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By the ASCE Task Committee on Application of Artificial Neural Networks in Hydrology*

ABSTRACT: This paper forms the second part of the series on application of artificial neural networks (ANNS)
in hydrology. The role of ANNSs in various branches of hydrology has been examined here. It is found that
ANNSs are robust tools for modeling many of the nonlinear hydrologic processes such as rainfall-runoff, stream
flow, ground-water management, water quality simulation, and precipitation. After appropriate training, they are
able to generate satisfactory results for many prediction problems in hydrology. A good physical understanding
of the hydrologic process being modeled can help in selecting the input vector and designing a more efficient
network. However, artificial neural networks tend to be very dataintensive, and there appears to be no established
methodology for design and successful implementation. For this emerging technique to find application in
engineering practice, there are still some questions about this technique that must be further studied, and im-
portant aspects such as physical interpretation of ANN architecture, optimal training data set, adaptive learning,
and extrapolation must be explored further. The merits and limitations of ANN applications have been discussed,

and potential research avenues have been explored briefly.

INTRODUCTION

In Part | of thistwo-part series, the important structural and
functional aspects of neural networks were presented. ANNs
mimic the functioning of a human brain by acquiring knowl-
edge through a learning process that involves finding an op-
timal set of weights for the connections and threshold values
for the nodes. The differences between different types of net-
works were described briefly, and some details of the super-
vised learning algorithms were provided.

Mathematically, an ANN may be treated as a universal ap-
proximator. The ability to learn and generalize *“ knowledge'’
from sufficient data pairs makes it possible for ANNSs to solve
large-scale complex problems such as pattern recognition, non-
linear modeling, classification, association, control, and others
—all of which find application in hydrology today. A signifi-
cant growth in the interest of this computational mechanism
has occurred since Rumelhart et al. (1986) developed a math-
ematically rigorous theoretical framework for neural networks.
Since then, ANNs have found increasing use in diverse dis-
ciplines ranging over perhaps all branches of engineering and
science. Researchers in hydrology have shown serious interest
in this computationa tool only during the last decade.

Hydrology is the scientific study of water and its properties,
distribution, and effects on the earth’s surface, soil, and at-
mosphere (McCuen 1997). Hydrologists are often confronted
with problems of prediction and estimation of runoff, precip-
itation, contaminant concentrations, water stages, and so on.
Most hydrologic processes exhibit a high degree of temporal
and spatial variability and are further plagued by issues of
nonlinearity of physical processes, conflicting spatial and tem-
poral scales, and uncertainty in parameter estimates. Our un-
derstanding in many aress is far from perfect, so that empiri-
cism plays an important role in modeling studies. Hydrol ogists
attempt to provide rational answers to problems that arise in
design and management of water resources. An attractive fea-
ture of ANNSs is their ability to extract the relation between
the inputs and outputs of a process, without the physics being
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explicitly provided to them. They are able to provide a map-
ping from one multivariate space to another, given a set of
data representing that mapping. Even if the data is noisy and
contaminated with errors, ANNs have been known to identify
the underlying rule. These properties suggest that ANNs may
be well-suited to the problems of estimation and prediction in
hydrology.

The goals of this paper are to examine how successful
ANNSs have been in hydrologic problems and to evaluate if
indeed all the strengths of ANNSs have been effectively utilized
in these applications. The role of ANNs in specific areas is
considered individually for organizational purposes. This is
followed by a short critique. The separation of articles into
various hydrologic applications is not always very clear. Many
papers could be easily classified into multiple categories. Thus,
our classification here is for organizational convenience only
and is not meant to categorize a paper into a specific appli-
cation. The focus of the task committee has been on targeting
this work for hydrologists, particularly those who practice hy-
drology in the field. While we have tried to cover the popular
journals that are usually read by hydrologists, there are other
areas (particularly agricultural engineering, chemical engi-
neering, soil science, atmospheric science, etc.) where journals
report articles of common interest. Articles from journals that
are typically outside the purview of hydrol ogists have not been
included and were considered as being outside the scope of
the task committee activities. Daniel (1991) reported some of
earliest applications of ANN in hydrology and water resources
engineering. General applications of ANNs have been dis-
cussed briefly by Taylor (1996). Flood and Kartam (1994,
1997) reviewed the application of artificial neural networks to
various branches of civil engineering. However, this study did
not present any details on hydrologic applications. Therefore,
this paper complements these earlier studies.

APPLICATIONS IN RAINFALL-RUNOFF MODELING

Determining the relationship between rainfall and runoff for
a watershed is one of the most important problems faced by
hydrologists and engineers. Information about rainfall and run-
off is needed for hydrologic engineering design and manage-
ment purposes. This relationship is known to be highly non-
linear and complex. In addition to rainfall, runoff is dependent
on numerous factors such as initial soil moisture, land use,
watershed geomorphology, evaporation, infiltration, distribu-
tion, duration of the rainfall, and so on. Although many wa-
tersheds have been gauged to provide continuous records of
stream flow, engineers are often faced with situations where



little or no information is available. In such instances, simu-
lation models are often used to generate synthetic flows.

A number of researchers have investigated the potential of
neural networks in modeling watershed runoff based on rain-
fall inputs. In a preliminary study, Halff et al. (1993) designed
a three-layer feedforward ANN using the observed rainfall
hyetographs as inputs and hydrographs recorded by the U.S.
Geological Survey (USGS) at Bellvue, Washington, as outputs.
The authors decided to use five nodes in the hidden layer. A
total of five storm events were considered. On arotation basis,
data from four storms were used for training, while data from
the fifth storm were used for testing network performance. A
sequence of 25 normalized 5 min rainfalls was applied as in-
puts to predict the runoff. This study opened up severa pos-
sibilities for rainfall-runoff application using neural networks.

Hjelmfelt and Wang (1993a—c) developed a neura network
based on the unit hydrograph theory. Using linear superposi-
tion, a composite runoff hydrograph for a watershed was de-
veloped by appropriate summation of unit hydrograph ordi-
nates and runoff excesses. To implement this in a neural
network framework, the number of units in the input and hid-
den layer was kept the same. Connections only existed be-
tween the corresponding pairs in the first two layers, i.e., the
ith node in the first layer connects only to the ith node in the
second layer, with the weights being set to unity. The nodes
in the hidden layer were fully connected with the single output
node representing runoff. The inputs to the ANN were se-
quences of rainfal. Instead of the threshold function, a ramp
transfer function corresponding to the rainfall ¢-index was
used for the hidden layer. The hidden layer served to extract
the infiltration from rainfall, and its outputs were rainfall ex-
cesses. The output layer calculated a weighted sum of therain-
fall excesses. Rainfall and runoff data from 24 large storm
events were chosen from the Goodwater Creek watershed
(12.2 km?) in central Missouri to train and test the ANN. The
resulting network was shown to reproduce the unit hydrograph
better than the one obtained through the standard gamma func-
tion representation. In a later study, Hjelmfelt and Wang
(1996) compared this method with a regular three layered ar-
tificial network with back-propagation. The authors concluded
that a regular network could not reproduce the unit hydrograph
very well and was more susceptible to noise than a network
whose architecture was more suited for unit hydrograph com-
putations.

