Producing Quality Forages for Cattle and Sheep

Neal Martin, Director

U.S. Dairy Forage Research Center
Madison, WI

2009 Annual Meeting
Ohio Forage and Grasslands Council

February 13, 2009
Reynoldsburg, Ohio
This talk will explore . . .

• Forage quality tests that effectively allocate forages to ruminant livestock
• What tests are needed?
• What do they mean?
• How to use them?
Ruminant Digestion End Products

- **Gases** – CO₂, CH₄, NH₄
- **Volatile Fatty Acids**
 - Acetic
 - Propionic
 - Butyric
- **Microbial Protein**
- **Undigested Feed**

SOURCE: Linn, James, G.; U of Minnesota
Effect of forage quality on 4% fat-corrected milk production at four concentrate levels

<table>
<thead>
<tr>
<th>% grain in ration</th>
<th>Prebloom</th>
<th>Early bloom</th>
<th>Mid bloom</th>
<th>Full bloom</th>
</tr>
</thead>
<tbody>
<tr>
<td>20%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Kawas et al., 1989
Understanding Forage Quality is Needed to:

- Improve profit
- Make improvements in animal performance
- Increase utilization of forage
Analytical Values Needed

- **Dry Matter**
- **Crude Protein**
- **Neutral Detergent Fiber**
- **Acid Detergent Fiber**
- **Acid Detergent Lignin**
- **Neutral Detergent Fiber Digestibility**
- **Ash**
Definition of Forage Quality

Analytical Terms

- **Dry matter (DM)** is the percentage of feed that is not water.
Definition of Forage Quality

Analytical Terms

- **Crude protein (CP)** is determined by measuring total nitrogen in a sample and multiplying by 6.25.
- It is a mix of true protein and non-protein nitrogen.
Definition of Forage Quality

Analytical Terms

- **Neutral detergent fiber (NDF)** is the percentage of fiber in a forage sample which is not soluble in a neutral detergent solution.
 - It is the residue left after boiling in neutral detergent solution.
 - It is called aNDF if amylase and sodium sulfite are used during the extraction.
Neutral detergent fiber analysis

Captures:
- cellulose
- hemicellulose
- lignin
- acid insoluble ash
- cutin

Releases:
- cell solubles
 - sugars
 - starch
 - fat
- protein
- NPN
- pectin
Neutral Detergent Fiber (NDF)

- Represents cell walls
- Partially digestible
- 100 - NDF = cell solubles
- NDF is inversely related to voluntary intake
Definition of Forage Quality

Analytical Terms

- **Acid detergent fiber (ADF)** is the percentage of fiber in a forage sample which is insoluble in a weak acid.

- It is the residue remaining after boiling a forage sample in acid detergent solution.
Acid detergent fiber analysis

Captures:
- cellulose
- lignin
- silica (insoluble ash)
- cutin

Releases:
- cell solubles
- hemicellulose

Producing Quality Forages for Cattle and Sheep
Acid Detergent Fiber (ADF)

- Represents cell wall minus hemicellulose
- Is inversely related to digestibility
Definition of Forage Quality

Analytical Terms

- **Lignin** – polymer of phenyl propane units
 - Gives strength to plant
 - Undigestible
 - Reduces digestion of fiber
Definition of Forage Quality

Analytical Terms

- **Ash** (also called total ash) is an estimate of the total mineral content; the residue remaining after burning a sample.

- Values above 6% for grasses or 8% for legumes usually indicate soil contamination of forage.

- Each 1% soil contamination is 1% less TDN of forage.

- Ash, ADF-ash and NDF-ash will be different values because ADF and NDF procedures remove some minerals.
Definition of Forage Quality

Analytical Terms

• **Neutral Detergent Fiber Digestibility** (NDFD) is the portion of Neutral Detergent Fiber lost during incubation with rumen fluid.

