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Abstract. Every spring, ranchers in the drought-prone U.S. Great Plains face the same difficult challenge
—trying to estimate how much forage will be available for livestock to graze during the upcoming summer
grazing season. To reduce this uncertainty in predicting forage availability, we developed an innovative
new grassland productivity forecast system, named Grass-Cast, to provide science-informed estimates of
growing season aboveground net primary production (ANPP). Grass-Cast uses over 30 yr of historical
data including weather and the satellite-derived normalized vegetation difference index (NDVI)—com-
bined with ecosystem modeling and seasonal precipitation forecasts—to predict if rangelands in individual
counties are likely to produce below-normal, near-normal, or above-normal amounts of grass biomass (lbs/ac).
Grass-Cast also provides a view of rangeland productivity in the broader region, to assist in larger-
scale decision-making—such as where forage resources for grazing might be more plentiful if a rancher’s
own region is at risk of drought. Grass-Cast is updated approximately every two weeks from April
through July. Each Grass-Cast forecast provides three scenarios of ANPP for the upcoming growing season
based on different precipitation outlooks. Near real-time 8-d NDVI can be used to supplement Grass-Cast
in predicting cumulative growing season NDVI and ANPP starting in mid-April for the Southern Great
Plains and mid-May to early June for the Central and Northern Great Plains. Here, we present the scientific
basis and methods for Grass-Cast along with the county-level production forecasts from 2017 and 2018 for
ten states in the U.S. Great Plains. The correlation between early growing season forecasts and the end-of-
growing season ANPP estimate is >50% by late May or early June. In a retrospective evaluation, we com-
pared Grass-Cast end-of-growing season ANPP results to an independent dataset and found that the two
agreed 69% of the time over a 20-yr period. Although some predictive tools exist for forecasting upcoming
growing season conditions, none predict actual productivity for the entire Great Plains. The Grass-Cast
system could be adapted to predict grassland ANPP outside of the Great Plains or to predict perennial
biofuel grass production.
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INTRODUCTION

Operational flexibility by grassland owners
and managers in their ability to match animal
demand with available forage is limited within
and across years by the lack of predictive tools
that accurately forecast aboveground biomass for
the growing season (Kachergis et al. 2014). This
flexibility is most limited during dry/drought
conditions as adaptive management decision-
making is constrained (Derner and Augustine
2016), and livestock production and net revenue
decline with increasing precipitation variability
(Hamilton et al. 2016, Bastian et al. 2018, Irisarri
et al. 2019) which influences decision-making by
land managers. Advances in remote sensing
(Gaffney et al. 2018) and modeling (Derner et al.
2012, Fang et al. 2014, Del Grosso et al. 2018) to
predict plant productivity, and multisite analyses
of productivity responses to precipitation across
decadal scales (Chen et al. 2017, Petrie et al.
2018), provide more synthetic knowledge and
understanding to advance site- and regional-
level forecasting of aboveground biomass. Practi-
cal and functional applications of forecasting
efforts, however, are still limited and may be
improved by integrated, multidisciplinary
approaches to fuse near real-time remote sens-
ing, short-term and seasonal weather forecasts,
process models, uncertainty, and web technology
to visually display spatial and temporal patterns
of grassland productivity.

Although some predictive tools exist for fore-
casting upcoming growing season conditions or
estimating grassland productivity, each has limi-
tations for practical and functional applications
by grassland managers for decision-making. The
U.S. Drought Monitor (https://droughtmonitor.
unl.edu/) has current drought intensity condi-
tions (from none to exceptional drought) across
the United States, and associated U.S. Monthly
and Seasonal Drought Outlooks (https://www.c

pc.ncep.noaa.gov/products/Drought/) provide
depictions of large-scale geographical trends
based on derived probabilities guided by short-
and long-range statistical and dynamic climate
forecasts that are partially subjective. These tools
are limited for decision-making by land man-
agers at relevant spatial and temporal scales by
(1) lack of translation of drought intensity condi-
tions into reductions of grassland productivity,
and (2) the challenge of detecting flash droughts
(sensu Mo and Lettenmaier 2016) such as
occurred during 2012 (Otkin et al. 2016). The
National Weather Service Climate Prediction
Center (CPC; https://www.cpc.ncep.noaa.gov/)
provides a series of weather/climate probability
outlooks ranging from 6 to 10 d to three months
for both temperature and precipitation across the
United States. Like the U.S. Drought Monitor,
these weather/climate probability outlooks are
limited for decision-making by grassland man-
agers by the lack of translation of these probabil-
ity outlooks to grassland productivity responses.
Third, the South Dakota Drought Tool (https://
www.nrcs.usda.gov/wps/portal/nrcs/main/sd/
technical/landuse/pasture/) projects peak forage
production (1 July) in South Dakota as percent of
normal forage production using current drought
conditions and future average precipitation
(30–50 yr average). Limitations of the South
Dakota Drought Tool include (1) geographical
constraints beyond South Dakota, (2) projected
peak production based only on assumption of
future average precipitation, (3) upper ceiling
of projections is 100% of normal forage produc-
tion, and (4) lack of verification and accuracy
of the projected peak production. Fourth, the
Australian Grassland and Rangeland Assess-
ment System (Aussie GRASS; Brook and
Carter 1996, Carter et al. 2000) is a spatial
modeling framework for Australia, maintained
by the Queensland State Government Depart-
ment of Environment and Science (https://
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www.longpaddock.qld.gov.au/aussiegrass). The
forecasted pasture growth is derived using a
point-scale pasture growth model known as
GRASP (GRASS Production; McKeon et al. 1990,
Day et al. 1997) and climate inputs dictated by
historical year-types aligning with the current
state of the climate system (e.g., El Niño South-
ern Oscillation [ENSO] and Pacific Decadal Oscil-
lation [PDO] phase). GRASP calculates grassland
production on a 0.05 degree (~5 km) grid across
Australia each month, following the updating of
interpolated climate inputs (rainfall, minimum
and maximum temperature, solar radiation,
evaporation, and vapor pressure deficit). Satellite
imagery is used both to assess tree cover (Land-
sat imagery) and to calibrate grass production
parameters (normalized vegetation difference
index (NDVI) imagery), the latter by assessing
model calculated green and dead cover against
NDVI. Limitations of applying Aussie GRASS to
the U.S. Great Plains include (1) the required
data input intensity, and (2) the lack of PDO/
ENSO links to productivity across the entire
Great Plains region.

