving 
controls that define site susceptibility and 
vulnerability to erosion. At the site level, 
surface conditions that comprise resisting 
controls dictate susceptibility of the ground 
surface to erosion. Overall vulnerability to 
erosion is a function of surface susceptibility 
and exposure to driving forces, i.e., wind and 
water erosivity (figure 5) (Pierson et al. 2011; 
Williams et al. 2014b, 2016b). 

Surface susceptibility is defined by the 
amount, type, and distribution of vegetation 
and ground cover (biotic structure), inherent 
soil properties (e.g., bulk density, erodibil-
ity, texture, and water repellency), surface 
roughness (e.g., vegetation height and spac-

ing), and topography/slope steepness (Wolfe 
and Nickling 1993; Webb and Strong 2011; 
Williams et al. 2014b). Spatial heterogene-
ity in surface susceptibility and precipitation 
across a site create heterogeneous infiltra-
tion, runoff, and water erosion patterns that 
dictate losses or retention of water and sedi-
ment resources (Wilcox et al. 2003; Ludwig 
et al. 2005; Puigdefábregas 2005; Pierson and 
Williams 2016). Sparsely vegetated or bare 
soil locations (source areas) exhibit high 
evaporative losses and low soil water storage 
(Huxman et al. 2005; Newman et al. 2010), 
promote runoff (Pierson et al. 2010; Turnbull 
et al. 2010; Williams et al. 2014b), and facil-
itate transfer of water and soil resources to 
areas with ample surface protection (sink 
areas) (Reid et al. 1999; Wilcox et al. 2003; 
Ludwig et al. 2005; Field et al. 2012; Pierson 
and Williams 2016). Vegetation, litter, and 
ground cover dampen the erosive energy 
of rainfall and overland flow and delay and 
reduce runoff and erosion by trapping water 
input, stabilizing sediment, and promoting 
infiltration (Webb et al. 2014; Pierson and 
Williams 2016). These same factors reduce 

wind erosion by sheltering soil from the 
wind and attenuating shear stress imparted 
to the surface by the wind field (Wolfe and 
Nickling 1993). However, while fractional 
cover of vegetation, rocks, and litter is of pri-
mary importance to susceptibility to water 
erosion, wind erosion is a lateral process. Thus, 
lateral cover of plants (and other nonerodible 
elements), their structure, height, and spatial 
distribution on the landscape control surface 
aerodynamics (Chappell et al. 2018). 

Accumulation of soil water and nutrients 
in sink areas stimulates belowground biolog-
ical activity, plant growth, and reproduction 
that further sustain the vegetative commu-
nity and the overall source-sink structure 
(Schlesinger et al. 1990, 1996; Ludwig et al. 
1997; Wilcox et al. 2003; Belnap et al. 2005; 
Ludwig et al. 2005; Turnbull et al. 2012). 
Water and wind-driven sediment transport 
may also be complementary, with water-
driven transport of soil and nutrients into 
eroded intercanopy gaps increasing the 
availability of sediment and nutrients for 
entrainment and transport by wind (Bullard 
and McTainsh 2003; Okin et al. 2006).

Figure 2
Projected change in midcentury (2040 to 2069) mean annual maximum and minimum tempera-
ture, precipitation, and wind speed as compared with historical (1971 to 2000) simulated daily 
data. Projections are based on the multimodel mean of 20 Coupled Model Intercomparison Proj-
ect 5 (CMIP5) models with representative concentration pathway (RCP) 8.5 downscaled using the 
multivariate adaptive constructed analogs (MACA) statistical method. Sources: Abatzoglou and 
Brown (2012) and Taylor et al. (2012).
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On well-vegetated and stable hillslopes, 
a feedback exists where vegetation and 
ground cover trap water and soil resources 
and promote soil properties that facilitate 
infiltration. Soil resource accumulation stim-
ulates biological productivity that further 
sustains vegetation and ground cover, low 
surface susceptibility, and long-term ecolog-
ical resilience. In the absence of disturbance, 
vulnerability to erosion and overall ecologi-
cal resilience are therefore a function of the 
key characteristics that define an ecological 
site: (1) climate, (2) soil attributes, (3) plant 
community dynamics, and (4) landscape 
position (Williams et al. 2016b; Galloza et 
al. 2018). Alteration of vegetation structure 

through plant community shifts, fire, or other 
disturbances can increase the susceptibility of 
the ground surface to runoff and sediment 
transport, particularly under intense rainfall 
or wind events (figure 5) (Davenport et al. 
1998; Turnbull et al. 2008; Bergametti and 
Gillette 2010; Pierson et al. 2011; Wilcox 
et al. 2012; Webb et al. 2014; Williams et al. 
2014b, 2014a). 