• Incubation times may be 24 to 48 hours.
Influence of NDF digestibility on forage digestibility

TDN = tdCP + (tdFA x 2.25) + (.75 x NDFD$_{48}$ x NDF) + tdNFC -7

<table>
<thead>
<tr>
<th></th>
<th>NDF</th>
<th>ADF</th>
<th>NDFD$_{48}$</th>
<th>TDN</th>
<th>DDM*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forage A:</td>
<td>40</td>
<td>30</td>
<td>58</td>
<td>61.6</td>
<td>65.5</td>
</tr>
<tr>
<td>Forage B:</td>
<td>40</td>
<td>30</td>
<td>36</td>
<td>53.6</td>
<td>65.5</td>
</tr>
</tbody>
</table>

*DDM = 88.9 - 0.779(ADF)
Influence of NDF digestibility on dry matter intake

\[
d\text{Intake} = \text{base intake plus adjustment for dNDF} + [(\text{NDFD}-\text{average NDFD}) \times .374]
\]

<table>
<thead>
<tr>
<th></th>
<th>NDF</th>
<th>ADF</th>
<th>NDFD</th>
<th>d\text{Intake}</th>
<th>DMI*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forage A</td>
<td>40</td>
<td>30</td>
<td>58</td>
<td>31.0</td>
<td>2.78% of BW</td>
</tr>
<tr>
<td>Forage B</td>
<td>40</td>
<td>30</td>
<td>36</td>
<td>22.8</td>
<td>2.78% of BW</td>
</tr>
</tbody>
</table>

*DMI = 120/NDF
Adjusting DMI, Base TMR

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>lb DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa 20-30-40-58</td>
<td>25</td>
</tr>
<tr>
<td>Corn silage</td>
<td>6</td>
</tr>
<tr>
<td>HMC</td>
<td>20</td>
</tr>
<tr>
<td>Protein/mineral/vitamins</td>
<td>7</td>
</tr>
<tr>
<td>DMI</td>
<td>58</td>
</tr>
</tbody>
</table>

NRC 2001 ration evaluation (110 lb milk)
- NE allowable milk, lb: 93
- MP allowable milk, lb: 110
- NEI balance, Mcal: - 5.6
- TMR Nel, Mcal/lb: .70
<table>
<thead>
<tr>
<th>Ingredient</th>
<th>lb DM</th>
<th>Impact</th>
<th>Action steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa 20-30-40-58</td>
<td>25</td>
<td>TDN 61.6 -> 53.6</td>
<td>• Change alfalfa TDN in ration program</td>
</tr>
<tr>
<td>Corn silage</td>
<td>6</td>
<td>dIntake 31.0 -> 22.8</td>
<td>• Discount TMR intake</td>
</tr>
<tr>
<td>HMC</td>
<td>20</td>
<td></td>
<td>.374(58-36) = 8 lb</td>
</tr>
<tr>
<td>Protein/mineral/vitamins</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMI</td>
<td>58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRC 2001 ration evaluation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE allowable milk, lb</td>
<td>93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP allowable milk, lb</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEI balance, Mcal</td>
<td>-5.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMR Nel, Mcal/lb</td>
<td>.70</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Adjusting DMI and TDN

<table>
<thead>
<tr>
<th></th>
<th>Base TMR 20-30-40-58</th>
<th>Adjusted TMR 20-30-40-36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa</td>
<td>25</td>
<td>22</td>
</tr>
<tr>
<td>Corn silage</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>HMC</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>Protein/mineral/vitamins</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>DMI</td>
<td>58</td>
<td>50</td>
</tr>
<tr>
<td>NRC 2001 ration evaluation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE allowable milk, lb</td>
<td>93</td>
<td>83</td>
</tr>
<tr>
<td>MP allowable milk, lb</td>
<td>110</td>
<td>91</td>
</tr>
<tr>
<td>NE\text{\textsubscript{l}} balance, Mcal</td>
<td>- 5.6</td>
<td>-8.7</td>
</tr>
<tr>
<td>TMR NE\text{\textsubscript{l}}, Mcal/lb</td>
<td>.70</td>
<td>.73</td>
</tr>
</tbody>
</table>
Calculated Terms Needed

- Digestible Dry Matter
- Dry Matter Intake
- Relative Feed Value
- Relative Forage Quality
Definition of Forage Quality

Calculated Terms

- **Digestible Dry Matter (DDM)** is the portion in a forage that is digested by animals at a specified level of intake.