Overcoming aforementioned limitations in the
existing predictive tools for grassland productiv-
ity could be addressed by an approach with end
user considerations incorporated to produce a
visually appealing and informative product that
has scientific underpinnings based on established
ecological relationships. Moreover, the end pro-
duct for use by grassland managers in decision-
making needs to be updated frequently during
the growing season. To accomplish this, we
developed an innovative new grassland produc-
tivity forecast system, named Grass-Cast, to pro-
vide science-informed estimates of growing
season vegetation productivity in the U.S. Great
Plains. This decision tool for grassland managers
is underpinned by statistical relationships
derived from over 30 yr of historical data includ-
ing spatially continuous daily weather and satel-
lite-derived NDVI (Tucker 1979) across the Great
Plains, combined with county-specific growing
season precipitation forecasts and actual evapo-
transpiration estimated by the DayCent model
(Parton et al. 1998). Fusing this information pro-
vides the potential to generate estimates every
10–14 d of vegetation productivity in the spring
(beginning in April) and early summer, with
three scenarios: below-normal, near-normal, or

above-normal amounts of precipitation from the
forecast date to the end of the primary growing
season (end of July). Focus group interactions
with ranchers in the Great Plains suggested that
Grass-Cast provide these three rangeland pro-
duction forecasts because of uncertainties associ-
ated with seasonal weather forecasts. Visual
representation of the predictions (http://grassca
st.unl.edu/) provides a regional perspective of
grassland productivity to inform decision-
makers geographically where forage supplies are
limited, near-normal, or in excess.
Grass-Cast is based on previous work where we

established that cumulative April–July actual evap-
otranspiration (iAET) was the precipitation-related
variable most highly correlated to cumulative
growing season (May–September) NDVI (iNDVI)
and aboveground net primary production (ANPP;
Del Grosso et al. 2018, Chen et al. 2019). Grass-Cast
predicts ANPP as a function of simulated iAET
using previously established county-level regres-
sions between simulated iAET and iNDVI and
regional statistical relationships between iNDVI
and measured ANPP (Chen et al. 2019).
Grass-Cast was developed in 2017 for use in

Northern Plains states (Montana, North Dakota,
South Dakota, Wyoming, Nebraska, and Color-
ado). In 2018, the southern Plains states—Kansas,
New Mexico, Oklahoma, and Texas—were
added. For both 2017 and 2018, the spatial scale
of grassland productivity estimates occurred at
the county level; for 2019, the spatial scale was
reduced to a 10 × 10 km grid level following
stakeholder requests to have the predictions at
finer spatial scales.
Here, we showcase the development and

refinement of Grass-Cast for U.S. Great Plains
grassland ecosystems. We provide the ecological
and statistical relationships that provide the
underpinning to Grass-Cast. We present county-
level production forecasts from 2017 and 2018
that include grassland regions for ten states in
the U.S. Great Plains. We assess the accuracy and
skill of the Grass-Cast grassland productivity
estimates at the county scale using satellite-
derived NDVI from independent data. Further,
we show that near real-time 8-d NDVI in the
early part of the growing season can also be used
to predict cumulative growing season NDVI and
ANPP to supplement Grass-Cast and reduce
uncertainty with seasonal precipitation forecasts.
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METHODS

Weather and remotely sensed data sets
Grass-Cast requires a multi-decadal history of

daily observed minimum and maximum air tem-
peratures, and precipitation at the geographic
scale of grassland productivity estimation
(county level in 2017 and 2018). 1-km resolution
Daymet weather (Thornton et al. 2016) was used
for 1980–2016 for historical purposes using the
latitude and longitude of the scale of productiv-
ity estimate. Weather data for 2017 and 2018
were obtained from the gridded climate dataset
(GridData) available from Applied Climate Infor-
mation System (ACIS) Web Services (http://data.
rcc-acis.org/). GridData provides users with
access to several gridded datasets, including
daily observed temperature and precipitation
fields generated using the methods of DeGaetano
and Belcher (2007) for temperature and DeGae-
tano and Wilks (2009) for precipitation.

To compute April–September iNDVI (de-
scribed in Eq. 1 below), we used bimonthly, 8-km
resolution third-generation Global Inventory
Modeling and Mapping Studies (GIMMS)
NDVI3g data for 1982–2015 (Pinzon and Tucker
2014), which we downloaded from NASA’s ECO-
CAST archive (https://ecocast.arc.nasa.gov/data/
pub/gimms/3g.v1/); in this paper, this will be
referred to as AVHRR NDVI. The effects of possi-
ble snow and/or cloud cover were accounted for
by removing all pixels that were not classified as
either good (QA = 0) or marginal (QA = 1) qual-
ity in the QA layer. We further isolated grass-
lands by excluding pixels identified as barren,
forest, or crop using MODerate resolution Imag-
ing Spectroradiometer (MODIS) land cover data
(Friedl et al. 2010). For retrospective evaluation
of Grass-Cast ANPP estimates, we used the 16-d
composite 1-km resolution MODIS NDVI
(MOD13QA2 V006) data product available via
the NASA Land Processes Distributed Active
Archive Center (https://lpdaac.usgs.gov/). The
16-d pixel reliability data layer that accompanied
the MODIS NDVI data was used to identify and
remove lower-quality data. Following the
methodology we used to compute AVHRR
iNDVI, we calculated MODIS-based cumulative
NDVI, used for Grass-Cast evaluation, by isolat-
ing grasslands, aggregating grassland NDVI to
the county level, and integrating over a two-

month period when peak biomass occurs (June–
July; described in Eq. 6 below).

DayCent model description
The Grass-Cast system computes cumulative

April–July AET for the grasslands in each county
from simulated daily AET using the DayCent
model (Parton et al. 1998, Del Grosso et al. 2001,
2011). DayCent is an ecosystem-level biogeo-
chemical model that simulates the fluxes of
water, carbon, and nitrogen (or nutrients) among
the atmosphere, plants, and soil in crop/grass-
land, forest, and savanna ecosystems. The pri-
mary inputs to DayCent include site location,
daily weather data (e.g., maximum and mini-
mum temperature, precipitation), soil profile tex-
ture and hydraulic properties, vegetation
parameters, and land management practices
(e.g., grazing intensity). The functionality of Day-
Cent is implemented in four primary submodels:
plant growth and production, soil organic matter
cycling, land surface hydrology, and trace gas
emissions (Parton et al. 1998, Del Grosso et al.
2001, 2011). DayCent was calibrated for grass-
lands and croplands in 476 Great Plains counties
in previous work (Hartman et al. 2011, Parton
et al. 2015).
In DayCent, daily AET is simulated in its land

surface hydrology submodel (Parton et al. 1998).
AET from two sources was simulated. First,
water inputs (i.e., precipitation and melt snow)
intercepted by plants and litter were evaporated
at the rate of potential daily evapotranspiration
rate (PET). Then, remaining water either passes
through soil layers as saturated or unsaturated
flow or runs off the soil surface. During the pro-
cesses, water is evaporated from the top of the
soil profile at the potential soil evaporation rate.
In addition, the transpiration at each soil layer is
simulated as a function of plant live leaf biomass
and root distribution. Previous work (Chen et al.
2016, 2017) demonstrated that the DayCent sim-
ulated AET agreed with the observations in both
the semiarid shortgrass steppe and the mesic tall-
grass prairie.