In an application using two neural networks, Zhu et al.
(1994) predicted upper and lower bounds on the flood hydro-
graph in Butter Creek, New York. Off-line predictions were
made when present flood data were not available and estimates
had to be based on rainfall data alone. On-line predictions
were based on both rainfall and previous flood data. Data for
ANN testing and validation were generated from a nonlinear
storage model. Model performance was strongly influenced by
the training data set. The authors found that, while the ANN
did well during interpolation, predictions made by ANNSs out-
side the range of the training data set were not encouraging.
The process of trying to make ANNs adaptive was computa-
tionally very demanding, because the entire training process
needed to be repeated with each new data pair. As the lead
time for forecasting increased, ANN performance deteriorated.
By comparison, ANNs were found to be marginaly better than
fuzzy inference-based techniques.

Smith and Eli (1995) applied a back-propagation neural net-
work model to predict peak discharge and time to peak over
a hypothetical watershed. Data sets for training and validation
were generated by either a linear or a nonlinear reservoir
model. By representing the watershed as a grid of cells, it was
possible for the authors to incorporate the spatial and temporal
distribution information of rainfall into the ANN model. Asan

example, the authors chose a synthetic watershed that was
composed of 5 X 5 cells. A tree-type drainage pattern was
superimposed on the grid to concentrate runoff towards a sin-
gle watershed outlet. Each cell was treated as a reservoir and
water was routed in a cascading fashion. A rainfall depth of
one unit was applied instantaneously at several cells on aran-
dom basis. Each rainfall pattern in the training set was pre-
sented to the network as an input image consisting of Boolean
values with 1 representing a wet cell and 0 a dry cell. The
peak discharge and the time to peak corresponding to each
rainfall pattern were computed using a linear and nonlinear
reservoir model and served as target outputs for the ANN
model. Many such patterns formed the training set. These
cases represented single-storm events for which the number of
input units was the same as the number of cells. To simulate
the occurrence of several storms in a sequence, three stochas-
ticaly generated rainfall patterns were imposed consecutively
over the synthetic watershed. In this case, the input layer had
75 units, corresponding to three rainfall patterns requiring 25
cells each. The output was either the watershed runoff alone
or the runoff and the time to peak. The number of nodes in
the hidden layer was determined by trial and error for each
case. For single-storm events, the peak discharge and the time
to peak were predicted well by the neural network, both during
training and testing. The authors were less successful for mul-
tiple-storm events. One reason for this may have been insuf-
ficient number of nodes in the output layer. In a separate ap-
plication dealing with multiple storms, Smith and Eli (1995)
represented the entire hydrograph by a Fourier series with 21
coefficients, rather than just two attributes as in single-storm
events. The ANN output layer now consisted of 21 nodes cor-
responding to the Fourier coefficients. Using this method, the
authors found the prediction of the entire hydrograph to be
very accurate for multiple storm events.

Theissue of enhancing the training speed using a three-layer
network was addressed by Hsu et al. (1995) and Gupta et al.
(1997). These studies advocated the linear least squares sim-
plex (LLSSIM) agorithm, which partitions the weight space
to implement a synthesis of two training strategies. The input-
hidden layer weights were estimated using a multistart down-
hill simplex nonlinear optimization algorithm, while the hid-
den-output layer weights were estimated using optimal linear
least square estimation. The nonlinear portion of the search
was thereby confined to a smaller dimension space, resulting
in acceleration of the training process. The simplex search in-
volves multiple starts that are initiated randomly in the search
space, and the probability of finding local minima is virtually
eliminated. The authors applied this technique to daily rainfall-
runoff modeling of the Leaf River Beam near Collins, Missis-
sippi. The performance of neural networks was compared with
the linear ARMAX time series model and the conceptual SAC-
SMA model. Figs. 1 and 2 show the performance of these
models during calibration and validation, representatively, in
Hsu et a. (1995). Even though all the models seemed to un-
derestimate low flows in general, the ANN performance was
found to be superior to the other models. Gupta et al. (1997)
concluded that the LLSSIM is likely to be a better training
algorithm than back-propagation or conjugate gradient tech-
niques, especialy in the absence of a good initial guess of
weights. In another related study over the Leaf River Basin,
Hsu et a. (1997) used a three-layer feedforward ANN and a
recurrent ANN to model daily rainfall-runoff. They concluded
that the feedforward ANN needed a trial-and-error procedure
to find the appropriate number of time-delayed input variables
to the model and also was not suitable to distributed watershed
modeling. On the other hand, the recurrent ANN was able to
provide a representation of the dynamic internal feedback
loops in the system, eliminating the need for lagged inputs and
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FIG. 1. Best Fit Hydrographs for Calibration Data Year 1982: (a) ANN (5, 4, 3, 2); (b) ARMAX (2, 4, 3); (c) SAC-SMA (Hsu et al. 1995)

resulting in a compact weight space. However, both ANNs
performed equally well at runoff prediction.

Carriere (1996) developed a virtua runoff hydrograph sys-
tem that employed a recurrent back-propagation artificial neu-
ral network to generate runoff hydrographs. A recurrent back-
propagation network was utilized, in which input layer feeds
back to itself during training to capture time dependence in
the series. The network consisted of 7 input nodes, 35 nodes
in hidden layer, and a single node in the output layer. Bipolar
linear normalization was used in the input layer, and the lo-
gistic function was used for activation in the nodes of the
hidden and output layer. Data from 45 laboratory experiments
over a small watershed under different conditions of slope and
cover were selected to develop the neural network. Out of
these, 29 data sets were employed to train the neural network,
and the rest were used for testing. The author concluded that
the neural network could predict runoff hydrographs accu-
rately, with good agreement between the observed and pre-
dicted values.

In astudy by Minns and Hall (1996), data for network train-
ing consisted of model results from one storm sequence, and
two such sequences were generated for testing. Each storm
sequence was generated using a Monte Carlo procedure that
preserved predetermined storm characteristics. For each such
storm sequence, the corresponding runoff sequence was con-
structed using a simple nonlinear model for flood estimation
(called RORB) that allowed for different levels of nonlinearly
in the response. A three-layer network with back-propagation
was used. Network inputs consisted of concurrent and 14 an-
tecedent rainfall depths and 3 antecedent runoff values, and
the network output was current runoff. It was found that ANN
performance was hardly influenced by level of nonlinearity,
with performance deteriorating only slightly for high levels of
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nonlinearity. This could be rectified by using 2 hidden layers
and the associated extra cost on network training. Minns and
Hall (1996) point out the importance of standardization based
on maximum and minimum values of inputs and outputs.
Whenever the network was required to predict ““ out of range’’
of the standardized values, the performance dropped signifi-
cantly, suggesting that ANNSs are not very good extrapolators.