 - **Estimated by:**
 - measuring in vitro or in situ digestibility,
 - near infrared reflectance spectroscopy
 - calculated from % ADF (most common but not recommended).

 \[
 \% \text{ DDM} = 88.9 - (\% \text{ ADF} \times 0.779)
 \]

 \[
 \% \text{ DDM} = \% \text{ TDN}
 \]
Comparison of ADF to TDN for Alfalfa, 2003 Forage Superbowl

\[y = -0.542x + 80.784 \]

\[R^2 = 0.4365 \]
Definition of Forage Quality

Calculated Terms

- **Dry matter intake (DMI)** is an estimate of the relative amount of forage an animal will eat when only forage is fed.

\[
\text{DMI as a percent of body weight} = \frac{120}{\text{Forage NDF (\% of DM)}}
\]
Definition of Forage Quality

Calculated Terms

- **Relative Feed Value (RFV)** is an index which ranks legume and legume-grass forages by digestible dry matter intake potential.
Use of the RFV index

- Allocate forages to livestock
- Purchase hay
- Forage management evaluation

RFV index = \frac{\% \text{ DDM} \times \text{DMI}}{1.29}
Relative Feed Value (Current)

Intake Potential = 120/NDF

Digestible DM = 88.9 - (0.779 * ADF)

Constant = 1.29
Producing Quality Forages for Cattle and Sheep

Forage Composition - Alfalfa vs. Grass

Midbloom Alfalfa
- ADF, 30%
- Hemicellulose, 10%
- Cell Solubles, 60%

Early Bloom Orchardgrass
- ADF, 30%
- Hemicellulose, 30%
- Cell Solubles, 40%

RFV 152
- NDF, 40%
- Cell Solubles, 60%

RFV 102
- NDF, 60%
- Cell Solubles, 40%
Definition of Forage Quality

Calculated Terms

- **Relative Forage Quality (RFQ)** is an index which ranks legume, grass and legume-grass forages by digestible dry matter intake potential.
Definition of Forage Quality

Relative Forage Quality (RFQ) =

\[(\text{dIntake Potential} \times \text{dTDN}) / \text{Constant}\]

Same concept as RFV
✓ using NDF as in RFV
✓ but adding fiber digestibility
Summative Approach to Predicting TDN of Forages

- Uniform feed fractions will have predictable digestion coefficients

\[
\text{TDN}_{1-x} = \text{tdCP} + (\text{tdFA} \times 2.25) + \text{tdNDF} + \text{tdNFC} - 7
\]

+ A more accurate and robust way to estimate TDN of forages than ADF
- TDN values estimated by NRC(2001) are different than what we are used to.
Relative Forage Quality

Intake potential

\[= \text{base intake plus adjustment for dNDF} \]
\[= \text{base intake} + [(d\text{NDF}-\text{average } d\text{NDF}) \times 0.374] \]
\[= (0.012/NDF) + (NDFD-45) \times 0.374 \times \frac{1350}{100} \]

From Oba and Allen, 1999, J Dairy Sci
Forage Composition - Alfalfa vs. Grass

Midbloom Alfalfa:
- NDF: 40%
- Cell Solubles: 60%
- Undigested: 22%
- Digestible fiber: 18%
- RFV: 152
- RFQ: 145

Early Bloom Orchardgrass:
- NDF: 60%
- Cell Solubles: 40%
- Undigested: 18%
- Digestible fiber: 42%
- RFV: 102
- RFQ: 141

Producing Quality Forages for Cattle and Sheep
Relative Forage Quality for Grasses

$$\text{TDN}_{\text{grass}} = (\text{NFC} \times .98) + (\text{CP} \times .87) + (\text{FA} \times .97 \times 2.25) + (\text{NDFn} \times \text{NDFDp}/100) - 10$$

Where \(\text{NDFDp} = 22.7 + .664 \times \text{NDFD} \)

$$\text{DMI}_{\text{Grass}} = -2.318 + 0.442 \times \text{CP} - 0.0100 \times \text{CP}^2 - 0.0638 \times \text{TDN} + 0.000922 \times \text{TDN}^2$$

$$+ 0.180 \times \text{ADF} - 0.00196 \times \text{ADF}^2 - 0.00529 \times \text{CP} \times \text{ADF}$$