Grass-Cast equations
The annual observed integrated growing

season NDVI for a county for each year
1982–2015 (iNDVIobs.yr) was calculated from
eleven biweekly county-level AVHRR NDVI
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7values (NDVIobs,wk) that occurred from 1 May
to 30 September of that year. A county-specific
base NDVI value (NDVIbase) that represents
NDVI at the very beginning of the growing sea-
son was subtracted from each biweekly measure-
ment.

iNDVIobs,yr ¼ ∑
Sept:30

wk¼May1
ðNDVIobs,wk�NDVIbaseÞ: (1)

NDVIbase was a function of longitude. It was
0.10 is the western-most county and 0.15 in the
eastern-most county. NDVIbase values for other
counties were linearly interpolated between
these values as a function of longitude. This
pattern of base NDVI was typical of NDVI dur-
ing the non-growing season (November–-
March). Although we defined 476 Great Plains
counties in previous work (Hartman et al.
2011), grassland NDVI was not available for all
the counties. For some counties, the grassland
area was so small that grassland observed
NDVI could not be determined. For other coun-
ties, particularly ones that were close to moun-
tainous areas, the NDVI signal was influenced
by tree or shrub biomass and determined to be
too high to be a grassland ecosystem. Filtering
these out resulted in 366 counties for the Grass-
Cast forecasts.

The annual cumulative April–July AET value
for a county (iAETyr) was the sum of all daily
AET values simulated by DayCent from 1 April
to 31 July during year (yr):

iAETyr ¼ ∑
July 31

day¼April 1
ðAETdayÞ (2)

The DayCent-derived values of iAETyr for years
1982–2015 and the values of AVHRR iNDVIobs,yr
for the same 34 yr were calculated prior to running
the Grass-Cast model in order to establish a
county-specific linear regression of iNDVIobs,yr to
iAETyr, giving slope mcounty and intercept bcounty.

During the forecast procedure, we ran Day-
Cent 36 times for each county to compute 36 val-
ues of iAET for the current growing season

based on daily weather to date and 36 scenarios
of weather for the remainder of the growing sea-
son. For the weather scenarios, we used historical
weather records from the most recent 36 yr to
get a long-term sampling of recent meteorologi-
cal conditions in the Great Plains. The scenarios
were ranked from 1 to 36 (from driest to wet-
test) according to the amount of precipitation
in the remainder of the growing season. We
then calculated 36 predictions of integrated
growing season NDVI. The predicted integrated
growing season NDVI for a county and
weather scenario i, where i = 1, 2, . . ., 36)
(iNDVIpred,i) was based on the county-specific
slope mcounty and intercept bcounty.

iNDVIpred,i ¼mcounty� iAETiþbcounty (3)

The predicted annual ANPP for each county
and scenario (ANPPpred,i, g biomass m−2) was
based on a regional quadratic regression with
iNDVIpred,i. This relationship was determined in
previous work that compared pasture-level
iNDVI to measured ANPP for five sites in the
Great Plains that span a precipitation gradient
and had long-term ANPP datasets (Chen et al.
2019). During the forecast procedure, Grass-Cast
calculated 36 values of ANPP from the i = 1, . . .,
36 predictions of cumulative growing season
NDVI using the following relationship:

ANPPpred,i ¼ 24:04ðiNDVIpred,iÞ2�24:36
�iNDVIpred,iþ16:24

(4)

The equation above, used for the forecasts in
this paper, was similar to that of Chen et al.
(2019). Within the Great Plains, the correlation of
ANPP to iNDVI was similar for the warm-season
C4-dominated southern grassland counties and
the cool-season C3-dominated northern grass-
land counties (Chen et al. 2019).
The predicted ANPP values were compared to

the county’s 1982–2015 mean ANPP (ANPPmean)
as described in more detail below. This 34-yr
mean ANPP for each county was computed from
observed AVHRR iNDVI (Eq. 1) and the regres-
sion of iNDVI to ANPP (Eq. 4) as follows:

ANPPmean ¼
∑
2015

Yr¼1982
ð24:04ðiNDVIobs,yrÞ2�24:36� iNDVIobs,yrþ16:24Þ

34
(5)
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Executing the forecast
The 2017 and 2018 Grass-Cast ANPP forecasts

were provided approximately every two weeks
beginning in early April and continuing to late
July. Year-to-date weather was used as an input
into DayCent model runs as well as 36 weather
scenarios for each county which were created for
the remainder of the growing season using past
observed weather (years 1981–2016 for the 2017
forecast and years 1982–2017 for the 2018 fore-
cast) as analogs (Fig. 1).

Once DayCent model runs for each county
and weather scenario i = 1, . . ., 36 were con-
ducted, we (1) aggregated daily simulated AET
to compute iAETi (Eq. 2), (2) predicted iNDVIi
from iAETi (Eq. 3), and (3) computed ANPPi

from iNDVIi (Eq. 4). Next, for each county, we
computed three ANPP means, ANPPdry,
ANPPnormal, and ANPPwet, based on the 12 dri-
est, 12 average, and 12 wettest precipitation sce-
narios. Finally, we computed the percent
differences between ANPPdry, ANPPnormal, and
ANPPwet compared to ANPPmean (Eq. 5). These
percent differences were displayed in three maps
for Grass-Cast forecast date: percent change in
ANPP compared to the mean ANPP when pre-
cipitation from the forecast date through 31 July
is (1) below-normal, (2) near-normal, and (3)

above-normal (see http://grasscast.unl.edu/). It is
left to the user to choose the appropriate precipi-
tation range, which may be selected according to
the most likely county-level precipitation (for
example, seasonal outlooks provided by the Cli-
mate Prediction Center (CPC) (http://www.cpc.
ncep.noaa.gov/products/forecasts/). The end-of-
growing season (31 July) ANPP forecast resulted
in a single map since the calculation of any
cumulative April–July AET value used only
observed weather.