Whether climate change will have broad-
scale negative impacts on soil erosion in US 
rangelands depends on (1) the degree to 
which it regionally alters controls of ero-
sion that increase site susceptibility through 
altered disturbance regimes and plant com-
munity dynamics, and (2) how much it 

increases overall vulnerability by altering 
trends in both surface susceptibility and 
driving forces, such as the amount, tim-
ing, and erosive energy of precipitation and 
wind. The following sections summarize the 
potential impacts of climate change on the 
dominant controls of erosion in rangelands.

Vegetation Response to Projected Climate 
Change. Projected changes in atmospheric 
carbon dioxide (CO2) concentration, tem-
perature, and precipitation will likely have 
significant impacts on vegetation production, 
cover, and community structure in US range-
lands (Polley et al. 2013; Briske et al. 2015). 
Rangeland net primary production depends 
primarily on amount and timing of precip-

Figure 3
Projected seasonal change in midcentury (2040 to 2069) temperature, precipitation, and wind speed as compared with historical (1950 to 2005) 
simulated daily data. Projections are based on the multimodel mean of 20 Coupled Model Intercomparison Project 5 (CMIP5) models representa-
tive concentration pathway 8.5 downscaled using the multivariate adaptive constructed analogs (MACA) statistical method. Sources: Abatzoglou 
and Brown (2012) and Taylor et al. (2012).
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itation (Polley et al. 2013), while warming 
and increasing CO2 concentrations contrib-
ute primarily to plant water use efficiency, 
evaporative demand, and growing season 
length (Polley et al. 2013; Briske et al. 2015). 
Vegetation community structure depends on 
competition for limited water resources and 
nutrients (Gherardi and Sala 2015), but also 
on abiotic feedbacks associated with wind 
and water redistribution of soil, soil nutrients, 
and C, as well as land use and management 
(Hibbard et al. 2017).

Increased CO2 concentrations promote 
growth and allow for more efficient water use 
by plants, which has the potential to offset the 
effects of warming to some degree (Polley et 
al. 2013). However, these benefits will likely be 
limited by water availability in the Southern 

Plains and Southwest. Polley et al. (2013) 
and Briske et al. (2015) suggest that coupled 
warming and drying trends in the Southwest 
and Southern Plains will reduce overall net 
primary productivity and could favor shifts 
in community composition to more woody 
species in the Southern Plains and Southwest. 
In contrast, increased CO2 and warming cou-
pled with wetter conditions in the Northern 
Plains will likely lead to increased produc-
tivity but may favor invasive C3 herbaceous 
species. Both agree that predicting vege-
tation response in the Northwest—where 
overall precipitation amounts are projected 
to be relatively stable with a seasonal shift to 
wetter winters and drier summers—is more 
uncertain, but that warmer, drier summers 
should reduce late summer productivity and 

wetter, warmer winters could favor invasive 
annual grasses, particularly cheatgrass (Bromus 
tectorum L.), which has serious implications 
for increased fire activity (Balch et al. 2013; 
Pilliod et al. 2017).

Field studies have shown that increased 
interannual variability in precipitation 
decreases overall ecosystem productivity and 
that this effect becomes more pronounced 
over time (Sala et al. 2012; Gherardi and 
Sala 2015). Moreover, Gherardi and Sala 
(2015) demonstrated that shrub produc-
tivity in southwestern deserts increases in 
response to increased precipitation variabil-
ity while grass productivity decreases, which 
suggests that prolonged periods of increased 
variability in precipitation could promote com-
munity transitions from grass-dominated to 
shrub-dominated landscapes. Shrub encroach-
ment, once initiated, is often self-sustaining. 
High infiltration rates, deeper soil water 
storage, and entrapment of nutrient rich 
soils underneath or adjacent to shrub can-
opies create favorable conditions for shrub 
growth, often at the expense of herbaceous 
species (Schlesinger et al. 1990; Parsons et 
al. 1992; Bhark and Small 2003; Okin et al. 
2009; Turnbull et al. 2010; Field et al. 2012). 
Overall, community transitions might occur, 
which favor erodibility and increase site sus-
ceptibility. Such transitions should be closely 
monitored for their effects on soil erosion. 

Wind Erosivity. Mean wind speeds are 
projected to be lower for much of the west-
ern United States, except for the Southern 
Plains and portions of the Northern Plains 
regions (figure 2), but these projections 
are highly uncertain (Vautard et al. 2010). 
Regardless, this small reduction in poten-
tial erosivity will likely be offset in many 
locations by vegetation responses to climate 
change. Wind erosivity depends on how the 
wind field interacts with exposed soil at 
the surface, which is controlled by vegeta-
tion cover and structure (Mayaud and Webb 
2017). Vegetation both extracts momentum 
from the wind and provides shelter zones in 
which wind speeds at the surface are reduced 
depending on plant density and size (Wolfe 
and Nickling 1993). Thus, trends in vege-
tation that promote sparseness or transition 
from dense-cover grasses to shrubs with 
exposed gaps can effectively increase wind 
erosivity (Munson et al. 2011; Okin et al. 
2018). Further, while mean wind speeds are 
projected to be lower for most of the West, 
large-scale wind erosion and dust emission 

