The Right Forages for Dairy Heifers
Wayne K. Coblentz, USDA-ARS
U.S. Dairy Forage Research Center, Marshfield, WI
Some Thoughts About Forage Quality
Forage quality is highly dependent on climate, forage type, harvest management, and many other factors.
Maturity

Alfalfa

<table>
<thead>
<tr>
<th></th>
<th>Kd, /h</th>
<th>12-h Dig</th>
<th>24-h Dig</th>
<th>48-h Dig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid Bloom</td>
<td>.13</td>
<td>58.9</td>
<td>64.4</td>
<td>65.8</td>
</tr>
<tr>
<td>Bud</td>
<td>.16</td>
<td>65.2</td>
<td>69.9</td>
<td>70.7</td>
</tr>
<tr>
<td>Veg</td>
<td>.15</td>
<td>77.8</td>
<td>83.0</td>
<td>84.0</td>
</tr>
</tbody>
</table>

Sources: Hoffman et al., 1993

Orchardgrass

<table>
<thead>
<tr>
<th></th>
<th>Kd, /h</th>
<th>12-h Dig</th>
<th>24-h Dig</th>
<th>48-h Dig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Head</td>
<td>.07</td>
<td>54.2</td>
<td>65.2</td>
<td>72.0</td>
</tr>
<tr>
<td>Boot</td>
<td>.08</td>
<td>63.2</td>
<td>74.4</td>
<td>80.3</td>
</tr>
<tr>
<td>2nd Node</td>
<td>.10</td>
<td>71.4</td>
<td>81.1</td>
<td>84.9</td>
</tr>
</tbody>
</table>

Sources: Hoffman et al., 1993
Sources: Hoffman et al., 1993; Ogden et al. (2005)
Sources: Hoffman et al., 1993; Galdamez-Cabrera et al., 2003; Ogden et al., 2003.
IVDMD vs. Maturity (Alfalfa)

Adapted from Van Soest, 1982
IVDMD vs. Maturity (Van Soest, 1982)

Adapted from Van Soest, 1982
Effective Degradability of NDF

The table below presents the effective degradability of neutral detergent fiber (NDF) for different plant species, considering a 6%/h passage rate.

<table>
<thead>
<tr>
<th>Plant Species</th>
<th>NDF, %</th>
<th>Kd, /h</th>
<th>NDFD*, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa, 10% Bloom</td>
<td>40.9</td>
<td>0.08</td>
<td>32.3</td>
</tr>
<tr>
<td>Eastern Gamagrass, Mature</td>
<td>78.0</td>
<td>0.03</td>
<td>26.3</td>
</tr>
</tbody>
</table>

Effective degradability of NDF calculated on the basis of a 6%/h passage rate.
Alfalfa - Maturity (NDF)

<table>
<thead>
<tr>
<th></th>
<th>NDF, %</th>
<th>Kd, /h</th>
<th>NDFD*, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midbloom</td>
<td>47.3</td>
<td>0.07</td>
<td>28.6</td>
</tr>
<tr>
<td>Bud</td>
<td>42.6</td>
<td>0.09</td>
<td>32.0</td>
</tr>
<tr>
<td>Veg</td>
<td>31.0</td>
<td>0.11</td>
<td>47.9</td>
</tr>
</tbody>
</table>

Source: Hoffman et al. (1993)

Alfalfa - Plant Part (NDF)

<table>
<thead>
<tr>
<th></th>
<th>NDF, %</th>
<th>Kd, /h</th>
<th>NDFD*, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stem</td>
<td>59.4</td>
<td>0.05</td>
<td>20.2</td>
</tr>
<tr>
<td>Wholeplant</td>
<td>40.9</td>
<td>0.08</td>
<td>32.3</td>
</tr>
<tr>
<td>Leaf</td>
<td>25.4</td>
<td>0.09</td>
<td>47.7</td>
</tr>
</tbody>
</table>

Source: Coblentz et al. (1998)

*Passage rate = 6%/h
A discussion of appropriate forage quality (*the right forage*) is highly dependent on what you intend to feed.
Assuming this is a 1200-lb (pregnant, nonlactating) beef cow wandering aimlessly in the Ozarks, the required energy density of her diet should be about 47.1% TDN.
Relationship between TDN and NDF (NRC, 2001)

Legume

\[Y = 0.016x^2 - 1.93x + 112.5 \]

\[R^2 = 0.978 \]

Cool-Season Grass

\[Y = 0.012x^2 - 1.86x + 125.5 \]

\[R^2 = 0.991 \]
Within this context …….,
maturing forages are not
necessarily a problem, and
in many cases actually may be desirable.

The “right forage” may not be the one with the best or highest quality.
Effects of Maturity on Alfalfa Yield and NDF

- mean of eight harvests of ‘Affinity’ alfalfa over two years (2004-2005)
- increase of 92 lbs DM/acre/d following Stage 2
- results in improved harvest efficiency and (possibly) fewer harvests.

- linear increase of NDF (0.4 percentage units/day), plus an associated reduction of TDN (0.25 percentage units/d) following Stage 2
Relationship between CP and NDF (NRC, 2001)

- **Legume**

 \[Y = 0.017x^2 - 1.86x + 69.2 \]

 \[R^2 = 0.962 \]

- **Cool-Season Grass**

 \[Y = 0.043x^2 - 5.53x + 189.1 \]

 \[R^2 = 0.959 \]

- **Corn Silage**

 - 300 lbs
 - 600 lbs
 - 1200 lbs
 - 900 lbs
Increased maturity also results in lower CP and rumen degradable protein (RDP), both of which are desirable generally for dairy heifers.
A Practical Application
Many commercial dairy heifer growers would like to maximize the use of corn silage and by-products of the ethanol industry in the diets of replacement heifers.

- This has created the need for ‘cutter’ forages that (ideally) exhibit:
 - high DM yield
 - high fiber (~ 70% NDF)
 - low energy (45 – 50% TDN)
 - high protein (~ 15% CP)
 - low K (~ 1.5%)
Energy Requirement, TDN

<table>
<thead>
<tr>
<th>Bodyweight, lbs</th>
<th>Energy Requirement, TDN</th>
<th>Corn Silage (72% TDN)</th>
<th>Alfalfa Silage (60% TDN)</th>
<th>Cutter Forage (48% TDN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>68.0</td>
<td>50</td>
<td>50</td>
<td>Grain</td>
</tr>
<tr>
<td>600</td>
<td>66.0</td>
<td>50</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>900</td>
<td>63.3</td>
<td>43</td>
<td>43</td>
<td>15</td>
</tr>
<tr>
<td>1200</td>
<td>62.3</td>
<td>39</td>
<td>39</td>
<td>22</td>
</tr>
</tbody>
</table>

Source: P. C. Hoffman, University of Wisconsin
Synchrony of Forage and Livestock Needs

1) delayed harvest schedules
2) comparisons of straws
3) tropical corn
4) perennial warm-season grasses

Source: P.C. Hoffman, University of Wisconsin
All of these forages might be the "right forage", it just depends.
Final Thoughts

- Alfalfa and corn silage tend to complement each other in heifer diets, and often do not allow for incorporation of other low-cost nutrients, especially those with relatively high energy densities.

- Use of significant proportions of corn silage may necessitate limit feeding or the use of an ‘energy diluting’ forage.
Final Thoughts

• Producers might consider being proactive in their harvest management of legumes and grasses – “dairy quality” is not necessarily helpful.

• Avoid being “boxed in”, where you have only “dairy quality” or low-energy forages available.

• Routinely test forages and have ration balanced (energy, protein) based on appropriate heifer size/weight.