Accuracy assessments comparing Grass-Cast
ANPP forecasts to MODIS NDVI
We used yearly cumulative June–July MODIS

NDVI to evaluate Grass-Cast, first producing a
time series of Grass-Cast compared to MODIS
NDVI for 2017 and 2018, and secondly compar-
ing Grass-Cast end-of-growing season ANPP
forecasts against MODIS NDVI for years
2000–2018. Cumulative June–July MODIS NDVI
data were selected for this evaluation since they
were independent data that represent peak
biomass during the growing season. Yearly val-
ues of cumulative June–July MODIS NDVI for
each county is referred to as MODISJJ,yr, (Eq. 6)
and the mean of MODISJJ,yr for yr = 2000, . . .,
2018 is referred to as MODISJJ,mean. The values

Fig. 1. Schematic diagram of the Grass-Cast grassland productivity forecast system.
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of MODISJJ,yr were calculated from biweekly
MODIS NDVI (MODISwk) and the same base
NDVI that was used in Eq. 1:

MODISJJ,Yr ¼ ∑
July 31

wk¼June 1
ðMODISwk�NDVIbaseÞ

(6)

For the 2017 and 2018 time series accuracy
assessments, we compared all nine of the April
through July Grass-Cast normal precipitation
forecasts for each county to MODIS NDVI from
the same year. For Grass-Cast, we computed the
percent difference of the ANPP from normal pre-
cipitation forecast compared to ANPPmean, and
for MODIS NDVI, we computed the percent dif-
ference between MODISJJ,yr and MODISJJ,mean.
The percent differences for both Grass-Cast
ANPP and MODIS NDVI were grouped into
three categories: Percent differences <−8% were
below the mean, percent differences >8% were
above the mean, and percent differences between
−8% and +8% were near the mean. The threshold
of �8% was chosen so that each of the three cate-
gories had approximately the same number of
counties. When the county’s Grass-Cast ANPP
percent difference and the MODIS NDVI percent
difference were in the same category, they were
said to be the same. When they were one cate-
gory apart, such as when one was near the mean
and the other was either below the mean or
above the mean, they were off by 1 category.
When they were two categories apart, such as
when one was below the mean and the other was
above the mean, they were off by 2 categories.
For each forecast date, we computed the percent
of counties in the same, off by 1, and off by 2 cat-
egories. If the forecast accuracy improves over
time, and if the final Grass-Cast forecast is simi-
lar to MODISJJ,yr, then we would expect the
counties off by 2 at the beginning of the growing
season to transition to off by 1 then the same;
similarly, we would expect the counties that were
initially off by 1 to transition to the same. Ideally,
the Grass-Cast ANPP and MODIS NDVI cate-
gories for all counties should be in the same at
the end of the growing season.

In the second accuracy assessment, we com-
pared the county-level Grass-Cast 31 July ANPP
forecasts (ANPPGC,yr) for years 2000–2018 to
cumulative June–July MODIS NDVI (MODISJJ.yr)

for the same years. Again, we calculated percent
differences as described above and then the coeffi-
cient of determination (R2) of Grass-Cast ANPP
percent differences to the MODIS NDVI percent
differences using all county value pairs (see
Table 1). Using the categorical percent differences
described above (the same, off by 1, and off by 2),
we also computed yearly Heidke Skill Scores
(HSS; Eq. 7) for 2000–2018 to quantify how well
Grass-Cast ANPP corresponds to cumulative
June–July MODIS NDVI. The HSS indicates how
often the forecast category correctly matches the
observed category, over and above the number of
correct hits expected by chance alone. This score
utilizes the number of correct and incorrect cate-
gory hits. The values range from −50 to 100; a
score of 100 indicates a perfect forecast and a score
of −50 indicates a perfectly incorrect forecast.
Scores greater than 0 indicate improvement com-
pared to a random forecast and indicate skill. The
equation for the score is:

HSS ð%Þ¼ 100�ðH�EÞ=ðT�EÞ (7)

where H is the number of correct forecasts (the
ANPPGC,yr percent difference and the MODISJJ,yr
percent difference were in the same category), E
is the expected number of correct forecasts (1/3 of
total when assuming equal chances), and T is the
total number of valid forecast-observation pairs.
The HSS results are summarized in Table 1.

Correlation between 8-d NDVI and growing
season mean NDVI
We calculated Pearson’s correlation coefficient

(r) between 8-d NDVI and growing season
cumulative April–October NDVI to look for rela-
tionships between early growing season NDVI
and cumulative growing plant production. All
processing steps for calculating NDVI correla-
tions were performed in Google Earth Engine
(GEE; Gorelick et al. 2017). NDVI values were
calculated on the MOD09Q1 MODIS, 250 m, 8-d
surface reflectance image collection (Vermote
2015) from year 2000 to 2018. The image collec-
tion was filtered to retain only images collected
between the months of April and October and
clipped to counties of interest. Quality control
band bitmask values were used to retain only
pixels with values of clear for cloud state and no
cloud for the internal cloud algorithm flag. The
USGS National Land Cover Database (NLCD)
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image collection was used to create a grassland
areas mask. A total of seven NLCD images (years:
2001, 2004, 2006, 2008, 2011, 2013, and 2016) were
reduced to create a single grassland mask consist-
ing only of pixels identified as the grassland land
cover class in all NLCD images. The grassland
mask was applied to all NDVI images.

A growing season total NDVI image collec-
tion was constructed from the NDVI images in
which pixel-wise sums were calculated for
each year and stored as an image in the collec-
tion (i.e., one image per year). Similarly, indi-
vidual day-of-year (DOY) image collections
were constructed for each DOY represented in
the 8-d MODIS data that occurred between
April and October (approximate DOY range of
96–296) and stored in a single image collection
(i.e., a collection of collections). Each DOY col-
lection consisted of 19 images representing the
NDVI values for that given DOY in each year
from 2000 to 2018.

As an example, the first resulting image collec-
tion contained images for DOY = 96, with one

image for DOY 96 from each year. Thus, the first
image in the collection was for DOY 96 in year
2000, the second image was for DOY 96 in year
2001, etc. Each image had two bands with the
first band containing NDVI data for the given
DOY, and the second containing the cumulative
NDVI for the appropriate year. Pearson’s correla-
tion coefficient (r) was calculated for each DOY
image collection to obtain the pixel-wise correla-
tion between the NDVI and cumulative NDVI
bands. This resulted in a single correlation image
for each DOY. Mean r values were calculated for
each county and exported as shapefiles from
GEE for visualization as maps.

