Making Grass Silage

Dr. Dan Undersander
University of Wisconsin
Fermentation analysis profile

<table>
<thead>
<tr>
<th></th>
<th>Legume Silage</th>
<th>Grass Silage</th>
<th>Corn Silage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture:</td>
<td>65%+</td>
<td><65%</td>
<td>60-65%</td>
</tr>
<tr>
<td>pH</td>
<td>4.0-4.3</td>
<td>4.3-4.7</td>
<td>3.8-4.2</td>
</tr>
<tr>
<td>Lactic Acid</td>
<td>6.0-8.0</td>
<td>6.0-10.0</td>
<td>5.0-10.0</td>
</tr>
<tr>
<td>Acetic Acid</td>
<td>1.0-3.0</td>
<td>1.0-3.0</td>
<td>1.0-3.0</td>
</tr>
<tr>
<td>Ethanol (% of DM)</td>
<td><1.0</td>
<td><1.0</td>
<td><3.0</td>
</tr>
<tr>
<td>Ammonia-N (% of CP)</td>
<td><15.0</td>
<td><12.0</td>
<td><8.0</td>
</tr>
<tr>
<td>Lactic: Acetic ratio</td>
<td>2+</td>
<td>2+</td>
<td>3+</td>
</tr>
<tr>
<td>Lactic (% of total acids)</td>
<td>60+</td>
<td>60+</td>
<td>70+</td>
</tr>
</tbody>
</table>
High quality grass silage results from:

1. Harvesting high quality forage
2. Inoculation
3. Proper packing
4. Covering
Making Good Grass Silage

- Want 10–15% WSC (sugars) in the dry matter
 - Young, leafy grass that has been well fertilized, grass/clover mixtures and autumn cuts tend to have low sugar levels
- Buffering capacity is directly related to how much sugar it takes to lower silage pH.
 - Grass typically has a low buffering capacity and an adequate supply of sugars
 - High rates of N increase buffering capacity.
Grass Dry Matter Digestibility

Leaf stage | Boot stage | Heading | Full flower

Digestible DM
Indigestible DM
Recommended harvest
Cool Season Grasses Head only on first Cutting

Harvest 1st cutting at boot stage

2nd and later cuttings are primarily leaves

Boot stage

Heading
Mowing, Conditioning

- Mowing height - 3.5 to 4 inches
 - Promotes rapid grass regrowth
 - Reduces dirt contamination
- Condition with flail conditioner
- Make wide swath
- Tedding may be necessary
- Rake/merge
Chopping

- Chop at 60 to 65% moisture
- Cut length $\frac{3}{4}$ to 1 inches
 - Longer makes compaction more difficult
 - Good compaction - Faster acid fermentation
 - Good compaction - Less spoilage on feedout
 - Improved feed uptake
- Apply inoculant
Precutting forage before baling

- Cutting forage for hay/haylage - bales that break apart easily for feeding
 - Bale is more dense
 - Bales break apart easier for use in TMR
 - Higher feeding efficiency
 - Improved stocker cattle gain
Different Types of Inoculants

- Traditional homofermentative types:
 - *Lactobacillus plantarum*, *L. casei*, *Pediococcus* species, *Enterococcus faecium*
 - *Lactobacillus buchneri*, a heterofermenter
 - Combination of homofermenters with *L. buchneri*
Homofermenter vs. Heterofermenter

- **Homofermenter** (*L. planatarium*)
 1 6-C Sugar \rightarrow 2 Lactic Acid

- **Heterofermenter** (*L. buchneri*)
 1 6-C Sugar \rightarrow 1 Lactic Acid + 1 Acetic Acid + CO₂
 1 6-C Sugar \rightarrow 1 Lactic Acid + 1 Ethanol + CO₂
 1 Lactic Acid \rightarrow 1 Acetic Acid + CO₂ (*L. buchneri*, not all heteros)
End Product Comparison

- **Lactic acid** - strong acid; weak spoilage inhibitor; fermented in rumen
- **Acetic acid** - weak acid; good spoilage inhibitor; not fermented in rumen
- **Ethanol** - neutral; poor spoilage inhibitor; partially fermented in rumen
- **Carbon dioxide** - lost dry matter
So…