Source: Moore and Undersander, 2002
Moore and Kunkle, 1999

Producing Quality Forages for Cattle and Sheep
Uses of Relative Forage Quality

- When to harvest
- Allocation of hay to animals
- Buying/selling hay
- Contracting for harvest with quality incentive
Producing Quality Forages for Cattle and Sheep

Comparison of RFV and RFQ for Hay, Haylage, and Baleage, 2002 Worlds Forage Superbowl

\[y = 1.1446x - 32.224 \]

\[R^2 = 0.8623 \]

RFV and RFQ same when digestibility is average
Forage Quality Needs of Animals

- Dairy, 1st trimester
 - Dairy Calf

- Dairy, last 200 days
 - Heifer, 3-12 month
 - Stocker cattle

- Heifer, 12-18 mo
 - Beef cow & calf

- Heifer, 18-24 mo
 - Dry cow

Producing Quality Forages for Cattle and Sheep
Forage Quality Needs of Animals

- Stocker cattle
- Growing lambs & kids
- Nursing mare
- Hard working horse
- Beef cow & calf
- Ewe with lamb
- Doe with kid
- Ewe/ Doe, not lactating
- Idle horse

Relative Forage Quality

Producing Quality Forages for Cattle and Sheep
Protein Content of Forage

Analytical Results of Four Hay Samples on a 100% Dry Matter Basis

<table>
<thead>
<tr>
<th>Component</th>
<th>158 Alfalfa/Orchard Grass</th>
<th>173 Alfalfa/Grass</th>
<th>225 Orchard Grass</th>
<th>178 Alfalfa/Grass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry Matter (DM)</td>
<td>83.3</td>
<td>88.1</td>
<td>88.6</td>
<td>88.6</td>
</tr>
<tr>
<td>Crude Protein (CP)</td>
<td>16.9</td>
<td>8.4</td>
<td>7.9</td>
<td>9.6</td>
</tr>
<tr>
<td>ADF</td>
<td>45.5</td>
<td>40.7</td>
<td>44.4</td>
<td>41.2</td>
</tr>
<tr>
<td>NDF</td>
<td>56.0</td>
<td>58.7</td>
<td>68.4</td>
<td>57.9</td>
</tr>
<tr>
<td>NDFD</td>
<td>68.3</td>
<td>54.6</td>
<td>55.4</td>
<td>43.8</td>
</tr>
<tr>
<td>Phosphorus (P)</td>
<td>0.34</td>
<td>0.26</td>
<td>0.29</td>
<td>0.19</td>
</tr>
<tr>
<td>Potassium (K)</td>
<td>3.37</td>
<td>2.26</td>
<td>2.28</td>
<td>1.80</td>
</tr>
<tr>
<td>Calcium (Ca)</td>
<td>1.39</td>
<td>0.50</td>
<td>0.29</td>
<td>0.55</td>
</tr>
<tr>
<td>Magnesium (Mg)</td>
<td>0.33</td>
<td>0.22</td>
<td>0.23</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Crude protein needs range from approximately 7% for mid-gestation mature dry cows to approximately 13% for beef cows nursing calves.
NDF Content of Forage

<table>
<thead>
<tr>
<th>Component</th>
<th>Sample 1 (158) Alfalfa/Orchard Grass</th>
<th>Sample 2 (173) Alfalfa/Grass</th>
<th>Sample 3 (225) Orchard Grass</th>
<th>Sample 4 (178) Alfalfa/Grass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Matter (DM)</td>
<td>83.3</td>
<td>88.1</td>
<td>88.6</td>
<td>88.6</td>
</tr>
<tr>
<td>Crude Protein (CP)</td>
<td>16.9</td>
<td>8.4</td>
<td>7.9</td>
<td>9.6</td>
</tr>
<tr>
<td>ADF</td>
<td>45.5</td>
<td>40.7</td>
<td>44.4</td>
<td>41.2</td>
</tr>
<tr>
<td>NDF</td>
<td>56.0</td>
<td>58.7</td>
<td>68.4</td>
<td>57.9</td>
</tr>
<tr>
<td>NDFD</td>
<td>68.3</td>
<td>54.6</td>
<td>55.4</td>
<td>43.8</td>
</tr>
<tr>
<td>Phosphorus (P)</td>
<td>0.34</td>
<td>0.26</td>
<td>0.29</td>
<td>0.19</td>
</tr>
<tr>
<td>Potassium (K)</td>
<td>3.37</td>
<td>2.26</td>
<td>2.28</td>
<td>1.80</td>
</tr>
<tr>
<td>Calcium (Ca)</td>
<td>1.39</td>
<td>0.50</td>
<td>0.29</td>
<td>0.55</td>
</tr>
<tr>
<td>Magnesium (Mg)</td>
<td>0.33</td>
<td>0.22</td>
<td>0.23</td>
<td>0.22</td>
</tr>
</tbody>
</table>