Figure 4
Regional observed and projected changes in temperature and precipitation. (a) Observed change 
in heavy precipitation (amount of precipitation that exceeds 99th percentile; 1958 to 2016). (b) 
Observed change in the daily 20-year precipitation event (cm; seasonal maximum precipitation 
totals: 1948 to 2015). (c) Observed regional increase in annual mean temperature, 1986 to 2016 
to 1901 to 1960. (d) Projected percentage increase in daily 20-year precipitation event for mid-
century scenario (RCP8.5). (e) Projected change in annual average temperature. (f) Projected tem-
perature change for coldest and warmest day. Source: Wuebbles et al. (2017).
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events are largely driven by frontal passages 
over much of the region. Drier winters and 
springs in the Southern Plains and Southwest 
may leave many sites more vulnerable to 
these erosive events by reducing early season 
production and affecting green-up timing, 
and increased fire activity in the Northwest 
could lead to more exposed surface area 
during recovery periods. 

In addition to synoptic scale frontal 
wind patterns, local convective winds are 
also important drivers of wind erosion in 
US rangelands. Local dust events are often 
coupled with convective storms (Brazel and 
Nickling 1986; Novlan et al. 2007), which 
can account for a significant portion of dust 
activity/hazards. In general, climate models 
predict an increase in extreme thunderstorm 
events (Kossin et al. 2017), but confidence 
in these projections is low. Thus, relating 
increases in convective storm frequency and 
magnitude to increased potential for wind 
erosion is highly uncertain and remains a dif-
ficult challenge to aeolian researchers.

 Soil Crusting. Another significant control 
for aeolian processes in rangelands is physical 
and biological soil crusting, which signifi-
cantly increases transport thresholds (Gillette 
et al. 1982; Belnap and Gillette 1998). Few 
papers have focused specifically on projected 
climate change implications for soil crusts 
in the context of soil erosion (Ferrenberg 
et al. 2015), and this remains a significant 
knowledge gap in our understanding of how 
climate change will impact aeolian processes 
in US rangelands. However, some relation-
ships are relatively well understood. Both 
types of crust reduce wind erosion and have 
variable effects on water erosion. Climate 
change is likely to affect the proportion of 
the soil surface covered by different types 
of crusts at any time through one or more 
of the following processes: reduced rainfall 
frequency reduces opportunities for physical 
crust reformation following physical dis-
turbance, but increased intensity generates 
stronger crusts that may be more persistent. 
Warming and changes to rainfall timing and 
intensity may negatively affect biological 
crusts (Belnap and Eldridge 2003) at a level 
similar to physical disturbance (Ferrenberg 
et al. 2015). While crusts can withstand lim-
ited soil mobility (Langston and McKenna 
Neuman 2005; Kidron and Zohar 2014), 
even small increases in aeolian activity 
because of reductions in extent, duration, or 
strength of soil crusts could potentially lead 

to further instability and increased suscepti-
bility to wind erosion.

Rainfall Erosivity. Climate change mod-
els consistently project an increase in the 
frequency and intensity of high intensity 
rainfall events for the western United States 
(figure 4) (Easterling et al. 2017), and thus 
erosivity (Nearing 2001; Zhang et al. 2012; 
Biasutti and Seager 2015; Nearing et al. 2017). 
Rainfall erosivity is defined as the capability 
of rainfall to cause soil loss by water and is a 
function of the energy of rainfall and rain-
fall intensity (Nearing et al. 2017). However, 
Nearing et al. (2017) point out that kinetic 
energy of rainfall is not a direct driver of 
erosion in cases where runoff (transport) is 
limited, rather water erosion rates are gener-
ally highest where overland flow occurs and 
that rainfall energy is effectively a surrogate 
for discharge or runoff generation. Runoff 
rates are generally greatest where surface 
conditions are bare (high susceptibility) and, 
under these conditions, are exacerbated with 
increasing rainfall intensity—high vulnera-
bility (figure 5) (Pierson et al. 2011; Williams 
et al. 2014b; Pierson and Williams 2016). 

Magnitude of erosion under these con-
ditions is dependent on the connectivity of 
runoff; the amount of sediment available for 
transport; and the amount, energy, and trans-
port capacity of overland flow (Pierson et al. 