- If you want to preserve crop quality:
 - Lactic acid
- If you want a silage that doesn't heat:
 - Acetic acid
- In any case, you want to minimize ethanol & CO$_2$
Homofermentative Inoculants - Expectations

- High lactic acid content, low other products
- Low pH
- Improved DM recovery
- Slightly better animal performance
Homofermentative Inoculants - Results

pH

- Lower but not all the time
- Works more often in hay crop than whole-grain silages

% Trials with lower pH

(Muck and Kung, 1997)
Aerobic Stability Problems

- Is the problem a management problem that can be solved without an additive?
 - 55% to 70% moisture, stability problems are almost always related to management issues
 - Below 55% moisture, you have a number of options:
 - Feed out in winter
 - Homofermentative inoculants for sporadic warm weather issues should make small improvements in stability
 - *L. buchneri* or combination of products for more consistent warm weather issues.
Issues with *L. buchneri*

- Slower growth than *L. plantarum*, takes 45 to 60 days storage time before having much effect.
- Will not reduce heating with immature silage; propionic acid is the best solution.
- Results in dry matter loss.
L buchneri inoculants - Expectations

- Higher acetic acid content
- Better bunk stability
- Slightly elevated pH
- Improved DM recovery from less spoilage offsetting more fermentation losses
- Animal performance - ??
 - Keeping silage cool benefits intake
 - High acetic acid may reduce intake?
Rapidly Fill and Cover

- Fill bunker silos in 1 or, possibly 2 days
- Wrap bales within 3 to 4 hours
Pack Silage Well
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silage Pile Height to Top of Slope (feet)</td>
<td>10</td>
<td>August 23, 2007</td>
</tr>
<tr>
<td>Horizontal Portion of Side Slope (ie 3 for 3:1)</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>Top Width (feet) [can be zero]=</td>
<td>100</td>
<td>Values in yellow cells are user changeable</td>
</tr>
<tr>
<td>Silage Delivery Rate to Pile (T AF/Hr)</td>
<td>120</td>
<td>Typical values 15-200 T AF/hr</td>
</tr>
<tr>
<td>Silage Dry Matter Content (decimal ie 0.35)</td>
<td>0.34</td>
<td>Recommended range of DM content = 0.3-0.4</td>
</tr>
<tr>
<td>Silage Packing Layer Thickness (inches)</td>
<td>6</td>
<td>Recommended value is 6 inches or less</td>
</tr>
<tr>
<td>Packing Tractor - Each Tractor Tractor Weight (lbs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tractor # 1 Typical tractor weight is 10,000-60,000 lbs</td>
<td>40,000</td>
<td>100</td>
</tr>
<tr>
<td>Tractor # 2 Typical tractor weight is 10,000-60,000 lbs</td>
<td>40,000</td>
<td>100</td>
</tr>
<tr>
<td>Tractor # 3 Typical tractor weight is 10,000-60,000 lbs</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tractor # 4 Typical tractor weight is 10,000-60,000 lbs</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Proportioned Total Tractor Weight (lbs)</td>
<td>80,000</td>
<td></td>
</tr>
<tr>
<td>Average Silage Height (feet)</td>
<td>8.1</td>
<td>Green cells are intermediate calculated values</td>
</tr>
<tr>
<td>Packing Factor</td>
<td>501.8</td>
<td>Values in pink cells are results of calculations</td>
</tr>
<tr>
<td>Est. Average Wet Density = Bulk Density (lbs AF/cu ft)</td>
<td>44.5</td>
<td>Wet Density greater than 44 lbs AF/cu ft is recommended</td>
</tr>
<tr>
<td>Maximum Achievable Bulk Density (lbs AF/cu ft)=</td>
<td>73.0</td>
<td>Wet Density greater than Max. Wet Density is unrealistic</td>
</tr>
<tr>
<td>Gas Filled Porosity</td>
<td>0.39</td>
<td>Gas Filled Porosity less than 0.40 is recommended</td>
</tr>
<tr>
<td>Est. Average Dry Matter Density (lbs DM/cu ft)</td>
<td>15.1</td>
<td>Density greater than 15 lbs DM/cu ft is recommended</td>
</tr>
<tr>
<td>Maximum Achievable DM Density (lbs DM/cu ft)=</td>
<td>24.8</td>
<td>DM Density greater than Max. Achievable is unrealistic</td>
</tr>
</tbody>
</table>
Cover bunker or pile