Manure on Forage Crops: Benefits and Challenges

Bill Jokela
Research Soil Scientist, USDA-ARS
Dairy Forage Research Center, Marshfield, WI

World Dairy Expo 2014
Manure Application on Perennial Forages: Alfalfa, Grass Forages
Why apply manure on alfalfa? What are the benefits?

- Alfalfa has high nutrient need (P, K, S, and micronutrients, especially B) → Manure is good source of those nutrients.
- May be increased yield
Alfalfa has high nutrient need

Nutrient Removal

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>lb/dry ton</th>
<th>lb/acre (4 T/A)</th>
<th>lb/acre (6 T/A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>55</td>
<td>220</td>
<td>330</td>
</tr>
<tr>
<td>P$_2$O$_5$</td>
<td>17</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>55</td>
<td>220</td>
<td>330</td>
</tr>
<tr>
<td>S</td>
<td>6</td>
<td>24</td>
<td>36</td>
</tr>
</tbody>
</table>

Adapted from Beegle, 2011; Kelling, 2000
Manure is a good source of P, K, S, and micronutrients

Typical Manure Nutrient Content
Wisconsin, 1998-2012

<table>
<thead>
<tr>
<th>Species</th>
<th>DM</th>
<th>N</th>
<th>P$_2$O$_5$</th>
<th>K$_2$O</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>lb/1000 gal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy - liquid (≤4.0%DM)</td>
<td>2</td>
<td>14</td>
<td>4</td>
<td>14</td>
<td>1.1</td>
</tr>
<tr>
<td>Dairy - liquid (4.1-11.0%DM)</td>
<td>6</td>
<td>23</td>
<td>8</td>
<td>21</td>
<td>2.3</td>
</tr>
<tr>
<td>Beef</td>
<td>3</td>
<td>16</td>
<td>7</td>
<td>15</td>
<td>1.6</td>
</tr>
</tbody>
</table>

These are average values. Actual nutrient content can vary greatly. Sample and analyze manure!

A2809; Laboski and Peters, 2012
Manure on Alfalfa: 3 Application Strategies/Times

- Preplant: before alfalfa seeding
- Following last harvest/at termination of stand
- Topdress on established alfalfa
Preplant Dairy Manure and Alfalfa Yields

Seeding Year Yields

- **MN: Rosemount (3000-12,000 gpa; high soil test P, K)**
 - Manure > Non-fertilized Control
 - Manure >= Fertilizer (P, K)

- **MN: Waseca (3000-12,000 gpa; low/med soil test P, K)**
 - Manure = Control (compaction problem)
 - Fertilizer > Manure and Control

- **WI: Marshfield (12,000-24,000 gpa; low/med soil test P, K)**
 - Manure > Control
 - Manure >= Fertilizer

First full production year

- Manure > Control at all locations
- Manure > Fertilizer

Kelling and Schmitt, 2003
Preplant Liquid Dairy Manure and Alfalfa Yields: Summary

Rosemount and Waseca, MN; Marshfield, WI

- Manure increased yields vs nonfertilized control in seeding year and first production year
 - Low/medium soil test P, K (2 sites); high P, K (1 site)
 - Except where severe compaction (Waseca); no yield increase in seeding year
- Yields from manure sometimes > P, K fertilizer
 - Sulfur and micronutrients in manure
 - Manure N in seeding year (?)
 - Soil physical and/or microbial effects
- Manure sometimes increased weeds (seeding year)
- Preplant manure is a viable option
 Kelling and Schmitt, 2003
Other Benefits of Manure on Alfalfa

- Alfalfa has high nutrient need: P, K, S, and micronutrients (especially B)
- Manure is good source of P, K, S, and micro (B)
- May be increased yield
- Multiple windows of time for application
- Increases acreage available for spreading
- Remove excess soil nitrate
- Symbiotic N$_2$ fixation buffers N supply
Alfalfa removes excess soil nitrate

- Deep roots
- High N uptake
What happens to added (manure) N?