Haykin (1994) showed that design of a supervised neural
network might be pursued in a number of different ways.
While the back-propagation algorithm for the design of a mul-
tilayer perceptron (under supervision) may be viewed as an
application of stochastic approximation, radial-basis function
(RBF) networks can be viewed as a curve-fitting problem in
a high-dimensional space. Therefore, the learning for such net-
works is equivalent to finding a surface in a multidimensional
space that provides a best fit to the training data, with the
criterion for **best fit'"" being expressed in a statistical sense.
Mason et al. (1996) used RBF networks for accelerating the
training procedure as compared with regular back-propagation
techniques. Data were generated using the Simulation Program
for Interactive Drainage Analysis (SPIDA) model. The net-
work output was runoff based on inputs consisting of time,
rainfall intensity, cumulative rainfall, and derivative of rainfall
intensity. The authors briefly discuss network architecturesand
compositions and tried five different forms of basis functions
in their study. Sixty data sets were utilized for network train-
ing, and 39 were used for validation of the model. The authors
concluded that, while RBF networks did provide for faster
training, such networks require the solution of alinear system
of equations that may become ill conditioned, especialy if a
large number of cluster centers are chosen.

Jayawardena and Fernando (1995, 1996) and Fernando and
Jayawardena (1998) also used RBF methods for flood fore-
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FIG. 2. One-Step-Ahead Prediction Hydrographs for Five-Year Validation Period: (a) ANN (5, 4, 3, 1); (b) ARMAX (2, 4, 3); (c) SAC-SMA

(Hsu et al. 1995)

casting. They illustrated the application of (RBF) artificial neu-
ral networks using an orthogonal least squares algorithm
(OLS) to model the rainfall-runoff process. Hourly rainfall and
runoff data from a 3.12 km® watershed were collected and used
in developing the ANN. The autocorrelation of runoff, and the
cross correlation between rainfall and runoff indicated that the
discharges at a certain time were influenced by antecedent
rainfall from up to three previous hours. Therefore, the input
nodes contained three antecedent discharges and two rainfall
values—that is, Q(t-1), Q(t-2), Q(t-3), R(t-2), and R(t-3). The
output was the discharge at the current hour, Q(t). Both a mul-
tiple layer perceptron (MLP) neural network and a RBF net-
work were developed and compared with the statistical AR-
MAX model. Even though both the RBF and MLP networks
performed well, it was found that RBF networks could be
trained much faster than MLP networks using back propaga-
tion. Both networks performed better than the ARMAX model.

Shamseldin (1997) compared ANNs with a simple linear
model, a season-based linear perturbation model, and a hearest
neighbor linear perturbation model. Daily average values of
rainfall and runoff from six different watersheds around the
world were collected for this study. Three different types of
input information were compiled from this data. These were
weighted averages of recent rainfall measurements, seasonal
information on ¢&-index and average discharges, and nearest
neighbor information. Four different scenarios based on com-
binations of some or all of these types of input information
were examined. A three-layer neural network was adopted by
the author, and the conjugate gradient method was used for
training. A two-parameter gamma function representation was

chosen as the impulse response of the rainfall series. The pa-
rameters were also estimated as part of the training procedure.
The network output consisted of the runoff time series. The
results suggested that the neural networks generally performed
better than the other models during training and testing.

In an effort to relate runoff to precipitation, snow and tem-
perature, and previous streamflows, Tokar and Markus (1997)
employed ANNSs to predict monthly flows on the Fraser River
near Granby, Colordo, and daily flows on the Raccoon Creek
near Bayard, lowa. The WATBAL and the SAC-SMA models
were used as dternative tools for comparison purposes over
the two watersheds, respectively. They created a three-layer
ANN to predict monthly and daily runoff from two small ba-
sins. For the Fraser River, the ANN produced better results
than the WATBAL model. In the case of Raccoon Creek, the
best neura network was chosen among four alternatives and
produced comparable results to the conceptual SAC-SMA
model.

Tokar and Johnson (1999) reported that ANN models pro-
vided higher training and testing accuracy when compared
with regression and simple conceptual models. Their goal was
to forecast daily runoff for the Little Patuxent River, Maryland,
with daily precipitation, temperature, and snowmelt equivalent
serving as inputs. It was found that the selection of training
data has a large impact on accuracy of prediction. The authors
trained and tested the ANN with wet, dry, and average-year
data, respectively, as well as combinations of these, in order
to illustrate the impact of the training series on network per-
formance. The ANN that was trained on wet and dry data had
the highest prediction accuracy. The length of training record

JOURNAL OF HYDROLOGIC ENGINEERING / APRIL 2000/ 127



had a much smaller impact on network performance than the
types of training data.

Dawson and Wilby (1998) used a three-layer back-propa-
gation network to determine runoff over the catchments of the
Rivers Amber and Mole. The two catchments are about 140
km? in size, and are prone to floods. ANN inputs were past
flows and averages of past rainfal and flow values. The ANN
output consisted of predicting future flows at 15 min intervals
up to alead time of six hours. Their results show that ANNs
performed about as well as an existing forecasting system that
required more information. When compared with actual flows,
the ANNSs appeared to overestimate low flows for the Mole
River. Bonafe et al. (1994) assessed the performance of a neu-
ral network in forecasting daily mean flow from the upper
Tiber River basin in central Italy. The previous discharge, daily
precipitation, daily mean temperature, total rainfall of the pre-
vious five days, and mean temperature over the previous ten
days were selected as ANN inputs. They concluded that the
ANN was able to yield much better performances than ARMA
models.

The problem of rainfall-runoff modeling has perhaps re-
ceived the maximum attention by ANN modelers. This prob-
lem lends itself admirably to ANN applications (Hsu et al.
1995). The nonlinear nature of the relationship, availability of
long historical records, and the complexity of physically-based
models in this regard, are some of the factors that have caused
researchers to look at alternative models—and ANNs have
been a logical choice. Research activities in this aspect have
been quite revealing, and they can be broadly classified into
two categories.

The first category of studies are those where ANNs were
trained and tested using existing models (e.g., Smith and Eli
1995; Shamseldin 1997). These studies may be viewed as pro-
viding a *‘proof of concept’’ analysis for ANNs. They have
laid the foundations for future ANN use by demonstrating they
are indeed capable of replicating model behavior, provided
sufficient data is available for training. This requirement is
easily met, as the data necessary for training can be generated
on a computer relatively easily. In such cases, ANN perfor-
mance can at best equal the original model that provided the
data for training. Such experiments are a first step in evalu-
ating the applicability of ANNSs for use in real catchments.