RESULTS

Biweekly Grass-Cast forecasts for 2017 and
2018
The primary product of each Grass-Cast ANPP

forecast was three maps presented as the percent
change in ANPP compared to the long-term
mean ANPP (Eq. 5). Here, we show four

Table 1. Accuracy Assessment comparing Grass-Cast ANPP 31 July predictions against cumulative MODIS
June–July NDVI including R2 values for the correlation between 31 July Grass-Cast ANPP forecast and MODIS
NDVI (MODIS R2) and Heidke Skill Scores (HHS) for years 2000–2018.

Year
MODIS

R2
Same category

(count)
Off by one
(count)

Off by two
(count)

Same
category (%)

Off by two
(%) H T E

HSS
(%)

2000 0.58 244 119 2 66.8 0.5 244 365 121.7 50.3
2001 0.53 214 146 5 58.6 1.4 214 365 121.7 37.9
2002 0.68 303 62 0 83.0 0.0 303 365 121.7 74.5
2003 0.30 211 151 3 57.8 0.8 211 365 121.7 36.7
2004 0.55 254 106 5 69.6 1.4 254 365 121.7 54.4
2005 0.15 209 146 10 57.3 2.7 209 365 121.7 35.9
2006 0.49 300 65 0 82.2 0.0 300 365 121.7 73.3
2007 0.53 268 93 4 73.4 1.1 268 365 121.7 60.1
2008 0.61 258 107 0 70.7 0.0 258 365 121.7 56.0
2009 0.39 222 137 6 60.8 1.6 222 365 121.7 41.2
2010 0.31 214 149 2 58.6 0.5 214 365 121.7 37.9
2011 0.88 326 38 1 89.3 0.3 326 365 121.7 84.0
2012 0.56 305 58 2 83.6 0.5 305 365 121.7 75.3
2013 0.67 274 86 5 75.1 1.4 274 365 121.7 62.6
2014 0.41 202 146 17 55.3 4.7 202 365 121.7 33.0
2015 0.67 286 76 3 78.4 0.8 286 365 121.7 67.5
2016 0.48 240 119 6 65.8 1.6 240 365 121.7 48.6
2017 0.67 248 108 9 67.9 2.5 248 365 121.7 51.9
2018 0.55 202 145 14 56.0 3.9 202 361 120.3 33.9
Total 69.0 1.4 4780 6931 2310.3 53.4

Notes: Both Grass-Cast and cumulative June–July MODIS NDVI are expressed as percent difference from their means, and
both are placed into the below the mean, near the mean, and above the mean categories using the �8% threshold as described
in the methods. The columns same category, off by one, and off by two are number of counties where Grass-Cast/MODIS pairs
are in the same category, differ by one category, and differ by two categories, respectively. Columns H, T, E, and HSS (%) are
described in Eq. 7.

 v www.esajournals.org 8 November 2020 v Volume 11(11) v Article e03280

EMERGING TECHNOLOGIES HARTMAN ETAL.



forecasts during the year, approximately one per
month starting in early May. Maps from all
forecast dates for 2017 and 2018 can be found
in the Supplemental Information (Appendix S1:
Fig. S1, Appendix S2: Fig. S1).

Summary of 2017 Grass-Cast maps.—The three
ANPP forecasts at the beginning of the 2017
growing season in April were very different and
strongly related to the precipitation forecast
(Appendix S1: Fig. S1). As the growing season
progressed and more observed weather was
incorporated into the ANPP forecast, the similar-
ity between the three maps increased (Fig. 2). The
final 31 July 2017 forecast showed a vast area of
below-normal production (red and orange colors)
in Montana, North Dakota, and South Dakota
and highly productive regions (blue colors) in
Colorado and Nebraska. The 8 May forecast did
not indicate a potential for severely reduced pro-
duction in the three northern states unless precip-
itation was below-normal. However, by 1 June,
the NPP maps reflected the development of a
flash drought (a dry period that has come on very
suddenly) in the north. The 12 June maps showed
that below-normal production was almost certain
in Montana, North Dakota, and South Dakota
despite the precipitation forecast (Appendix S1:
Fig. S1). Indeed, the northern Great Plains
suffered a severe flash drought in 2017 (Gerken
et al. 2018, Otkin et al. 2018) as shown in the final
31 July map which was not indicated on the Cli-
mate Prediction Center seasonal forecasts
(Appendix S3: Fig. S1a,b). The 1 June forecast also
showed that production was likely to be above-
normal in Colorado and Nebraska regardless of
the precipitation scenario, and those results were
consistent with the final forecast.

For 2017, the percent differences in the initial
growing season forecast (1 April) were poorly
correlated with the final growing season percent
differences (R2 < 0.2; Fig. 3a). The R2 values for
the below-normal and near-normal forecasts sur-
passed 0.5 by 8 May, while the above-normal
forecast surpassed 0.5 sometime between 22 May
and 1 June. With each two-week forecast from 8
May to 12 June, the R2 value increased about 0.1
to 0.3; after 30 June the increase in R2 was less
pronounced. The R2 values for all three forecasts
were 0.8 or greater by 12 June.

Summary of 2018 Grass-Cast maps.—The 22
April forecast showed that there was a high

potential for the southern Great Plains to have
below-normal production given growing season
precipitation that was below-normal or near-nor-
mal; this forecast likely reflected dry soil condi-
tions at the beginning of the growing season
(Appendix S2: Fig. S1). On the other hand, the 22
April maps showed that western Montana
should expect normal or above-normal grassland
production despite the precipitation forecast; this
forecast likely reflected wet soil conditions at the
beginning of the growing season (Appendix S2:
Fig. S1). The final 2018 forecast on 31 July
showed mostly below-normal ANPP in the
southern Great Plains (New Mexico, Texas, and
Oklahoma; Fig. 4). For most counties in Color-
ado, Nebraska, and the Oklahoma Panhandle,
ANPP was within � 15% of normal with a few
counties below and above those percentages. In
eastern North Dakota and South Dakota, ANPP
was near-normal (light green, �5%). In Montana,
Wyoming, western Nebraska, North Dakota, and
South Dakota most counties showed ANPP
>15% above-normal.
The regional dichotomies in the final 2018 fore-

cast were predicted 6–10 weeks ahead of time.
By the 21 May forecast, it was largely evident
that the southern Great Plains should expect
ANPP values to be below-normal even if near-
normal or above-normal precipitation was to
occur in the coming two months (Appendix S2:
Fig. S1). The 1 July forecast showed that Texas
should expect below-average ANPP even if that
area experienced above-normal precipitation
during the next month (Fig. 4). In contrast, the 18
June forecast showed that the northwest section
of the Great Plains should expect above-average
ANPP for the growing season despite the
amount of precipitation for the next six weeks
(Appendix S2: Fig. S1). In contrast to spatial vari-
ation in Grass-Cast forecasts throughout 2018,
the Climate Prediction Center seasonal precipita-
tion forecasts showed near-normal precipitation
for the vast majority of the growing season, with
little regional variation (Appendix S3: Fig. S1c,d).
For 2018, the percent differences in the initial

growing season forecast (1 April) were poorly
correlated with the final growing season percent
differences (R2 < 0.4; Fig. 3b). The R2 values for
all forecasts surpassed 0.5 sometime between 21
May and 4 June. With each two-week forecast
from 21 May to 1 July, the R2 value increased
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about 0.1–0.25; after 1 July the increase in R2 was
less pronounced. The R2 values for all three fore-
casts were 0.7 or greater by 18 June.