Slide Credit: M Russelle, USDA-ARS, St. Paul
Symbiotic N$_2$ fixation is (usually) reduced by external N supply.
Topdressed Manure on Established Stands

Benefits

• Another window for application
• May be yield increase, especially if nutrient need

But also challenges, potential problems
Challenges and Limitations of Manure on Established Stands

• Possible stand damage and/or yield loss
 - Manure coating of leaves
 - Spreader traffic
• No N requirement so no economic value from manure N
• May be uneven application
• Nutrient runoff, especially late fall or winter application
• Pathogens
Manure solids can coat leaves and excessive rates can reduce yield

Swine manure slurry broadcast within 4 days after 2nd harvest

Avoid excessive rates of manure solids

Lamb et al., 2005

Slide Credit: M Russelle, USDA-ARS
Wheel traffic affects yields

- Causes of yield reduction:
 - Compaction (air, water, root growth)
 - Crack crowns (disease, reduce shoots produced)
 - Break regrowing shoots

D Undersander, 2008
Recommendations to Reduce Yield Loss from Wheel Traffic

- Plant tolerant varieties
- Use smaller tractors to reduce compaction
- Avoid unnecessary trips over field
- Consider wider harvesting equipment
- Avoid tractors with duals
- Apply manure immediately after harvest
- Avoid wet soil conditions

D Undersander, 2008
Manure often carries pathogens

• Several zoonotic pathogenic bacteria:
 Salmonella, Listeria, E. coli

• Several protozoa that affect human and animal health (including *Giardia* and *Cryptosporidium*)

• Wide variety of viruses
 some persist > 6 months in manure

No manure on hay or pasture from diseased livestock!

Slide Credit: M Russelle, USDA-ARS
Johne’s Disease

- About 25% of US dairy herds are infected
- Young stock are more susceptible than mature animals
- Manure is the most common source of the bacteria
- Bacteria are susceptible to low pH (good silage), high pH (topdressed limestone), sunlight, desiccation, & time

<table>
<thead>
<tr>
<th>Forage</th>
<th>Young stock</th>
<th>Cows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasture</td>
<td>No</td>
<td>Avoid</td>
</tr>
<tr>
<td>Dry hay</td>
<td>Avoid</td>
<td>Avoid</td>
</tr>
<tr>
<td>Good silage</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>Greenchop</td>
<td>Avoid</td>
<td>Avoid</td>
</tr>
</tbody>
</table>

E.D. Thomas, Miner Inst., 2006

Slide Credit: M Musselle, USDA-ARS
Alfalfa Yields from Topdressed Manure on Established Stands

- Dairy slurry on alfalfa, alfalfa-grass (MD)
 - Applied 3 or 4 x/yr for 2 yrs
 - Manure = Fertilizer = Nonfertilized Control

- Pig slurry on alfalfa (Italy)
 - Slurry applied 4 x/yr for 2 yrs; low soil test P
 - Manure > Control in 2 years when manure applied and 2 residual years

- Liquid dairy manure (WI)
 - 1200 gpa after each cutting
 - Yield: 20% decrease in Yr 1; no effect in Yr 2
 - More weeds with manure topdress

Kelling and Schmitt, 2003 Min et al 1999 Ceotto and Spallacci, 2005
Alfalfa Yields from Topdressed Manure on Established Stands

- Banded liquid dairy manure (Ontario)
 - 4500 gpa after 1st and 2nd cut for 3 yrs
 - Yield response varied by cultivar (49) but all increased vs control (fertilized based on soil test)
 - 6 to 32% increase; 14.5% average

- Summary: Topdressed Manure
 - Yield increase, esp. if nutrient need (P, K, other); also may be other factors
 - May be no yield effect or sometimes decrease
 - Depends on balance: Nutrient response, negative effect

Kelling and Schmitt, 2003 Bowley et al., 2009
Topdress Manure Timing for Alfalfa
Stratford, WI