One may argue that, after the training process is complete,
ANNSs would provide much faster responses than the original
model —especially so if the model was a complex one. Given
the increased computing capacity that is available nowadays,
such an advantage is unlikely to be meaningful for determin-
istic predictions based on a single redlization. The speed of
ANN-based predictions could prove to be useful when dealing
with Monte Carlo—based studies, where a very large number
of realizations are required to obtain representative sample sta-
tistics. One could envision applications where Monte Carlo
simulations are started using an existing model. Simultane-
ously, an ANN could be trained on these realizations. During
the course of generating realizations for the Monte Carlo pro-
cedure, one would switch from the model to ANN predictions
after it had acquired the necessary training. While this is a
good idea in principal, some other issues have to be resolved
before this can be implemented in an efficient manner. These
issues are discussed in a later section of this paper.

Most ANN-based studies fall into the second category, those
that have used observed rainfall-runoff data. Frequently, sup-
plementary inputs such as temperature, snowmelt equivalent,
and historical stream flows have been included. In such in-
stances, comparisons with other empirical or conceptual mod-
els have also been provided. These studies provide a more
comprehensive evaluation of ANN performance and are ca-
pable of establishing ANNSs as viable tools for modeling rain-
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fall-runoff. While most studies report that ANNs have resulted
in superior performance, they have not been useful for pro-
viding any useful insight or furthering our understanding of
watershed processes. Using ANNSs as a mere black-box to re-
produce an input-output sequence well does not help in ad-
vancing the scientific understanding of hydrological processes.
More creative use of ANNs is modeling the rainfall-runoff
process will be needed in the future. Some of these issues are
discussed towards the end of this paper.

MODELING STREAMFLOWS

Streamflows are often treated as estimates of runoff from
watershed and could be considered as part of the previous
section. The focus here is on papers that have directly dealt
with streamflow itself, usually without involving precipitation
as input. In some studies, streamflow prediction was an inter-
mediate goal. In one of the earlier applications involving
streamflows, Kang et a. (193) used ANNs and autoregressive
moving average models to predict daily and hourly stream-
flows in the Pyung Chang River basin in Korea. Different
three-layered ANN architectures were investigated. This pre-
liminary study concluded that ANNSs are useful tools for fore-
casting streamflows.

In a more detailed study along similar lines, Karunanithi et
a. (1994) were interested in estimating streamflows at an un-
gauged site on the Huron River in Michigan, based on data
from USGS stream gauging stations located 30 km upstream
and 20 km downstream of the sampling site. They compared
ANN performance to an empirical two-station power law re-
lationship that is based on log-transformation of the actual
streamflow values. Fig. 3 shows a comparison of observed
versus predicted daily flows for a testing period of two years.
Daily data were found to exhibit rapid fluctuations, and the
authors worked with five-day non-overlapping averages and
five-day moving averages to obtain a smoother representation
when using regression. However, the raw data were utilized
as ANN inputs. They used the cascade-correlation algorithm
(see Part 1) so that the network architecture could be deter-
mined during training. When using empirical regression equa-
tions, the largest errors were associated with the highest stream
flows. Neural networks were found to better predict these high
events, while both methods predicted low streamflows fairly
well. These authors stated that ANNSs are capable of adapting
their complexity to accommodate tempora changes in histor-
ical streamflow records. They also found that including an-
other gauging station that supposedly had little or no effect on
streamflows at the gauging site caused the performance of the
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regression technique to deteriorate, while the ANN perfor-
mance was not affected. The authors claimed that ANNSs are
likely to be more robust when noisy data is present in the
inputs. Karunanithi et al. (1994) found lag time to be important
in predicting streamflows. This reflects the longer memory as-
sociated with streamflows. The authors did not use any stetis-
tical techniques to evaluate the lag time and include it in the
network architecture.

Markus et a. (1995) used ANNs with the back-propagation
algorithm to predict monthly streamflows at the Del Norte
gauging station in the Rio Grande Basin in Southern Colorado.
The inputs used were snow water equivalent alone, or snow
water equivalent and temperature. They used periodic transfer
functions (PTFs) to predict streamflows based on similar in-
puts as an aternative form of prediction. For training, monthly
data from 1948-1977 were used, and they tested model per-
formance on monthly data from 1978—1987. They looked at
forecast bias and root mean square error for assessing model
performance. The results indicated that both ANNs and PTFs
did a good job of predicting streamflows, and that including
temperature as input improved model performance.

In an effort to evaluate ecological implications in terms of
hydrologic variables. Poff et al. (1996) used ANNs to evaluate
the changes in stream hydrograph from hypothetical climate
change scenarios based on precipitation and temperature
changes. The synthetic daily hydrograph was generated based
on historic precipitation and temperature as inputs. They stud-
ied two streams in the northern United States under different
hydro-climatological factors. The streamflow in the Little Pax-
utent River (near Baltimore, Maryland) is dominated by rain-
fall, while the Independence River in New York is influenced
by both snow and rain. Three classes of hydrological variables
of interest were derived from ANN-generated streamflow out-
put. Mean flow conditions were composed of mean daily dis-
charge, coefficient of variation of daily flow, and predictability
of daily flow. High flow conditions included flood frequency,
flood predictability, and flood-free period. The ANNs were
particularly geared towards modeling these kinds of hydro-
logic variables. Finaly, the low flow conditions were repre-
sented by the baseflow index. Four climate change scenarios
were implemented by increasing the precipitation by 25%, de-
creasing the precipitation by 25%, doubling the coefficient of
variation of daily precipitation, and increasing the average
temperature by 3°C. The ecological implications of these
changes for the two streams were discussed in terms of the
hydrological variables.

Muttiah et al. (1997) also used the cascade-correlation al-
gorithm in their efforts to predict two-year peak discharge
from watersheds all over the continental United States. An
interesting goal of this work was to investigate the possibility
of asingle model that could predict peak discharges from local
to regional-sized watersheds. They wanted to use data that was
easily available from GIS databases. Therefore, network inputs
consisted of the log of the drainage basin area, elevation, av-
erage slope, and average annual precipitation. The authors
claim that ANNSs showed some improvement over the standard
regression techniques employed by the USGS. Using input
vector reduction techniques based on the cascade-correlation
method, the authors concluded that drainage area and basin
elevations could be used for predicting two-year peak dis-
charges.

Stream rating curves often exhibit hysteresis, with the stage-
discharge relationship being different for rising and receding
stages. A single relationship is inadequate, while using two
separate relationships leads to problems of separation. Tawfik
et al. (1997) used ANNS, with a saturating linear transfer func-
tion, to predict flow discharges at two locations over the Nile
River using the stage, H, and the rate of change of stage, dH/

dt, as network inputs. ANNs were shown to predict discharge
without exhibiting the separation problem associated with a
method that uses different regression relationships for the ris-
ing and receding portions based on when dH/dt changes sign.