Additional Grass-Cast output and historical
productivity

Grass-Cast produces a number of results in
addition to the percent differences presented in

the three maps. First, for each forecast date
Grass-Cast creates a summary spreadsheet that
includes the following information for each
county: mean 36-yr iNDVI and ANPP (lbs/ac/yr),
iNDVI and ANPP estimated for each of the three
precipitation categories (below-normal, normal,
and above-normal) from the current forecast,
and the standard deviation of ANPP within each

Fig. 2. Grassland Productivity Forecast (Grass-Cast) maps for 2017, produced on 8 May, 1 June, 30 June, and
31 July. The three maps for each date show the forecasted percent change in aboveground grassland production
compared to a county’s 34-yr (1982–2015) average. Left, middle, and right maps: expected percent change in
grassland production if precipitation for the remainder of the growing season is below-normal, near-normal, or
above-normal, respectively.
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of the three precipitation categories for the cur-
rent forecast. The standard deviation relates to
the variability of ANPP outcomes among the 12
weather scenarios within each precipitation cate-
gory. The summary spreadsheet (.csv file) from
any previous forecast from 2017 to the present
can be downloaded from https://grasscast.unl.ed
u/Archive.aspx. Second, Grass-Cast provides a
table of historical ANPP estimates from the pre-
vious 36 or more years (Appendix S7: Table S1).
Using these historical productivity estimates, a
land manager can compare the current

forecasted percent differences in ANPP for each
county to those of former growing seasons for a
relative sense of how current forage amounts
relate to prior years.

Time series accuracy assessments for
2017–2018
Using categorical classifications, the time series

accuracy assessments showed how each of the
ANPP forecasts that use near-normal precipita-
tion compared to the MODISJJ,yr (Fig. 5a). For
2017, the number of counties that differed by two

Fig. 2. Continued
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categories was a maximum of 7% on 10 April
declining to 1% by 31 July. For the first three
ANPP forecasts of 2017 (10 April, 25 April, and 8
May), the number of counties in the same cate-
gory and the number of counties that differed by
one category were both just under 50%. On 22
May, the number of counties in the same cate-
gory began to increase and subsequently the
number that differed by one category began to
decline. By 31 July 2017, the number of counties
in the same category was over 70%. The 2018
forecasts started off with about 40% of counties
in the same category and about 50% of counties
off by one category (Fig. 5b). For 2018, the num-
ber of counties in the same category did not
exceed other categories until 18 June, a month
later than in 2017. The percent of counties that
differed by two categories was >10% up to 18
June and afterward dropped to zero for the final
three forecasts. After 18 June, the accuracy of the

forecast climbed rapidly and reached almost 70%
by 31 July.

Retrospective evaluation: end-of-growing season
Grass-Cast ANPP predictions compared to
cumulative June–July MODIS NDVI for
2010–2018
Correlations between the end-of-growing sea-

son (31 July) Grass-Cast ANPP percent differ-
ences and MODISJJ,yr percent differences for
2000–2018 are listed in Table 1. R2 values ranged
from 0.15 to 0.88 and were >0.50 for 12 of the
19 yr. Maps of Grass-Cast percent change in
ANPP show very similar patterns to maps of per-
cent change in MODISJJ,yr (Fig. 6, Appendix S4:
Fig. S1). Bright red colors show where ANPPGC,yr

or MODISJJ,yr were >15% below-normal and
dark blue colors show when they were >15%
above-normal. In general, each year the color
patterns for ANPPGC,yr and MODISJJ,yr were

Fig. 3. The coefficient of determination (R2) between the percent difference in ANPP from each forecast during
the growing season compared to the percent difference in ANPP for the final forecast for all counties in the Great
Plains, (A) 2017, (B) 2018. Percent differences for any date are computed using the 34-yr average ANPP. The
legend values R2_pct_below, R2_pct_avg, and R2_pct_above refer to the precipitation forecasts that were used at
each date (below-normal, near-normal, or above-normal, respectively).
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strikingly similar for the majority of Great
Plains counties. For unknown reasons, a few
pairs of maps showed some regional discrepan-
cies. For example, for 2014, Grass-Cast showed
below-normal productivity in most counties in
the southern half of the Great Plains where the
MODIS data showed quite a few counties with

above-average greenness. For 2015, Grass-Cast
showed below-average productivity in northern
Montana that was not seen in the MODIS data.
For 2016, Grass-Cast showed an area of low pro-
ductivity in the southwest portion of the Great
Plains where the MODIS data did not. Overall,
when the two maps in a given year showed a

Fig. 4. Grassland Productivity Forecast (Grass-Cast) maps for 2018, produced on 1 May, 4 June, 1 July, and 31
July. The three maps for each date show the forecasted percent change in aboveground grassland production
compared to a county’s 34-yr (1982–2015) average. Left, middle, and right maps: expected percent change in
grassland production if precipitation for the remainder of the growing season is below-normal, near-normal, or
above-normal, respectively.
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difference in patterns, it was usually because
Grass-Cast predicted lower productivity than
the MODIS NDVI indicated.