2011; Al-Hamdan et al. 2012, 2013, 2015; 
Williams et al. 2016a). Well-connected, bare 
conditions and high sediment availability are 
most common following short-term distur-
bances such as wildfire, but also occur with 
declines in vegetation and cover over time 
because of poor land use practices, drought, 
and woody plant encroachment (Pierson et 
al. 2007, 2010; Turnbull et al. 2008, 2012; 
Al-Hamdan et al. 2012; Williams et al. 2014a, 
2016b, 2016a). Given these relationships, cli-
mate change impacts on erosivity are likely 
compounding in their effect on erosion 
through concomitant changes in plant com-
munity dynamics and disturbance regimes 
such as fire, drought, and desertification. As 
such, increases in rainfall erosivity may have 
the greatest impact through exacerbating the 
effects of fire, desertification, and poor land 
use practices on runoff generation and soil 
loss by water (Zhang et al. 2012). It is also 
worth noting that during extreme weather 
events, the effect of high winds on rain (wind-
driven rain) has the potential to significantly 
increase rainfall erosivity for a given precip-
itation intensity (Marzen et al. 2017). Given 
the projected increase in extreme weather 
events, this impact should not be ignored in 
research and modeling efforts. 

Impacts on Disturbance. The frequency 
of large fires, annual area burned, and 

Figure 5
Conceptual model of hydrologic vulnerability and risk. Hydrologic vulnerability (measured as run-
off and erosion response, y-axis) is a function of site susceptibility (x-axis) and rainfall intensity 
(indicated by colors). Vulnerability dictates resources at risk. Concentrated flow processes domi-
nate the postfire environment where site susceptibility is high (e.g., high bare ground, water-re-
pellent soils) or rainfall is of moderate to high intensity. Rainsplash processes prevail where sus-
ceptibility is low (well-aggregated soils, land surface well protected by litter cover). Rainsplash, 
sheetflow, and concentrated flow processes all contribute to the runoff/erosion response where 
site susceptibility is indicative of disturbed conditions (reduced ground cover and aggregate 
stability, poor soil structure). The overall hydrologic response is amplified with increasing slope 
steepness. Sources: modified from Pierson et al. (2011) and Williams et al. (2014a).
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drought-induced tree die-off have increased 
across the western US rangeland-dry forest 
continuum in recent decades and are expected 
to increase further with projected climate 
change (Breshears et al. 2005, 2009; Westerling 
et al. 2006; Keane et al. 2008; Morgan et al. 
2008; Flannigan et al. 2009; Littell et al. 2009; 
Spracklen et al. 2009; Abatzoglou and Kolden 
2011; Miller et al. 2011; Balch et al. 2013; 
Williams et al. 2014b). Much of the interior 
western United States now exists in a state 
in which rangeland and woodland wildfires 
stimulated by annual grasses and dense woody 
fuels have a greater likelihood of progress-
ing upslope into dry forests, where wildfire 
activity is also increasing (Keane et al. 2008; 
Nelson and Pierce 2010; Balch et al. 2013). 

Invasion by and expansion of annual cheat-
grass is the primary cause of increased fire 
frequency and annual area burned on sage-
brush rangelands throughout much of the 
western United States (Keane et al. 2008; 
Miller et al. 2011; Balch et al. 2013). Cheatgrass 
escalates wildfire activity on rangelands by 
increasing the horizontal continuity of fuels 
and the likelihood of ignition (Brooks et al. 
2004; Link et al. 2006). Burning of cheatgrass 
infested sites favors cheatgrass dominance 
and perpetuates a recurring grass-fire cycle 
(Knapp 1996; Brooks et al. 2004; Davies et 
al. 2012; Balch et al. 2013). Abatzoglou and 
Kolden (2011) suggest both cheatgrass invasi-
bility and the length of the fire season in the 
Great Basin will be enhanced by a warmer 
climate and an increase in wet winters. Across 
the interior west, cheatgrass is moving ups-
lope (Keeley and McGinnis 2007; McGlone 
et al. 2009; Griffith and Loik 2010; Bromberg 
et al. 2011), potentially setting up occurrence 
of the cheatgrass-fire cycle at higher eleva-
tions and in woodlands and dry forests. At 
mid-elevations, pinyon (Pinus spp.) and juni-
per (Juniperus spp.) expansion into sagebrush 
(Artemisia spp.) communities and infill on 
existing woodlands have increased woody fuel 
loading and increased risk of severe wildfires 
(Keane et al. 2008; Romme et al. 2009). 

In recent decades, warming winter and 
spring air temperatures at mid-elevations 
of the western United States have yielded 
decreased snowpacks (Mote et al. 2005; 
Regonda et al. 2005; Knowles et al. 2006; 
Trenberth et al. 2007; Bonfils et al. 2008; 
Nayak et al. 2010), earlier spring snowmelt 
and streamflow (McCabe and Clark 2005; 
Regonda et al. 2005; Stewart et al. 2005; 
Pederson et al. 2011), and drier fuel condi-