- Range from 40% on early bloom legume hay to 72% on late cut grass hay.
- Maximum NDF DM content of the daily ration should be from 1.2 to 1.5 % of the cow's body weight.
- Higher quality forage results in more forage consumed.
- As NDF values increase, forage intake will decrease.
Corn Silage Report - UW Recommended

Report Number: 12346 Lab Number: 2 Sample Description: CS sample
Harvest date: 4/7/2006

<table>
<thead>
<tr>
<th>Item</th>
<th>Abbreviation</th>
<th>Unit</th>
<th>Unprocessed</th>
<th>Processed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Matter</td>
<td>DM</td>
<td>% as fed</td>
<td>35.64</td>
<td>35.54</td>
<td>WC</td>
</tr>
<tr>
<td>Moisture</td>
<td></td>
<td>% as fed</td>
<td>64.16</td>
<td>64.16</td>
<td>C</td>
</tr>
<tr>
<td>Protein Fractions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crude Protein</td>
<td>CP</td>
<td>% DM</td>
<td>8.09</td>
<td>8.09</td>
<td>NIR</td>
</tr>
<tr>
<td>Soluble Crude Protein</td>
<td>SCP</td>
<td>% CP</td>
<td>0.50</td>
<td>0.50</td>
<td>NR</td>
</tr>
<tr>
<td>Acid Detergent Fiber Crude Protein</td>
<td>ADF-CP</td>
<td>% DM</td>
<td>1.00</td>
<td>1.00</td>
<td>NDF</td>
</tr>
<tr>
<td>Neutral Detergent Fiber Crude Protein</td>
<td>NDF-CP</td>
<td>% DM</td>
<td>0.50</td>
<td>0.50</td>
<td>C</td>
</tr>
<tr>
<td>Heat Damaged Protein-Estimated</td>
<td></td>
<td>% DM</td>
<td>8.09</td>
<td>8.09</td>
<td>C</td>
</tr>
<tr>
<td>Fiber Fractions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acid Detergent Fiber</td>
<td>ADF</td>
<td>% DM</td>
<td>23.34</td>
<td>23.34</td>
<td>NIR</td>
</tr>
<tr>
<td>Lignin Acid Detergent</td>
<td>ADL</td>
<td>% DM</td>
<td>4.66</td>
<td>4.66</td>
<td>NDF</td>
</tr>
<tr>
<td>Lignin, Acid Detergent</td>
<td>ADL</td>
<td>% NDF</td>
<td>11.28</td>
<td>11.28</td>
<td>C</td>
</tr>
<tr>
<td>Neutral Detergent Fiber Digestibility, 48 h, 1%NDF</td>
<td>NDF</td>
<td>% NDF</td>
<td>67.45</td>
<td>67.45</td>
<td>WC</td>
</tr>
<tr>
<td>Carbohydrates and Fats</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non Fiber Carbohydrate</td>
<td>NFC</td>
<td>% DM</td>
<td>45.48</td>
<td>45.48</td>
<td>C</td>
</tr>
<tr>
<td>Starch</td>
<td></td>
<td>% DM</td>
<td>26.80</td>
<td>26.80</td>
<td>NIR</td>
</tr>
<tr>
<td>Starch Digestibility, Predicted</td>
<td></td>
<td>% Starch</td>
<td>84.93</td>
<td>90.23</td>
<td>C</td>
</tr>
<tr>
<td>Non Starch NFC, Sugars + VFS</td>
<td></td>
<td>% DM</td>
<td>15.00</td>
<td>15.00</td>
<td>C</td>
</tr>
<tr>
<td>Fat</td>
<td></td>
<td></td>
<td>2.83</td>
<td>2.83</td>
<td>NIR</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NA</td>
</tr>
</tbody>
</table>