Heidke skill scores
The annual HSS from 2000 to 2018 ranged

from 33% to 84% (Table 1). All annual scores
were greater than 0 indicating an improvement
compared to a random forecast; the 19-year
cumulative score was 53.4. The four highest
scores, where HSS were greater than 70, occurred

when the vast majority of the Great Plains had
below-average AET and ANPP (years 2002, 2006,
and 2012), and when there was a strong dichot-
omy in productivity between the northern and
southern Great Plains in 2011 (high in northern
Great Plains and low in the southern Great
Plains; Appendix S4: Fig. S1, Appendix S5:
Fig. S1, Appendix S6: Fig. S1). The five lowest
scores, where HSS were less than 40, occurred
when AET, ANPP, and NDVI in most of the
Great Plains was close to normal or above-

Fig. 4. Continued
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normal with no large dry (bright red) regions
(years 2001, 2003, 2005, 2010, and 2014; Appen-
dix S4: Fig. S1, Appendix S5: Fig. S1, Appendix
S6: Fig. S1). This suggests that Grass-Cast was
most skilled at recognizing below-normal AET
and ANPP associated with drought. The fre-
quency of being off by two categories (when
Grass-Cast predicted above-normal with MODIS
NDVI showed below-normal, or vice versa)
occurred at most 4.7% of the time (in 2014), while
in 13 of the 19 yr, Grass-Cast and MODIS NDVI
were in the same category >60% of the time. On
average, Grass-Cast and MODIS were in the
same category 69% of the time and were off by
two categories 1.4% of the time (Table 1).

Correlation between weekly NDVI and growing
season mean NDVI
We examined the correlation between mean 8-

d MODIS NDVI and the mean cumulative
April–October MODIS NDVI at the county level
to determine how soon early growing season
NDVI was indicative of the growing season pro-
duction (Fig. 7). Strong positive correlations
(Pearson’s r > 0.6) were first observed in the
southern-most Great Plains by late April. This
was interpreted as being due to warmer weather
in the south. Correlations were weak, and even
negative in more northern counties at this time,
but as the growing season progressed, correla-
tions gradually became more positive going

Fig. 5. Percent of counties where Grass-Cast ANPP and cumulative June–July MODIS NDVI categories are the
same, differ by 1, and differ 2 for each of nine ANPP forecasts in (A) 2017, and (B) 2018. Grass-Cast ANPP fore-
casts used here used near-normal precipitation forecasts. Both Grass-Cast and cumulative June–July MODIS
NDVI are expressed as percent difference from their means, and both are placed into the below the mean, near
the mean, and above the mean categories using the �8% threshold as described in the methods. The blue line
shows when Grass-Cast is in the same category (the same) as the MODIS cumulative June–July NDVI percent
difference. The orange line shows when they differ by one category (Off by 1), and the gray line shows when they
differ by two categories (Off by 2).
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Fig. 6. Maps of percent difference between Grass-Cast ANPP Forecast relative to the mean (2000–2017) Grass-
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northward. By the fourth week of May, the r val-
ues were >0.6 for more than half of the Great
Plains counties. By the second week in June, the r
values were >0.6 for more than two-thirds of
counties. For a few counties in the northeast and
southeast, negative correlations persisted
throughout the growing season; we determined
that these counties had very few grassland pixels
and/or they had discrepancies between the
NLCD grassland mask and actual land cover
(e.g., irrigated fields and riparian areas). The
strength of the correlations diminished by
August as grasses senesced (not shown).

DISCUSSION

Grass-Cast provides ranchers and land man-
agers with prediction of vegetation productivity
in the upcoming growing season relative to their
county’s three-decade history. Grass-Cast grass-
land production forecasts incorporate the precip-
itation and evapotranspiration to date as well as
scenarios of precipitation for the remainder of
the growing season. Grass-Cast’s accuracy
improves as the growing season progresses
(Figs. 3, 5), so it should be consulted more than
just once during the growing season. Confidence
in Grass-Cast forecasts increased substantially by
late May or early June, when forecasts had >50%
correlation to the end-of-growing season fore-
casts and MODIS NDVI (Figs. 3, 5).

By providing three forecasts per date based on
a range of precipitation predictions, Grass-Cast
can inform ranchers and land managers when
grassland productivity will be highly sensitive to
precipitation for the remainder of the growing
season, or when the conditions to date have
already determined a trajectory of below- or
above-average ANPP. To determine which of the
three ANPP forecasts is most appropriate for a
region, we suggest consulting additional precipi-
tation forecasts. One resource is the three-month
seasonal precipitation forecasts for all of the Uni-
ted States from the Climate Prediction Center

(CPC; http://www.cpc.ncep.noaa.gov/). How-
ever, the CPC three-month precipitation outlooks
for May–July and June–August in 2017 and 2018
did not indicate below-normal precipitation any-
where in the Great Plains (Appendix S3: Fig. S1).
Grass-Cast detected rapidly declining productiv-
ity related to drying soil conditions that were not
evident from the seasonal precipitation forecasts.
In early June 2017, Grass-Cast revealed below-
normal production indicative of a flash drought
in the northern Great Plains (Fig. 2), and in early
June 2018, it revealed below-normal production
in the southern Great Plains (Fig. 4).
Maps of Grass-Cast 31 July ANPP forecasts

were compared to an independent spatial data
set, namely cumulative June–July MODIS NDVI,
and the two showed similar patterns (Appendix
S4: Fig. S1). For years 2000–2018, the number of
counties where Grass-Cast and MODIS NDVI
were in the same category (below the mean, near
the mean, or above the mean) ranged from 55.3%
to 89.3% (average 69%) and the percent of coun-
ties where Grass-Cast and MODIS NDVI had
opposing categories was small, ranging from 0.0%
to 4.7% (average 1.4%; Table 1). Heidke Skill
Scores based on Grass-Cast comparisons to
MODIS NDVI also showed that Grass-Cast was
more skilled at forecasting drought-induced decli-
nes in ANPP (Table 1; Appendix S4: Fig. S1).
Grass-Cast is one of several tools available for

ranchers and land managers. The U.S. Drought
Monitor (https://droughtmonitor.unl.edu/) and
the South Dakota Drought Tool (https://www.nrc
s.usda.gov/wps/portal/nrcs/main/sd/technical/la
nduse/pasture/) provide assessments of drought
intensity and duration instead of forecasts of
grassland productivity, and the latter has a lim-
ited range within the Great Plains. Grass-Cast
and the U.S. Drought Monitor are non-interac-
tive, providing static maps for their assessments,
while the South Dakota Drought Tool allows
users to develop a customized drought contin-
gency plan for livestock operations. The Aussie
GRASS approach is fundamentally different to

Cast ANPP forecast, paired with the maps of percent difference in cumulative June–July MODIS NDVI relative
to the mean (2000–2017) June–July cumulative NDVI at the county level for years 2011–2014. Red (<−15%), pink
(−15% to −5%); white (−5% to + 5%); light blue (+5% to +15%); dark blue (>+15%).