- Liquid dairy manure at 4500 gpa
- Application treatments
 - No manure
 - Stubble immediately after harvest
 - 1 week regrowth
 - 2 weeks regrowth
- Ensiled as wrapped balage

Coblentz et al., 2014 Research supported in part by grant from Midwest Forage Association
Results

- No effect on yield
- Little/no effect on forage quality
- Silages well fermented, no undesirable odor
- *Clostridium Cluster 1*
 - Increased with manure appl.
 - Greater increase with delayed manure application
 - No indications of clostridial fermentation
- Lower risk with application to stubble
Alternatives to Surface Broadcast

Drop-hose

Banded/Trailing Foot

Shallow Injection

Banded with Aerator
Compared to surface broadcast, “Improved” application methods may result in:

- Reduced ammonia loss
 - Potential economic (yield, esp. grass forage), environmental benefits
- More uniform spreading
- Less contamination of forage
- Decreased runoff of nutrients, pathogens
- Less odor

...but also may cause damage and reduce yield.
Slurry injection into established alfalfa

- Injector caused damage and reduced yield (high fertility site)
- Manure increased yield (low fertility site)
- Yield effect depends on balance

Prairie Agricultural Machinery Institute, Saskatchewan

Slide Credit: M Russelle, USDA-ARS
Application Methods for Alfalfa
Liquid Dairy Manure, Marshfield, WI

Treatments
• Control (no manure; P, K as needed)
• Broadcast manure
• Surface banded
• Aerator/banded manure
• Shallow injection

Preliminary Yield Results
(1 harvest after 1 manure application)
• Manure = Control
• No differences among manure application methods

Marshfield, WI; Jokela et al.
What about manure on grass forages?

- Additional benefit: Yield response to manure nitrogen
Grass Yield Increase from Liquid Dairy Manure
Orchardgrass – 2-yr avg, VT

Broadcast manure (5000 gpa x 3) =
Fert N (50 lb/a x 3)
• 90% yield increase vs Control (no N)
• Manure = N fertilizer (92 to 108%)
• Banded manure (vs broadcast)
 - Year 1: no yield effect
 - Year 2: 12% increase
 - 50% reduction in NH₃ loss

Pfluke, Jokela, and Bosworth, 2011;
Carter, Jokela, and Bosworth, 2010
Topdressed Liquid Dairy Manure and Grass Forage Yields

• Reed canary grass (MN, WI, IA)
 - Manure: Yield increase of 150 to 260% vs no N Control
 - Fertilizer: Yield increase of 200 to 290% vs Control

• Tall fescue, 7 yrs, surface banded manure (BC)
 - Yield increase of 100% vs Control
 - Manure = fertilizer N (equal total N rates)

• Summary: Topdressed manure on grass
 - Large yield increases from liquid manure
 - Yields similar to those from fertilizer N

Schmitt et al., 1999; Bittman et al., 2007
Recommendations for Pre-plant Manure Before Seeding

- Low fertility soils
- Can apply 2 to 3 years worth of P and K (but avoid excess N)
- Till/mix thoroughly with soil to avoid manure-seed contact
- Avoid high salt and NH$_3$ levels
- Test forage for K
- Chop nurse crop to avoid lodging

Kelling and Schmitt, 2003; others
Recommendations for Manure Applications at Termination of Stand/Before Plowdown

- Limit to N need of succeeding crop (with legume credit)
- Apply to fields with poorest stands, least regrowth (lowest N credit)
- Apply immediately before tillage to minimize nutrient runoff loss potential
- Use Pre-sidedress Nitrate Test (PSNT) next year to assess N need for corn

Kelling and Schmitt, 2003
Recommendations for In-season Topdressed Manure Applications

No serious disease in herd or manure

- Where nutrients needed
- Low-moderate rates
- As soon as possible after harvest
- Older stands
- Poorer/higher grass stands
- Apply uniformly; not chunks
- Firm soils
- Consider alternatives to surface broadcast

Kelling and Schmitt, 2003; others