Energy Calculations: Schriber/Shearer

<table>
<thead>
<tr>
<th>Item</th>
<th>Abbreviation</th>
<th>Unit</th>
<th>Unprocessed</th>
<th>Processed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total digestible nutrients, IX</td>
<td>TDN</td>
<td>% DM</td>
<td>67.34</td>
<td>68.76</td>
<td>C</td>
</tr>
<tr>
<td>Net Energy Lactation, 3X</td>
<td>NEtL</td>
<td>Mcats/lb</td>
<td>0.63</td>
<td>0.65</td>
<td>C</td>
</tr>
<tr>
<td>Net Energy Maintenance</td>
<td>NEm</td>
<td>Mcats/lb</td>
<td>0.75</td>
<td>0.77</td>
<td>C</td>
</tr>
<tr>
<td>Net Energy Gains</td>
<td>NEg</td>
<td>Mcats/lb</td>
<td>0.47</td>
<td>0.49</td>
<td>C</td>
</tr>
<tr>
<td>Metabolizable Energy</td>
<td>ME</td>
<td>Mcats/lb</td>
<td>1.16</td>
<td>1.18</td>
<td>C</td>
</tr>
<tr>
<td>Milk/Ten</td>
<td>lbs</td>
<td></td>
<td>2.964</td>
<td>3.019</td>
<td>C</td>
</tr>
</tbody>
</table>

Macro Minerals

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Abbreviation</th>
<th>Unit</th>
<th>Unprocessed</th>
<th>Processed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphorus</td>
<td>P</td>
<td>% DM</td>
<td>0.20</td>
<td>0.20</td>
<td>WC</td>
</tr>
<tr>
<td>Calcium</td>
<td>Ca</td>
<td>% DM</td>
<td>0.43</td>
<td>0.43</td>
<td>C</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Mg</td>
<td>% DM</td>
<td>1.55</td>
<td>1.55</td>
<td>NDF</td>
</tr>
<tr>
<td>Sodium</td>
<td>Na</td>
<td>% DM</td>
<td>0.23</td>
<td>0.23</td>
<td>NDF</td>
</tr>
<tr>
<td>Chloride</td>
<td>Cl</td>
<td>% DM</td>
<td>0.20</td>
<td>0.20</td>
<td>WC</td>
</tr>
</tbody>
</table>

Micro Minerals

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Abbreviation</th>
<th>Unit</th>
<th>Unprocessed</th>
<th>Processed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron</td>
<td>Fe</td>
<td>ppm</td>
<td>0.63</td>
<td>0.65</td>
<td>C</td>
</tr>
<tr>
<td>Zinc</td>
<td>Zn</td>
<td>ppm</td>
<td>0.75</td>
<td>0.77</td>
<td>C</td>
</tr>
<tr>
<td>Copper</td>
<td>Cu</td>
<td>ppm</td>
<td>0.47</td>
<td>0.49</td>
<td>C</td>
</tr>
</tbody>
</table>

Methods used for these analyses can be found at http://uwlab.soils.wisc.edu/procedures.htm

CLIENT COPY
Ruminant Digestion
End Products

Gases – CO₂, CH₄, NH₄

Volatile Fatty Acids
Acetic
Propionic
Butyric

Microbial Protein
Undigested Feed

SOURCE: Linn, James, G.; U of Minnesota
The Sampling Dilemma

Producing Quality Forages for Cattle and Sheep
Variation in RFV--Lot 6

Ave.=131
Standardized Sampling Guidelines
For Small Bales:

- **Identify** a single lot of hay (<200 tons)
- **Choose an appropriate, sharp coring device** (3/8’’ - 3/4’’)
- **Sample at random** (don't avoid bales)
- **Take enough cores to represent a lot** (>20)
- **Use proper technique** (90° angle, 18”-24”)
- **Handle samples correctly** (plastic bags, heat)
- **Appropriate size**: not too big, not too small (1/2 lb)
- **Only split samples after grinding to test labs**
Reducing Analysis Error

- Only send results to National Forage Testing Association certified laboratories

http://www.foragetesting.org
Questions?