(Fig. 6. Continued)
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that employed in Grass-Cast, which is far less
input intensive, relying solely on estimates of
accumulated NDVI for the calculation of near
real-time pasture production. There is no way to
provide direct comparisons among these tools
since they vary in their application and spatial
extents.

Grass-Cast outputs, like those based on the
national- or county-scale monitoring and forecast
tools, must be carefully interpreted at more local
scales, particularly for decisions related to setting
stocking rates, determining turnout dates, or
other aspects of lease agreements, grazing allot-
ments or grazing permits. In such cases, it is
intended that ranchers and public land managers
use Grass-Cast and precipitation forecasts as an
aid to decision-making, and adjust Grass-Cast’s
county-level productivity estimates according to
their local knowledge of soils, plant communi-
ties, topography, and management. For example,
Grass-Cast does not directly account for local
management practices such as grazing intensity
in the previous year and does not differentiate
between desirable forage species and undesirable
species. Thus, it is important for ranchers and
land managers to know what proportion of
aboveground biomass is produced by non-forage
or undesirable species through the growing sea-
son, including how those species respond to rain
(or lack thereof) compared to the desirable forage
species. Grass-Cast also assumes that these graz-
ing lands are neither irrigated nor fertilized, and
such amendments could encourage greater local
grassland productivity compared to the larger-
scale productivity that Grass-Cast considers.

Grass-Cast incorporates in its three precipita-
tion categories weather conditions that have
occurred in the prior 36 growing seasons.
Within-category uncertainty is represented by
the standard deviations in the summary spread-
sheet that each Grass-Cast forecast provides
along with the set of three maps. For a given
county, for example, subtracting two standard
deviations from the ANPP estimate of the below-
normal category would provide the extreme low-
est ANPP estimate for the current growing sea-
son. Comparing growing season temperature
and precipitation to date to the same metrics
from prior years (data not yet provided by
Grass-Cast) could provide additional perspec-
tives on how the current growing season may

unfold. Long-term trends in ANPP, provided in
the historical productivity estimates, can assist
land managers in relating current year Grass-
Cast forecasts to their local site and experiential
knowledge.
In 2019, the Grass-Cast methods described in

this paper were applied at an improved spatial
resolution (10 km × 10 km) which is more rele-
vant for grassland managers; this resulted in
increasing the number of individual spatial areas
simulated in Grass-Cast by a factor of 40. This
finer spatial scale resulted in heterogeneity of
grassland production within counties. However,
2019 results are not presented here since validat-
ing Grass-Cast ANPP forecasts against MODIS
NDVI at a scale finer than the county level was
challenging, primarily because there may be few
grassland pixels in any individual grid cell. The
availability of frequent (8-d) NDVI measure-
ments offers an opportunity to adapt Grass-Cast
to provide closer to real-time ANPP forecasts.
Given the low skill of long-term precipitation
forecasts, the county-specific regressions
between weekly NDVI and growing season
mean NDVI are valuable in providing an early
growing season production forecast that supple-
ments Grass-Cast. MODIS NDVI data for the
most recent 8-d period is available within 10 d
following the last day of the 8-d period. Starting
in May of each year, shortly after seasonal Grass-
Cast forecasts commence, we can use the current
8-d NDVI measurements to predict if growing
season NDVI (and therefore grassland produc-
tion) is likely to be below-normal, normal, or
above-normal for the coming growing season.
For any county, the confidence in the prediction
will be determined by the Pearson’s r value for
that county for the week being examined. We
found strong correlations of mean 8-d MODIS
NDVI to cumulative growing season NDVI by
mid-April, mid-May, and early June for the
southern, central, northern Great Plains, respec-
tively. These results are quite promising and
show the potential to use near real-time Google
Earth Engine MODIS NDVI to predict growing
season vegetation production.
We plan to expand Grass-Cast into the south-

western United States (Arizona and western
New Mexico) in 2020, and possibly into grass-
lands/rangelands of the western United States
(e.g., Utah, Nevada, and California) in 2022.
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Fig. 7. Correlation Between 8-d MODIS NDVI and growing season cumulative NDVI based on data from
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However, due to differences in plant phenology
and timing of dry and wet seasons, applying
Grass-Cast to other regions will require us to cor-
relate different precipitation-related variables to
NDVI, or to adjust the accumulation periods for
these variables. For example, the correlation of
growing season precipitation to iNDVI is stron-
ger than the correlation of April–July AET to
iNDVI in an eastern tallgrass prairie of the Great
Plains (Chen et al. 2019). In a California grass-
land with a rainfall pattern typical of a Mediter-
ranean climate where precipitation begins in
autumn, extends through winter, peaks in
spring, and ends in summer, annual AET calcu-
lated on hydrologic year (1 October–30 Septem-
ber) is well-correlated with ANPP (Asao et al.
2018). In the southwest United States, where
grassland productivity is influenced by both
winter-time precipitation and monsoonal mois-
ture in mid- to late summer, grassland ANPP is
correlated with January–September precipitation
and with June–September precipitation (Martin
and Severson 1998, Khumalo and Holechek
2005). Additionally, Grass-Cast methods could
be adapted to predict production of perennial
biofuel grasses in the Great Plains and other
regions.

CONCLUSIONS

Grass-Cast uses observed weather data, sce-
narios of growing season precipitation, and cor-
relations of simulated AET to more than 30 yr
of satellite-derived NDVI to produce visually
appealing and informative maps of forecasted
ANPP for the Great Plains of the USA. Other
predictive tools developed for the USA can
address drought or are applied to limited spa-
tial scales, rather than forecast grassland pro-
ductivity for the entire Great Plains region. A
retrospective evaluation of Grass-Cast results
compared to MODIS NDVI over the past two
decades showed that the two agreed 69% of the
time and that Grass-Cast was skilled at fore-
casting occurrences of below-average grassland

productivity, including those associated with
flash droughts. By late May or early June, the
ANPP forecasts have >50% correlation to the
final 31 July forecast. The correlations using 8-d
Google Earth Engine MODIS NDVI suggest
that a spring forecast of cumulative growing
season NDVI and ANPP could be made as
early as mid-April in the Southern Great Plains
and by mid-May to early June for the Central
and Northern Great Plains. However, Grass-
Cast cannot indicate the difference between
desirable and undesirable forage species so
ranchers and land managers using Grass-Cast
will need to incorporate local knowledge on
plant communities and precipitation forecasts
to make adaptive management decisions during
the growing season. Grass-Cast methods may
be adapted to expand grassland productivity
forecasts to rangelands beyond the U.S. Great
Plains or to other perennial grasses such as
bioenergy crops.
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