These studies indicate that ANNs have achieved some suc-
cess in streamflow prediction, particularly when these are de-
sired over a certain range of streamflow values. They have
been used for obtaining quick and reliable forecasts. It has
been shown to be superior to regression techniques and time-
series models. Many of the comments presented about rainfall-
runoff modeling are applicable to the problem of streamflow
prediction as well. A major limitation appears to be in trying
to design robust prediction techniques over a wide range of
streamflows. The studies of Karunanithi et al. (1994) and Thi-
rumalaiah and Deo (1998) directed network training to better
replicate low streamflow events, while Poff et al. (1996) con-
centrated on high flow events to generate improved statistics
for floods. It is generdly believed that the hydrology of high
and low flow eventsis different from events that are perceived
as being normal. Future efforts should be directed towards
designing ANNSs to account for these different scenarios, in
order to represent both normal and extreme conditions.

ANNs IN WATER QUALITY MODELING

In recent years, ANNSs have found a number of applications
in the area of water quality modeling. Water quality is influ-
enced by many factors such as flow rate, contaminant load,
medium of transport, water levels, initial conditions and other
site-specific parameters. The estimation of such variables is
often a complex and nonlinear problem, making it suitable for
ANN application.

Maier and Dandy (1996) illustrated the utility of ANNs for
estimating salinity at the Murray Bridge on the River Murray
in South Australia. This river serves as a vita source for ir-
rigation and water supply. The high level of salinity in the
water had adverse effects on domestic, industrial, and agri-
culture uses. The authors felt that effective pumping strategies
could be implemented if salinity values could be estimated 14
days in advance. In this study, the inputs to the ANN model
were daily salinity values, and water levels and flows at up-
stream stations and at antecedent times. This resulted in 141
nodes in the input layer at the initial stage. Network output
was the 14-day-advance forecast of river salinity. The authors
chose two hidden layers and used back-propagation for train-
ing. The optimal ratio of number of nodes in the second and
third layers was found to be 3:1. A sensitivity analysis was
performed to screen the unnecessary inputs, and the number
of input nodes was eventually reduced to 51. The ANN struc-
ture became 51-45-15-1 (51 inputs, 45 neurons in the first
hidden layer, 15 neurons in second hidden layer, and a single
output). Cross validation was used to overcome the problem
of overtraining. Fig. 4 shows that the ANN model was able to
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FIG. 4. Best 14-Day Forecast of Salinity at Murray Bridge for
1991 (Model 4-91) (Maier and Dandy 1996)

JOURNAL OF HYDROLOGIC ENGINEERING / APRIL 2000/ 129



replicate salinity levels fairly accurately based on 14 day fore-
casts (Maier and Dandy 1986). It was observed that the av-
erage percentage errors of the independent 14 day forecasts
for four different years of data varied from 5.3 to 7.0%. The
authors also concluded that the impact of using different learn-
ing rates and different network geometries was relatively mi-
nor.

Rogers (1992) and Rogers and Dowla (1994) employed an
ANN, which was trained by a solute transport model, to per-
form optimization studies in ground-water remediation. They
investigated hypothetical scenarios of one or several contam-
inant plumes moving through a ground-water region with a
number of pumping wells. The wells could be on or off. The
goa of remediation was to keep contamination concentration
in some specified monitoring wells lower than the regulatory
limit. The optimization arises in trying to minimize the total
volume of pumping. A multilayer feedforward ANN was
trained using the back-propagation training algorithm. The in-
put represented possible pumping cases, with wells being as-
signed a value of 1, indicating that the well was pumping at
the maximum capacity, or 0, indicating that the well was off.
The ratio of the number of nonpumping wells to the total num-
ber of wells was included as an additional input. The ANN
output represented whether or not the realization of pumping
met the regulatory consistent (successful), with the value being
either 1 if successful, or O if not. The authors supplemented
the conjugate gradient method with some weight elimination
techniques to accelerate convergence and improve perfor-
mance. ANN architectures with different numbers of hidden
layers and nodes were investigated. Following the completion
of training, the neural network was guided by a genetic al-
gorithm for searching through various realizations of pumping
patterns to determine whether they would be successful. Table
1 presents the accuracy and generalization performances for
seven ANN training rounds with different architectures in
Rogers and Dowla (1994). Results obtained by this method
were consistent with those resulting from a conventional op-
timization technique using the solute transport model and non-
linear programming using a quasi-Newton search. This meth-
odology was applied to a Superfund site by Rogers et a.
(1993) and Johnson and Rogers (1995). They concluded that
ANNSs, combined with a genetic algorithm, result in robust and
flexible tools that can be used for planning effective strategies
in ground-water remediation. Morshed and Kauarachchi
(1998) used an ANN to estimate the saturated hydraulic con-
ductivity and the grain size distribution parameter for appli-
cation in the problem of free product recovery. They also con-
cluded that the search process in the parameter space could be
accelerated when the ANN was guided by a genetic algorithm.

Basheer and Nagjjar (1995) used athree-layer artificial neural
network to predict the breakthrough time in a fixed-bed ad-
sorption system. The data for training and validating the net-
work were generated using the HSDM model. Using a system-
atic analysis, the authors identified three inputs as being the
most influential in determining the breakthrough time. These
were influent concentration, specific weight of the adsorbent,
and the particle diameter of the porous bed material. A trial-
and-error procedure led them to select 10 nodes in the hidden
layer. The authors found ANN predictions to be reliable as
long as the inputs were within the range of the data sets.

There are several other instances where ANNs have been
used to address water quality related issues. For instance, Star-
rett et al. (1996) employed an ANN to predict pesticide leach-
ing through turfgrass-covered soil. After an extensive selection
procedure, the variables chosen as ANN inputs were pesticide
solubility, rate of pesticide application, time since pesticide
application, and type of irrigation practice being implemented.
The ANN output was the percentage of pesticide that leached
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TABLE 1. Accuracy and Generalization Performances for
Seven ANN Training Rounds (Rogers and Dowla 1994)

Sets in input Number of
Architec- | series (number Generali- | Numbers | function
ture of patterns) Accuracy | zation |of weights|evaluations®
(1) (2 (3) (4) (5) (6)
(a) Training round 1
21-4-1 1,2 (100) 100% 82% 93 119
21-4-1 1,3 (100) 100% 82% 93 126
21-4-1 1,4 (100) 100% 85% 93 118
21-4-1 2,3 (100) 100% 91% 93 135
21-4-1 2,4 (100) 100% 91% 93 228
21-4-1 3,4 (100) 100% 69% 93 158
(b) Training round 2
21-4-1 1,2,3 (150) 100% 52% 93 —
21-4-1 2,3,4 (150) 92.7% 92% 93 4,560°
21-4-1 1,3,4 (150) 100% 72% 93 172
21-4-1 1,2,4 (150) 100% 86% 93 1,295
(c) Training round 3
21-5-1 1,2,4 (150) 100% 94% 116 301
21-6-1 1,2,4 (150) 100% 100% 139 3,571
21-2-2-1 1,2,4 (150) 98% 72% 53 5,000°
21-4-1 1,2,4 (150) 100% 86% 93 1,295
(d) Training round 4
21-6-1 1,2,3 (150) 100% 72% 139 68
21-6-1 2,3,4 (150) 100% 86% 139 477
21-6-1 1,3,4 (150) 100% 82% 139 205
21-6-1 1,2,4 (150) 100% 100% 139 3,571
(e) Training round 5
21-7-1 1,2,3 (150) 100% 62% 162 148
21-7-1 2,3,4 (150) 100% 92% 162 353
21-7-1 1,3,4 (150) 100% 80% 162 257
21-7-1 1,2,4 (150) 99.3% 98% 162 1,727
(f) Training round 6
21-7-1 1,2,3,5 (195) 99.5% 80% 162 1,583°
21-7-1 2,345 (195) 100% 90% 162 1,300
21-7-1 1,3,4,5 (195) 100% 82% 162 238
21-7-1 1,2,4,5 (195) 99% 96% 162 2,883°
(g) Training round 7 (weight elimination)
21-7-1 1,2,3,5 (195) 87.7% 94% 162 1,265
21-7-1 2,345 (195) 85.1% 98% 162 —
21-7-1 1,3,4,5 (195) 85.6% 96% 162 —
21-7-1 1,2,4,5 (195) 89.7% 92% 162 1,189°