tions (Westerling et al. 2006). These trends 
have extended fire seasons and increased 
fire frequency and area burned in western 
forests (Pierce et al. 2004; Westerling et al. 
2006; Morgan et al. 2008; Pierce and Meyer 
2008; Littell et al. 2009). In the southwestern 
United States, recent landscape- to region-
al-scale die-offs of pinyon and juniper have 
been attributed to periods of drought and 
limited soil water availability, plant water 
stress, bark beetle infestations, and reduced 
tree regeneration (Allen 2007; Allen and 
Breshears 1998; Breshears et al. 2005, 2009; 
Clifford et al. 2013; Gaylord et al. 2013; 
Redmond et al. 2013, 2015). Projections of 
climate and plant community transitions are 
highly variable, but most forecast warming 
and drought, increased dry-season cyclonic 
storms, longer fire seasons, and greater wild-
fire activity across the rangeland-dry forest 
continuum of the western United States 
(Flannigan et al. 2000, 2009; Whitlock et al. 
2003; Gedalof et al. 2005; Running 2006; 
Bradley et al. 2009; Spracklen et al. 2009; 
Littell et al. 2010; Abatzoglou and Kolden 
2011; Balch et al. 2013; Williams et al. 2014b). 
These broad-scale disturbances potentially 
increase susceptibility of rangelands to ero-
sion across landscape to regional scales 
(Williams et al. 2014b). 

Potential Trends and Implications of 
Soil Erosion
Increased aeolian sediment transport and 
dust emission have several implications for 
rangeland plant communities and ecogeo-
morphology and pose a serious hazard to 
human health. Soil loss and redistribution 
affects overall soil health, biogeochemical 
cycles, and land potential. Because many 
rangelands exist near ecological thresh-
olds, even relatively small perturbations may 
degrade sites beyond their ability to recover 
(Archer and Predick 2008). Further, increased 
dust emissions could have significant implica-
tions for air quality and human health, while 
episodic hazards such as dust storms also pose 
immediate threats to human life.

Limited studies have attempted to quantify 
effects of climate change on wind erosion 
in US rangelands (Munson et al. 2011; Pu 
and Ginoux 2017). In general, lower pro-
jected wind speeds over much of the western 
United States (figure 2) will likely be off-
set by changes to vegetation controls, e.g., 
increases in intercanopy gaps. Further, more 
frequent fires and shorter fire return inter-

vals could lead to increased erosion from 
disturbed sites. Longer-term stresses and 
response to climatic change such as increased 
moisture deficits, decreased productivity, and 
grass-shrub transitions also have the potential 
to significantly increase site susceptibility to 
aeolian processes. These effects could poten-
tially be exacerbated by future reductions 
in soil crusting. Indeed, dust emission rates 
have increased significantly over the past 
two decades (Hand et al. 2016), despite 
wind stilling over much of the area. Given 
the potential impacts of climate change on 
US rangelands, overall dust emission could 
continue to increase over both short- and 
long-term time scales despite the predicted 
decrease in overall wind speed over much of 
the western United States. Plot-scale research 
has explored the interactions between veg-
etation change and aeolian processes in US 
rangelands, but the impact of ecosystem 
changes for current and future regional 
dust emissions has not been established over 
large areas. It is incumbent on the rangeland 
research and management communities to 
monitor responses to these stresses across rel-
evant thresholds of aeolian activity, as well as 
how these changes promote dust emission 
frequency and magnitude. 

Projected climate changes and vegetation 
community response suggest increased land-
scape vulnerability to soil erosion by water 
over much of US rangelands, with the most 
pronounced impacts likely related to drought 
and increased disturbance. Knowledge 
regarding drought impacts on erosion in US 
rangelands comes primarily from studies in 
the Southwest, which suggest that commu-
nity transitions that result in a reduction of 
herbaceous cover and favor connected, bare 
intercanopy spaces can lead to increased run-
off and erosion (Wilcox et al. 1996; Allen 
and Breshears 1998). These results suggest 
that, overall, prolonged vegetation reductions 
associated with drought may cause increases 
in erosion through increased surface sus-
ceptibility. In general, amplified runoff and 
associated erosion are likely during high water 
input, erosive events at sites where cover is 
decreased by any disturbance (Pierson et al. 
2011; Williams et al. 2014b). Indeed, there 
is ample evidence from the Southwest that 
documents increased soil erosion following 
coarsening of plant community structure 
via grassland-shrubland conversion—e.g., 
desertification (Schlesinger et al. 1990; 
Turnbull et al. 2008, 2012)—associated with 
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a combination of factors including land use 
and climate (Buffington and Herbel 1965; 
Grover and Musick 1990; Bahre and Shelton 
1993; Archer et al. 1995; Van Auken 2000, 
2009). Coarsening of plant community struc-
ture increases fine-scale erosion by rainsplash 
and sheetflow (Abrahams et al. 1995; Parsons 
et al. 1996a). In turn, runoff generated in bare 
interspaces promotes concentrated flow and 
amplifies downslope sediment transport (Luk 
et al. 1993; Parsons et al. 1996b; Wainwright 
et al. 2000; Turnbull et al. 2010). Water and 
soil losses inhibit herbaceous productivity 
and further propagate bare ground connec-
tivity (Bhark and Small 2003). In general, 
both wind and water erosion increase with 
increasing bare ground over broad scales, 
potentially degrading sites beyond conser-
vation and restoration thresholds (Turnbull 
et al. 2012). Similar responses have been 
reported for coarsening of plant community 
structure following shrubland-to-woodland 
conversions driven by land use, climate, and 
reduced fire activity in the northwestern 
United States (Pierson et al. 2007, 2010, 2013; 
Williams et al. 2014a, 2016b, 2016c, 2016a). 
In contrast, recent studies of streamflow fol-
lowing drought-induced pinyon, juniper, 
and lodgepole pine (Pinus contorta Douglas) 
die-off in the Southwest have reported either 
decreases to little change in streamflow over 
short timescales (Guardiola-Claramonte et al. 
2011; Biederman et al. 2015). In both studies, 
the authors suggest that decreases in stream-
flow were associated with increased water 
use by enhanced herbaceous cover follow-
ing tree die-off. Thus, the limited research to 
date on drought-specific impacts on water 
erosion from US rangelands hinders accurate 
prediction of drought impacts on erosion 
with climate change, and this should be a 
research focus moving forward. 

