Silage Density and Dry Matter Loss of Bag and Bunker Silos

Idaho Alfalfa and Forage Conference 25 February 2004
Neal P. Martin, Richard E. Muck, and Brian J. Holmes

Research Lab, Madison, WI Research Farm, Prairie du Sac, WI
Silage Density and Dry Matter Loss of Bag and Bunker Silos

- Introduction
- Silo bag study
- Bunker research and education
Leading Alfalfa Hay Production States, 1,000 tons, 2003

- Top 10 States
 - 58 % of U. S.
 - 60 % of Acre
 - 4 states NC
 - 6 states West
 - 5 Lead Dairy
Percent of Total 2003 Alfalfa Production - Haylage

- VT
- NY
- WI
- PA
- MI
- MN
- WV
- WA
Why Density and Losses?

Important to:

• Determine true cost of storage
• Estimate feed inventory
• Determine critical management practices

However, little but sales literature is available
Objectives

Monitor filling and emptying of pressed bag silos to:

- Measure densities and losses
- Determine factors affecting each
Methods

• 3 research farms in area (Arlington, Prairie du Sac, West Madison) have used baggers for several years

• 3 machines: 9 ft. Kelly-Ryan, 8 ft. Ag Bag, 9 ft. Ag Bag (rental)
8 Foot Ag Bag
Filling

- All loads:
 - Weighed
 - Marked on bag and length measured
 - Sampled for moisture
 - Composited samples across loads for particle size, CP, NDF, ash
Emptying

- All silage weighed (both good and spoilt)
- A sample per filling load: moisture and various quality characteristics
<table>
<thead>
<tr>
<th>Bagger</th>
<th>Station</th>
<th>Research</th>
<th>Hay</th>
<th>Corn</th>
</tr>
</thead>
<tbody>
<tr>
<td>8’ Ag Bag</td>
<td>Prairie du Sac</td>
<td>2/5</td>
<td>5/6</td>
<td></td>
</tr>
<tr>
<td>9’ Ag Bag</td>
<td>Arlington</td>
<td>0/4</td>
<td>3/3</td>
<td></td>
</tr>
<tr>
<td>9’ Kelly Ryan</td>
<td>Arlington</td>
<td>4/8</td>
<td>4/8</td>
<td></td>
</tr>
<tr>
<td>9’ Kelly Ryan</td>
<td>W. Madison</td>
<td>3/7</td>
<td>3/6</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>9/24</td>
<td></td>
<td>15/23</td>
</tr>
</tbody>
</table>
Average Hay Crop DM Densities

<table>
<thead>
<tr>
<th>Bagger</th>
<th>Research Station</th>
<th>lbs/ft³</th>
<th>kg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>8’ Ag Bag</td>
<td>Prairie du Sac</td>
<td>13.1</td>
<td>210</td>
</tr>
<tr>
<td>9’ Ag Bag</td>
<td>Arlington</td>
<td>13.5</td>
<td>217</td>
</tr>
<tr>
<td>9’ Kelly Ryan</td>
<td></td>
<td>14.2</td>
<td>227</td>
</tr>
<tr>
<td>9’ Kelly Ryan</td>
<td>W. Madison</td>
<td>11.6</td>
<td>186</td>
</tr>
</tbody>
</table>
Dry Matter Densities in Hay Crop Silages

Average slope = 0.19 lbs DM/ft^3 / % DM
Dry Matter Densities in Corn Silages - 2000

Average slope = 0.33 lbs DM/ft^3 / % DM
Dry Matter Densities in Corn Silages - 2000, 2001

Average slope=??
AB & KR may have different slopes
Average Corn DM Densities

<table>
<thead>
<tr>
<th>Bagger</th>
<th>Station</th>
<th>Processed</th>
<th>lbs/ft^3</th>
<th>kg/m^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>8’ Ag Bag</td>
<td>PDS</td>
<td>Yes</td>
<td>13.3</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No</td>
<td>15.4</td>
<td>246</td>
</tr>
<tr>
<td>9’ Ag Bag</td>
<td>Arl</td>
<td>Yes</td>
<td>11.0</td>
<td>176</td>
</tr>
<tr>
<td>9’ K R</td>
<td></td>
<td>Yes</td>
<td>12.2</td>
<td>196</td>
</tr>
<tr>
<td>9’ K R</td>
<td></td>
<td>No</td>
<td>10.4</td>
<td>167</td>
</tr>
<tr>
<td>9’ K R</td>
<td>WM</td>
<td>No</td>
<td>11.1</td>
<td>178</td>
</tr>
</tbody>
</table>
Average DM Densities (lb/ft³)