“Number of evaluations required for error function to reach final value of <10°°.
°Failed to reach successful optimization.

through 50 cm of turfgrass-covered soil. There were 3 nodes
in the hidden layer. Out of atotal of 200 data sets, 175 patterns
were used to train the ANN, and 25 were used to test it. In
another pesticide-related application, Ray and Klindworth
(1996) lay a blueprint for addressing the problem of agricul-
ture chemical assessment in the rural private wells in Illinois
using neural networks. They envisioned that important inputs
would be depth to the aquifer material, well depth, land to-
pography in the vicinity of the well, distance of potential con-
taminant sources from the well, and timing of precipitation
with respect to pesticide application. They also discussed how
data would be collected for such an application and com-
mented about the utility of ANNs in such applications. Sandhu
and Finch (1996) used ANNSs to relate flow conditions and
gate positions in the Sacramento San Joaquin Deltato salinity
levels in the interior and along the boundary of the delta
ANNSs were further used to estimate flow in the Sacramento
River to meet salinity standards. Sandhu and Finch (1996)
found simulation models too slow and the commonly used
statistical models to be inadequate, and they concluded that
neural networks would be suitable for this application.
Historical flows from various gauging stations and gate posi-
tions served as inputs to the network. Total dissolved solids
concentrations data for 20 years were available as network
output. In their preliminary work, the authors used the data



from 1980—1990 for calibration, and the data from 1971—-1980
for validation. Future plans include more rigorous testing of
neural networks for salinity predictions. Hutton et al. (1996)
also used ANNSs for trihalomethane (THM) formation and
transport in delta waters. They used neural networks to en-
hance the capability of an existing model for predicting THM
formation and specification by including variable reaction con-
ditions. The ANNSs were trained to predict total THM and a
bromine incorporation factor based on inputs such as chlorine
dose, reaction time, temperature and pH. They utilized 5 nodes
in the first hidden layer and 3 in the second hidden layer.
Sensitivity analyses showed that ANNs were predicting the
right trends of TPH chemistry. The authors concluded that
ANN models predict THM formation species and total con-
centrations in delta waters in an adequate manner.

ANN Applications in Ground Water

It is difficult to separate ground water and water quality as
different sections. Many articles have addressed both these
topics to some extent (Rogers and Dowla 1994; Roger et al.
1995). In this section, the writers briefly review those appli-
cations that emphasized ground-water quality aspects. Aziz
and Wong (1992) illustrated the use of ANNSs for determining
aquifer parameter values from normalized drawdown data ob-
tained from pumping tests—commonly referred to as the in-
verse problem in ground-water hydrology. This study drew on
the pattern recognition ability of an ANN based on aguifer test
data. Using measured drawdowns as inputs, neural networks
were trained to yield transmissivity T, storage coefficient S
and the ratio r/B, where r represents the distance to the ob-
servation well and B is the aquifer thickness. Both confined
and leaky-confined aguifers were considered. The input layer
contained 16 nodes representing the confined aquifer data and
12 nodes representing the leaky-confined aquifer inputs. If the
ANN was to be used for a strictly confined aquifer, then inputs
to the last 12 nodes were set to zero, and vice versa. A three-
layer network was trained with data generated from the Theis
and Hantush-Jacob solutions. After training, the ANNs were
tested on two sets of field data. The values of aquifer param-
eters predicted by the ANN compared well with results using
traditional methods.

When trying to control hydraulic head gradient for ground-
water reclamation, the issue of spatial variability becomesvery
important. Most studies rely on Monte Carlo simulations of
the log-transformed hydraulic conductivity field. This tech-
nique tends to be computationally expensive. One way to ad-
dress this problem is to be able to identify if a particular re-
alization is going to be critical based on predefined features
of the conductivity field. However, the problem of selecting
critical realizations in a Monte Carlo procedure becomes a
complex task of pattern recognition. Ranjithan et al. (1993)
used a three-layer feedforward network to screen such critical
redlizations by first identifying characteristics that cause are-
alization to be a critical one. In asimulation example, theinput
layer consisted of 102 nodes representing the hydraulic con-
ductivity values in an aquifer discretized by a 10 X 10 grid
system, and mean and standard deviation of these values. The
hidden layer had 36 nodes that were decided by a trial-and-
error procedure. The network predicted a single output that
represented how critical realization was going to be on a nor-
malized scale of 0 to 1—called the level of criticalness by the
authors. Fig. 5 is a scatter-plot showing the effectiveness of
ANNSs in predicting the level of criticalness in Ranjithan et al.
(1993). The authors conclude that the pattern recognition
strengths of ANNSs are particularly useful for identifying the
more critical realizations. The problem of identifying optimal
pumping strategies to control hydraulic gradient becomes sim-
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FIG. 5. Performance of Neural Network Model [Training: Num-
ber of Training Cases = 100; Number of Potential Reclamation
Well Locations = 9. Testing: Number of Testing Cases = 100;
Number of Potential Reclamation Well Locations = 3. (Ranjithan
et al. 1993)]

plified, as only these selected critical realizations have to be
further investigated while still maintaining high reliability.

Kriging is a spatial interpolation technique that is widely
used in geohydrology. Rizzo and Dougherty (1994) introduced
the idea of neural kriging for characterization of aquifer prop-
erties. A three-layer neural network utilizing the counter prop-
agation algorithm was combined with kriging for estimating
hydraulic conductivity. The input nodes represented the coor-
dinates of observation points. The output nodes predicted the
class of hydraulic conductivity at various locations. The hid-
den layer was called the Kohonen layer, as it used a Kohonen
unsupervised learning algorithm. Similarly, the output layer
was called the Grossberg layer. Without a nonlinear activation
function, the competition (winner-take-all) occurred in the hid-
den layer. The output of the hidden node with the maximum
weighted sum of the inputs was set to one, while the output
of al the other hidden nodes was set zero. The ANN output
was the weighted sum of the output from the winning node.
In the training process, only those weights connected to the
winning node were updated for each pattern. Based on their
results, the authors pointed out that neural kriging produced
unbiased estimates of the hydraulic conductivity values at un-
measured locations. They concluded that ANNSs could be use-
ful tools in geohydrology when applied to specific problems
of aquifer characterization.