Disturbance by wildfires increases suscep-
tibility and vulnerability to erosion at plot 
to watershed scales and increases hazards to 
values-at-risk such as natural resources, prop-
erty, infrastructure, and human life (figure 5) 
(Calkin et al. 2007; Robichaud et al. 2010; 
Pierson et al. 2011; Williams et al. 2014b; 
Pierson and Williams 2016). Much of what 
is currently known about fire impacts on 
erosion comes from plot- to hillslope-scale 
artificial rainfall experiments and anecdotal 
reports of debris flows and mudslides (Pierson 
et al. 2002, 2011; Williams et al. 2014b; 
Pierson and Williams 2016). Increasing wild-
fire activity associated with climate change 

poses significant environmental, social, and 
economic consequences associated with ero-
sion events (Pierson et al. 2011; Wilcox et al. 
2012; Williams et al. 2014b). More frequent 
and larger fires increase the likelihood and 
potential magnitude of both onsite and off-
site impacts to values-at-risk (figure 5). More 
frequent surface exposure due to repeated 
burning will likely increase both water and 
wind erosion during commonly occurring 
storms in addition to increasing the proba-
bility susceptible soil surfaces will be exposed 
when less frequent, high intensity events—
which climate projections indicate are likely 
to increase (Kossin et al. 2017)—occur. Loss 
of biologically important surface soils during 
more frequent high intensity events may be 
particularly critical for rangelands where soil 
formation takes decades (Allen et al. 2011; 
Sankey et al. 2012). This may be especially 
problematic where large fires are followed 
by drought years with minimal plant recruit-
ment that prolongs susceptibility. 

Waterborne sediment pulses transported 
into channels during postfire erosion events 
and subsequently flushed into streams 
(Cannon et al. 2001; Meyer and Pierce 2003; 
Pierce et al. 2004) may negatively impact 
water resources, fisheries, and channel geo-
morphology (Minshall et al. 2001; Pierce et 
al. 2011). Further, several studies have linked 
large debris flow events in dry forests of the 
Interior West to warm climatic conditions 
(Medieval Warm Period, 1,050 to 750 years 
ago) and periods of extensive fires (Meyer 
and Pierce 2003; Pierce et al. 2004; Pierce 
and Meyer 2008). Fire-induced debris flows 
can transport tremendous volumes of sed-
iment and debris into main stem rivers 
(Cannon et al. 2001; Meyer et al. 2001; Pierce 
et al. 2011), and the literature suggests that 
these events may become more common 
under continued increases in wildfire activity 
and high intensity, erosive rainfall events on 
extensively burned landscapes (Williams et 
al. 2014b). 

Current knowledge is strong regarding 
fire impacts on surficial processes across 
plot to small watershed scales, but research 
is still needed to relate varying surface sus-
ceptibility to runoff and erosion responses 
for burned versus unburned conditions and 
to better represent hydrologic and erosion 
recovery in quantitative hydrology and 
erosion models under changing precipita-
tion regimes (Pierson et al. 2011; Moody 
et al. 2013; Williams et al. 2014b; Pierson 

and Williams 2016). Likewise, current abil-
ity to accurately model and predict postfire 
hydrologic and associated erosion responses 
over large spatial scales and complex topog-
raphy remains limited, particularly under 
potentially changing precipitation regimes 
and erosivity and for flood, debris flow, and 
mud-slide responses. More work is also 
needed to assess the impacts of fire on aeo-
lian transport rates and dust emission events 
(Dukes et al. 2018). Advancements in these 
key areas are important in the development 
of postfire decision support tools for assess-
ing and predicting erosion responses under 
a changing climate.

Discussion
Managing the impacts of climate change 
on wind and water erosion will be criti-
cal for the long-term sustainability of US 
rangelands (Webb et al. 2017). Our review 
of potential climate change impacts on ero-
sion drivers, and the likely responses, brings 
us to some important considerations for the 
management of current and future erosion as 
the basis for maintaining and improving soil 
health, water and air quality, and the ecosys-
tem services that depend on them. Foremost 
are the following questions: 
1.	How can wind and water erosion and 

their responses to land use and man-
agement be effectively monitored across 
diverse rangeland ecosystems?