<table>
<thead>
<tr>
<th>Bagger</th>
<th>Station</th>
<th>Processed</th>
<th>Hay</th>
<th>Corn</th>
</tr>
</thead>
<tbody>
<tr>
<td>8’ Ag Bag</td>
<td>PDS</td>
<td>Yes</td>
<td>13.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No</td>
<td>13.1</td>
<td>15.4</td>
</tr>
<tr>
<td>9’ Ag Bag</td>
<td>Arl</td>
<td>No/Yes</td>
<td>13.5</td>
<td>11.0</td>
</tr>
<tr>
<td>9’ K R</td>
<td>Yes</td>
<td></td>
<td>12.2</td>
<td></td>
</tr>
<tr>
<td>9’ K R</td>
<td>No</td>
<td></td>
<td>14.1</td>
<td>10.4</td>
</tr>
<tr>
<td>9’ K R</td>
<td>WM</td>
<td>No</td>
<td>11.6</td>
<td>11.1</td>
</tr>
</tbody>
</table>
Density Variation on the Face

37%
42% 71% 94%
72% 83% 100%
Density Variation on the Face

- 64%
- 72%
- 71%
- 94%

- 66%
- 71%
- 98%
- 100%

- 60%
- 72%
- 107%
- 106%

- 67%
- 37%
- 73%
- 106%
Density Variation on the Face

80% 83%
104% 84%
21% 149%
71% 66%
62% 106%
42% 37%
71% 100%
94% 72%
83%
Losses

- **Invisible & Uncollected** = Filling + Removal + Gaseous + Seepage (Not Collected) = Total DM in - Total DM removed

- **Spoilage** = Silage not fed (moldy)

- **Total Loss** = Invisible & Uncollected + Spoilage
Range of Losses (% DM)
24 Bags

<table>
<thead>
<tr>
<th>Type</th>
<th>Loss Range</th>
<th>Loss Average</th>
<th>Average w/o 25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inv. & Uncol.</td>
<td>-0.3 to 22.8</td>
<td>9.5</td>
<td>8.7</td>
</tr>
<tr>
<td>Spoilage</td>
<td>0.0 to 25.4</td>
<td>6.9</td>
<td>2.7</td>
</tr>
<tr>
<td>Total</td>
<td>-0.3 to 39.9</td>
<td>16.4</td>
<td>11.4</td>
</tr>
</tbody>
</table>

* 25% loss or more
Issues With The Worst Six Bags

<table>
<thead>
<tr>
<th>Total % Loss</th>
<th>Spoiled (% Loss)</th>
<th>% DM</th>
<th>When Fed</th>
<th>Removal Rate (in./day)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>39.9</td>
<td>17.2</td>
<td>40.4</td>
<td>27 June</td>
<td>29</td>
<td>Bag burst</td>
</tr>
<tr>
<td>38.2</td>
<td>25.4</td>
<td>42.3</td>
<td>30 March</td>
<td>23</td>
<td>?</td>
</tr>
<tr>
<td>30.6</td>
<td>21.9</td>
<td>43.7</td>
<td>12 March</td>
<td>Bird damage</td>
<td></td>
</tr>
<tr>
<td>27.1</td>
<td>19.3</td>
<td>35.7</td>
<td>3 July</td>
<td>28</td>
<td>?</td>
</tr>
<tr>
<td>26.9</td>
<td>16.6</td>
<td>48.8</td>
<td>1 May</td>
<td>8</td>
<td>Similar bag</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total = 11%</td>
<td></td>
</tr>
<tr>
<td>25.9</td>
<td>15.7</td>
<td>48.7</td>
<td>20 Aug</td>
<td>53</td>
<td>?</td>
</tr>
</tbody>
</table>
Spoilage Losses vs. DM Content

Dry Matter Content, %

DM Loss, %

Hay
Corn
Spoilage Losses vs. Porosity

DM Loss, %

Porosity, %

Spoilage Losses vs. Porosity

Hay
Corn
Spoilage Losses vs. Emptying Mid-Point Date

DM Loss, %

Oct-00 Feb-01 Jul-01 Dec-01

Bird Damage
Ruptured Bag

Hay
Corn
Invisible & Uncollected Loss vs DM Content

Dry Matter Content, %

DM Loss, %

Hay
Corn
High Spoilage
Invisible & Uncollected Loss vs Feed Out Rate

- Feed Out Rate, in/d
- DM Loss, %

- Hay
- Corn
- High Spoilage
Invisible & Uncollected Loss vs Emptying Mid-Point Date

DM Loss, %

Hay
Corn
High Spoilage

Oct-00 Feb-01 Jul-01 Dec-01
Total Losses vs. Emptying Mid-Point Date

- Ruptured Bag
- Bird Damage

DM Loss, %

Oct-00 Feb-01 Jul-01 Dec-01

Hay
Corn
Summary

• Density in hay crop silage: 12.5 lbs DM/ft³

• Density in corn silage: higher with one bagger, lower in other relative to hay crop

• DM density lower the wetter the hay crop; less certain relationship in corn
Summary

• Average total losses were 16.4%, but 11.4% without 6 bags with major losses (>25%)

• Spoilage in dry (>40% DM), porous silages

• More problems with spoilage in summer

• Evidence that good management necessary for low losses
Management of Bunker Silos

- **Harvest**
 - maturity, moisture, chop length, rapid chop

- **Filling**
 - fill rapidly, pack tight, cover completely and quickly
Management of Bunker Silos

- Harvest
- Filling
- Packing
 - Spread in thin layers
 - Average tractor weight
 - Silage height
 - Packing time/wet ton
Management of Bunker Silos

Dry matter loss as influenced by silage density.