In ground-water remediation, a few optimal pumping strat-
egies that meet management goals as well as being cross ef-
fective often need to be identified from a vast number (mil-
lions) of possible pumping patterns. The conventional method
is to study many realizations using a flow and transport model.
This brute force method imposes an extremely heavy com-
putational burden. ANNs, when combined with a genetic
search algorithm, were shown to accelerate the search process
dramatically (Rogers 1992; Rogers and Dowla 1994; Johnson
and Rogers 1995; Rogers et al. 1995). However, caution needs
to be exercised when applying this method. It can provide
meaningful solutions only over the problem dimensions de-
fined by initial model runs used for training. Once the scope
of the problem changes, such as an increase in management
time frame or the addition of new prospective well locations,
training must be repeated with this new information. This is
one of the limitations faced by ANNs. The weight space can-
not be dynamic but remains frozen after completion of train-
ing.

JOURNAL OF HYDROLOGIC ENGINEERING / APRIL 2000/ 131



Yang et a. (1997) utilized an ANN to predict water table
elevations in subsurface-drained farmlands. Daily rainfall, po-
tential evapotranspiration, and previous water table locations
were selected as inputs to the ANN. The output was the current
location of the water table. They found that a three-layer feed-
forward ANN could predict water table elevations satisfacto-
rily after training using observed values. Other ANN appli-
cations to problem of irrigation and drainage were investigated
by Yang et al. (19964, b).

ANNs FOR ESTIMATING PRECIPITATION

Precipitation serves as the driving force for most hydrologic
processes. It is difficult to predict because it exhibits a large
degree of spatial and temporal variability. French et al. (1992)
used a three-layer feedforward ANN with back-propagation to
forecast rainfall intensity fields at a lead time of 1 hour with
the current field as input. Over a hypothetical two-dimensional
rainfall domain consisting of a 25 X 25 regular grid of 4 km
resolution, the training patterns were fabricated with a math-
ematical rainfall smulation model. The 625 output nodes rep-
resented the rainfall intensity values of the cells one hour in
the future, corresponding to the 625 input nodes representing
the current rainfall intensity values at the cells. They studied
the impact of different number of hidden nodes, using 15, 30,
45, 60, and 100 hidden nodes. The authors compared ANN
generated results with those from persistence and forecasting
models. Their results suggested that ANNs performed slightly
better than these models during the training stage after a suit-
able architecture had been identified. But their performance
over the testing data set was not satisfactory. They concluded
that the ability of an ANN to generalize the underlying rule
was strongly dependent on selecting a large enough hidden
buyer.

Tohma and Igata (1994) employed a three-layer ANN to
estimate rainfall fields based on visible and infrared remote-
sensing cloud images in the coastal region of south-western
Hokkaido and in a heavy rainfal area of Hokkaido, Japan.
The simulation domain was represented by 12 X 12 pixels of
5 X 5 km resolution each. Both visible and infrared images
were classified into 16 gradations and then converted into val-
ues from O to 1 for use as network inputs. Both input and
output layers had 123 nodes representing the number of do-
main pixels (12 X 12) of images except for the 21 pixelslying
along the coastline. The network outputs were rainfal inten-
sities associated with pixels. After trying several discrete num-
bers of hidden nodes (6, 12, 18, 24, 36, 60, and 120), the
authors found the optimal number to lie in a range of 24—
36. They reported that ANNs could map the relationship be-
tween remotely sensed images of clouds and rainfall intensities
and provide short-term forecasts of rainfall.

Navone and Ceccatto (1994) have used an ANN model to
predict summer monsoon rainfall (SMR) over India. Previous
studies have suggested that SMR might be considered as a
deterministic (possibly chaotic) process or as a stochastic pro-
cess. Predictive models for SMR were constructed using a de-
terministic as well as a stochastic framework. The relative suc-
cess of both methods prompted Navone and Ceccatto (1994)
to combine these two approaches within an ANN framework.
First, an ANN (with two input nodes, two hidden nodes, and
one output node) is trained to correlate predictors (two indices
related to El Nino—Southern Oscillations) with SMR. Second,
another ANN (with seven input nodes, four hidden nodes, and
one output node) is trained to learn the dynamics of the time
series. Seven inputs are chosen from the reconstructed phase
space using time-delayed values of SMR. Two output nodes
from these two networks are then linked together by connect-
ing those to a new node. The resulting hybrid network was
shown to perform 40% more accurately than the best linear
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statistical method using the same data. It is also shown that
the proposed ANN model is better than a more complex linear
statistical model with 16 predictors.

Hsu et a. (1996, 1997) developed a modified counterpro-
pagation ANN for transforming satellite infrared images to
rainfall rates over a specified area. Their algorithm was similar
to the one utilized by Rizzo and Dougherty (1994) in that both
used a Kohonen hidden layer and a Grossberg output layer in
the three-layer structure. An interesting feature was that the
connection weight between the input and hidden layer and
between the hidden and output layer could be trained sepa-
rately. Hsu et a. (1996, 1997) treated as inputs normalized
values of infrared brightness temperature of the prediction
pixel, surface index representing overland type, mean bright-
ness temperature of the 3 X 3 pixel window centered at pre-
diction pixel, standard deviation of brightness temperature on
those pixels, mean brightness temperature of the 5 X 5 pixel
window centered at the prediction pixel, and standard devia-
tion of brightness temperature of 5 X 5 pixel window centered
at the prediction pixel. The hidden and output layers had 225
nodes each, arranged in a 15 X 15 matrix. The ANN output
was the rainfall rate over the prediction pixel. Training for
hidden and output layers was implemented separately. The
connection weights between the input and hidden layer were
trained using an unsupervised self-organizing clustering pro-
cedure based on the principle of competition. For each hidden
node, the distance between the input vector and the corre-
sponding weight vector was computed. Only those weights
connected to the node with the smallest distance (winner node)
were updated for each pattern. A recursive process of com-
petitive node selection and parameter adjustment was contin-
ued by repetitive sequential processing of the input data. The
size of the neighborhood of the node with the smallest distance
as well as the training rate was reduced gradually. The hidden
layer acted as a filter that associates each input vector with
one of the hidden layer classes. The output of the hidden layer
was related to the vector distance for the 3 X 3 matrix sur-
rounding the winner node and O for the others. The output
layer served as a linear summation unit that calculated the
weighted sum of the outputs of the winner node and its neigh-
bors. The training agorithm for these hidden-output weights
was equivalent to a back-propagation algorithm. Hourly and
monthly training data were collected from the Japanese Islands
and the Florida Peninsula. Fig. 6 reproduces a sample of the
results of Hsu et a. (1997), showing comparisons between
observed and predicted rainfall rates. The resultsindicated that
ANNSs provided a good estimation of rainfall and yielded some
insights into the functional relationships between the input var-
iables and the rainfall rate.