2.	How can information about soil erosion be 
incorporated into management decisions?

3.	What management actions are necessary 
to reduce the negative impacts of climate 
change while leveraging positive impacts?

4.	What proportion of often limited man-
agement resources should be devoted to 
anticipating future climate change impacts 
versus addressing current impacts of inva-
sive species, grazing-induced changes in 
the fire regime, and soil degradation? 

Quantifying wind and water erosion rates 
and their responses to land use, land man-
agement, and land cover changes will be 
essential to develop management responses 
that are effective into the future. Currently, 
our understanding of regional wind ero-
sion rates is limited and supported largely 
by coarse spatial resolution (e.g., >1°) 
model estimates of dust emission (Shao et 
al. 2011). Little is known about the cur-
rent magnitude of wind erosion rates in US 
rangelands (Breshears et al. 2003; Nauman 
et al. 2018), with most available measure-
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ments of sediment transport rather than 
erosion, and with limited scope (Munson et 
al. 2011; Wagenbrenner et al. 2012; Webb et 
al. 2014). More is known about runoff and 
water erosion in US rangelands because 
of its longer research focus (Nearing et al. 
2017). As measuring wind and water erosion 
rates over the large area of US rangelands is 
impractical, modeling approaches that can 
leverage data collected by existing monitor-
ing programs—or remote sensing (Chappell 
et al. 2018)—provide the best opportunities 
for evaluating erosion rates and the process 
responses to land use and climate change. The 
Aeolian EROsion (AERO) model (Edwards 
et al. 2018) and Rangeland Hydrology and 
Erosion Model (RHEM) (Nearing et al. 
2011; Al-Hamdan et al. 2015) can be applied 
to standardized rangeland monitoring data—
like those collected as part of the Bureau of 
Land Management’s Assessment, Inventory 
and Monitoring (AIM) program (Toevs et 
al. 2011) and the USDA Natural Resources 
Conservation Service’s National Resources 
Inventory (NRI) (Goebel 1998)—and 
provide the opportunity to assess range-
land wind and water erosion across plot to 
regional scales. As of December of 2017, 
AIM and NRI data have been collected at 
over 50,000 locations across the US range-
lands to which AERO and RHEM can be 
applied, with support in model calibration 
and testing to establish uncertainties from 
networked observatory sites like the USDA’s 
Long-Term Agroecosystem Research 
Network (Robertson et al. 2008) and asso-
ciated National Wind Erosion Research 
Network (Webb et al. 2016). 

Establishing model estimates of water ero-
sion and wind-driven sediment transport 
from existing monitoring data will provide 
new opportunities to link erosion assess-
ments to land classification systems and land 
resource hierarchies that are used to inform 
management (Salley et al. 2016). For example, 
incorporating model estimates of wind and 
water erosion from AIM and NRI data into 
ecological site descriptions (ESDs) (Caudle 
et al. 2013) and relating erosion rates to core 
indicators of rangeland condition (Herrick 
et al. 2017) and rangeland health (Pyke et 
al. 2005) could provide the necessary infor-
mation for resource managers to identify 
tolerable erosion rates; establish benchmarks 
(e.g., in ground cover) for erosion control, 
which relate to water and air quality (e.g., 
1977 Clean Air Act and National Ambient 

Air Quality Standards); and to consider ero-
sion management and trade-offs alongside 
other resource concerns. Recent applications 
of ESDs and state-and-transition models to 
evaluate rangeland dust emission (Galloza et 
al. 2018) and water erosion (Williams et al. 
2016b, 2016c) have shown the utility of inte-
grating monitoring data with erosion models 
and conceptual models of ecosystem states 
and their dynamics (figure 6). Such systems 
approaches will be useful for understanding 
and managing the impacts of climate change 
on rangeland erosion and feedbacks of the 
processes to ecosystem health and production.

We contend that management actions 
and resources needed to address future cli-
mate change on soil erosion in rangelands 
are largely those necessary to address the 
current impacts of invasive species, fire, and 
soil degradation. Increasing the health and 
overall resilience of rangeland ecosystems 
will in many, if not most, cases reduce nega-
tive climate change impacts and improve the 
efficacy of climate adaptation while allowing 
positive impacts to be exploited (Webb et al. 
2013). At a minimum, an increased focus on 
addressing or adapting to current threats—
e.g., shrub invasion of Chihuahuan Desert 
ecosystems (Archer et al. 2017), changing 
grass-fire cycles and invasion of Great Basin 
sagebrush shrublands by cheatgrass (Balch 
et al. 2013), and slow ecological recovery of 
ecosystems affected by infrastructure devel-
opment for oil and gas extraction (Nauman et 
al. 2017)—that are likely to be exacerbated by 
climate change and impact rangeland com-
munities is justified (Dallimer and Stringer 
2018). Planned rather than reactive man-
agement of rangeland soil erosion and the 
potential process responses to climate change 
is likely to have the greatest positive impact 
on the quality of rangeland soil, vegetation, 
air, and water resources over the long term 
(Briske et al. 2015). Participatory research to 
develop innovative range management sys-
tems that are inherently more flexible and 
suited to changing climatic and market con-
ditions are also likely to build resilience to an 
increasingly unpredictable climate (Spiegal et 
al. 2018). 