<table>
<thead>
<tr>
<th>Density (lbs DM/ft³)</th>
<th>DM Loss, 180 days (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20.2</td>
</tr>
<tr>
<td>14</td>
<td>16.8</td>
</tr>
<tr>
<td>15</td>
<td>15.9</td>
</tr>
<tr>
<td>16</td>
<td>15.1</td>
</tr>
<tr>
<td>18</td>
<td>13.4</td>
</tr>
<tr>
<td>22</td>
<td>10.0</td>
</tr>
</tbody>
</table>

SOURCE: Ruppel, K. A. 1992. MS thesis Cornell University, Ithaca, NY
Management of Bunker Silos

- Harvest
- Filling
- Packing
 - Spread in thin layers
 - Average tractor weight
 - Silage height
 - Packing time/wet ton
- Interaction of fill & pack

http://www.uwex.edu/ces/crops/uwforage/storage.htm
Silo Management

• High packing density needed
 – Density & dry matter content → porosity
 – Porosity set rate of air movement into silo
 – Higher the density, greater silo capacity
Silo Management

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Hay crop silage (87 silos)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
</tr>
<tr>
<td>Dry matter (%)</td>
<td>42</td>
</tr>
<tr>
<td>Wet density (lbs/ft³)</td>
<td>37</td>
</tr>
<tr>
<td>Dry density (lbs/ft³)</td>
<td>14.8</td>
</tr>
<tr>
<td>Avg. particle size (in)</td>
<td>0.46</td>
</tr>
</tbody>
</table>

*SD=standard deviation

SOURCE: Holmes and Muck, 1999.
Silo Management

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Average</th>
<th>Range</th>
<th>SD*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter (%)</td>
<td>34</td>
<td>25-46</td>
<td>4.80</td>
</tr>
<tr>
<td>Wet density (lbs/ft³)</td>
<td>43</td>
<td>23-60</td>
<td>8.30</td>
</tr>
<tr>
<td>Dry density (lbs/ft³)</td>
<td>14.5</td>
<td>7.8-23.6</td>
<td>2.90</td>
</tr>
<tr>
<td>Avg. particle size (in)</td>
<td>0.43</td>
<td>0.28-.68</td>
<td>0.08</td>
</tr>
</tbody>
</table>

*SD=standard deviation

SOURCE: Holmes and Muck, 1999.
Dry Matter Density Variation

\[
DMD \ (\text{lbs/ft}^3) = (8.5 + PF \times 0.0155) \times (0.818 + 0.0136 \times D)
\]

Where average depth (D) and packing factor (PF) are calculated as:

\[
D = \text{avg. silage depth (ft) = height at wall + height at center) /2}
\]

\[
PF = (W/L) \times N \times DM/C
\]

W = Proportioned average tractor weight (lbs) for all tractors

L = Layer thickness (inches) of the spread but unpacked

N = Number of tractor-packing equivalents, where N = 1 one

DM = Dry matter content (decimal)

C = Crop delivery rate (T AF/hr) to the silo
Forage Harvester Average Capacity

<table>
<thead>
<tr>
<th>Forage harvester type</th>
<th>Capacity (T AF/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hay</td>
</tr>
<tr>
<td>Pull, 250 HP</td>
<td>60</td>
</tr>
<tr>
<td>Self-propelled, 450 HP</td>
<td>100</td>
</tr>
</tbody>
</table>

SOURCE: Shinners, 2001
Improving Silage Density*

<table>
<thead>
<tr>
<th>Variables changed</th>
<th>DMD(lbs/ft³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No change</td>
<td>12.3</td>
</tr>
<tr>
<td>+20,000-lb tractor 50% time</td>
<td>12.7</td>
</tr>
<tr>
<td>+20,000-lb tractor 100% time</td>
<td>13.1</td>
</tr>
<tr>
<td>+5,000 weight to 30,000-lb tractor</td>
<td>13.0</td>
</tr>
<tr>
<td>+5,000 weight to both tractors 100% time</td>
<td>14.1</td>
</tr>
<tr>
<td>Reduce layer thickness 6 to 4-inches</td>
<td>14.5</td>
</tr>
<tr>
<td>Both tractors 100% time & reduce layer to 4</td>
<td>15.6</td>
</tr>
<tr>
<td>+5,000 lb to 30,000-lb & reduce layer to 4</td>
<td>15.5</td>
</tr>
<tr>
<td>+5,000 lb to tractors 100% time & reduce</td>
<td>17.1</td>
</tr>
</tbody>
</table>

Forage delivery rate increased from 50 to 100 T AF/hr