Finally, among the many climatic con-
trols on erosion, our confidence in their 
midcentury projections vary dramatically. 
There is relatively high confidence in pro-
jections of rising temperatures, as well as 
more frequent and severe soil moisture 
deficits, wildfires, and heavy precipitation 

events. However, confidence is relatively 
low in projections of average precipitation 
(annual and seasonal), intense storms, and 
surface wind speeds. Changes in land use 
and land cover may be equally if not more 
important as climate change in determining 
future erosion rates (Ferrenberg et al. 2015) 
but may well be influenced by climatic 
changes. There is great uncertainty about 
how plant communities will respond to cli-
mate change and how the socioeconomic 
drivers of land use change will impact range-
land wind and water erosion. In the face of 
such uncertainty, explicitly considering the 
trade-offs for erosion impacts against other 
management objectives and implementing 
flexible, “no-regrets” management practices 
that achieve multiple objectives could have 
both immediate and long-term benefits for 
US rangelands. 

Summary and Conclusions
Conservation of US rangeland resources into 
the future presents a substantial challenge to 
the management community. Soil erosion 
by wind and water is already a serious threat 
to US rangelands and may be accelerated by 
future climate change. Managing to limit 
soil erosion impacts today will be critical for 
adaptation, given that many of the challenges 
we currently face are expected to be exac-
erbated if current trajectories of emissions 
and climate change continue. Moreover, 
given our current understanding, more 
widespread erosion will only increase expo-
sure and sensitivity of rangelands to climate 
impacts—reducing resilience to climatic 
stressors and pushing some rangelands past 
restoration and conservation thresholds—
which reduces the adaptive capacity of land 
users. Our understanding of ecogeomorphic 
links between erosion processes and range-
land condition and trajectory is improving, 
but more research is needed to inform 
management efforts to build rangeland resil-
ience. The following summarize our current 
understanding of the potential impacts of 
climate change on erosion in US rangelands 
and highlight important knowledge gaps and 
research needs:
•	 Projected trends toward reduced veg-

etation cover and shifts in vegetation 
communities from herbaceous to 
shrub-dominated landscapes result-
ing from warming and drying have the 
potential to significantly increase land-
scape susceptibility to water and wind 
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soil erosion over much of the western 
United States.

•	 Potential increases in rainfall erosivity 
may have the greatest impact by exac-
erbating effects of fire, desertification, 
and poor land use practices on runoff 
and erosion.

•	 Increased disturbance from fire and 
exotic invasive grasses has the potential 
to significantly increase frequency and 
magnitude of erosive events over both 
short time scales commensurate with 
increased susceptibility during recovery 
periods and longer time scales associated 
with increased vulnerability to erosion 
because of more frequent, larger fires 
over an expanded range.

•	 Projected climate change could slow 
recovery times to fire and other distur-
bances, e.g., infrastructure development for 
oil and gas extraction, that are increasing in 
density across western rangelands and may 
impact soil erosion and dust emission.

•	 More work is needed to expand our 
ability to model postfire hydrologic and 

erosion response over large areas and 
complex topography. 

•	 More research is needed to understand 
the impact of ecosystem changes, e.g., 
reductions in vegetation density, commu-
nity shifts, and soil crusting, for current 
and future wind erosion and regional 
dust emission from US rangelands.

•	 More research is needed to improve 
understanding of drought-specific 
impacts on water erosion in US range-
lands, which is currently limited.

•	 Existing, extensive plot-scale rangeland 
monitoring and remote sensing data 
should be leveraged in modeling frame-
works to establish baseline assessments of 
current vulnerability of US rangelands to 
soil erosion and, where possible, used to 
assess potential changes to future vulnera-
bility associated with rangeland responses 
to climate change.

•	 Soil erosion should be explicitly included 
in management benchmarks and decision 
support tools to better mitigate negative 
consequences of erosion and its impacts 
on water resources and air quality. 

•	 Flexible, no-regrets management options 
should be implemented to combat 
current soil erosion impacts on US 
rangelands, which will improve range-
land resilience and the efficacy of future 
climate change adaptation.

•	 Finally, fundamental knowledge of ero-
sion processes is critical to developing 
accurate models and appropriate manage-
ment practices. As such, processed-based 
research to further our understanding 
of the underlying processes and refine 
models used to guide management is a 
continual need. 
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