Zhang et a. (1997) proposed that ANNs need to be em-
ployed in groups when the transformation from the input to
the output space is complex. This group theory treats the input-
output mapping as being piecewise continuous. The idea is
that each network predicts only in the range where the trans-
formation is continuous, while a ‘‘reasoning’’ network deter-
mines the appropriate summation of responses. The authors
were successful in making half-hourly rainfall estimates.

Kuligowski and Barros (1998) present an ANN approach
for short-term precipitation prediction. Their model uses a
feedforward architecture with upper atmospheric wind direc-
tion and antecedent precipitation data from a raingauge net-
work to generate a 0—6 hour precipitation forecast for atarget
location. Upper air wind direction was used to determine
which input variables are relevant for a particular situation.
For example, data from a particular predictor gauge may be
relevant if it is downstream from the forecast point relative to
the direction of precipitation movement (estimated from upper
air wind direction). Compared with a persistence model, the
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proposed ANN model showed significant improvement for
short-term precipitation prediction. A particularly powerful
feature of the ANN model isits ability to generalize and utilize
the latest available information, which makes it attractive for
real-time operational prediction.

OTHER APPLICATIONS OF ANNs IN HYDROLOGY

In this section, the writers list miscellaneous applicationsin
hydrology that do not specifically belong to any of the above
categories. Raman and Sunilkumar (1995) employed an ANN
to model a multivariate water resource time series and com-
pared the results with those obtained by traditional autore-
gressive moving average (ARMA) models. The objective was
to synthesize monthly inflow data for two reservoir sites in
the Bharathapuzha basin in south India. A three-layer feedfor-
ward ANN with back-propagation was used in this study. The
consecutive normalized inflow to the reservoir for two previ-
ous months were chosen as inputs. The output was normalized
inflow for the current month. They concluded that the results
obtained using the ANN compared well with those obtained
using statistical models. Raman and Chandramouli (1996)
adopted similar ANNSs as an alternative tool for describing a
general reservoir operating policy. The inputs wereinitia stor-
age, inflow, and the demand during each fortnight period, the
latter being obtained using dynamic programming. The ANN
output was the optimal reservoir release. A trial-and-error pro-
cess indicated that four hidden nodes were best suited for this
application. The ANN performed better than three other re-
gression models.

Forecasting river stages accurately in flood prone areas is
an extremely crucial problem. For instance, the city of Jag-
dalpur in India lies on the Indravathi River and is prone to

frequent flooding. It is cut off from surrounding areas during
such events. Thirumalaiah and Deo (1998) selected a three-
layer ANN for predicting flood stages for the city of Jagdal pur.
The ANN was trained with back-propagation, conjugate gra-
dient, and the cascade correlation algorithm, respectively. They
found that the three training algorithms performed equally well
in terms of predicting river stages. Back-propagation needed
the most training epochs, and the cascade correlation algorithm
needed the least. The ANNSs predicted lower water levels ac-
curately but generally underestimated the high water levels.
The authors felt that not enough training data were available
for proper training of high water level instances.

In operating long-term hydroelectric power systems, a dis-
aggregation procedure is often needed to transform a large-
scale problem into small-scale problems. In an attempt to solve
this problem for nonlinear relations, Saad et a. (1994) devel-
oped a four-layer ANN with back-propagation. The first hid-
den layer had alinear activation function, while the other lay-
ers had a nonlinear activation function. The hydroelectric
power systems were aggregated to form only one reservoir. A
large number of deterministic optimizations for equally likely
sequences of streamflows were used to train the ANN. The
inputs were the aggregated storage levels, and the ANN gen-
erated the nonlinear functions that minimized the quadratic
error between the deterministic optimization and ANN outputs
(i.e., disaggregated storage levels). They reported satisfactory
performances by the network.

Utilizing an artificial neural network, Zhang et al. (1994)
developed an approach to predict daily water demands. Be-
cause a number of exogenous factors influence daily water
demands, the authors argued that water demands will be re-
lated to various inputs in a nonlinear fashion, unlike the linear
relationship implied by simplex methods. The water delivery
of the previous day, maximum daily temperature, weather, pre-
cipitation, and type of day (weekdays or weekends) were se-
lected as inputs to the ANN. Water delivery from the previous
day and daily temperature were transformed into the values
within (0,1) using a sigmoid function. The weather-related in-
put was assigned values of 0, 0.5, or 1, to represent sunny,
cloudy, and rainy days. Similarly, the precipitation-related in-
put was assigned 0, 0.5, or 1 to represent precipitation ranges
of (O, 1), (1, 5), or (5, ©) mm/day, respectively. The type of
day was quantified as 0 for Sundays and holidays, and 1 for
weekdays. They selected an ANN with 5 input nodes, 17 hid-
den nodes, and one output node representing the predicted
daily water demand. Back-propagation was employed to train
the ANN. Their results suggested that the ANN was able to
identify the nonlinear pattern of daily water demands. The au-
thors investigated the sensitivity of water demand to the var-
ious inputs using the network.

Hydrologic time series is often nonstationary, autocorre-
lated, and cross correlated. Time series modeling is aimed to
account for correlation in real-time data, representing chron-
ological dependence among sequential samples of a given var-
iable. ANNs may be used to generalize the behavior of a hy-
drologic time series by filtering correlated data. Arguing that
ANNSs are data driven. Lachtermacher and Fuller (1994) pro-
posed a methodology to relieve the data requirement. Their
goa was to forecast annual river flows as a stationary time
series, using a three-layer feedforward ANN. They first ex-
amined the time series using the Box-Jenkins methods in order
to identify the lag components of the series as inputs for an
ANN. This procedure reduced the number of primary inputs
and consequently decreased the size of the ANN. They gen-
erated a synthetic time series using the ANN and compared
this with observed values for validation. The authors stressed
the importance of an exploratory analysis of the original series
before deciding on network structure. They observed that the

JOURNAL OF HYDROLOGIC ENGINEERING / APRIL 2000/ 133



calibrated ANN model performed marginally better than time
series models.

Clair and Ehrman (1998) used ANNSs to study the impact
of climatic variations on flow discharge and dissolved organic
carbon and nitrogen contents over severa rivers of the Atlantic
Provinces of Canada. They partitioned the monthly data from
January 1983 to December 1992 so as to have 84% of the data
for training, 12% for cross training, and 4% for testing. A
three-layer network with 38 hidden nodes was utilized. The
inputs to the network consisted of sample month; basin area
and slope; minimum, maximum, and mean monthly tempera-
ture; and total rain and snow. To incorporate memory effects,
these variables from the previous month were aso included as
inputs. A sensitivity analysis suggested that hydrological
changes resulted in a significant impact on ecological and wa-
ter resources, especially for the spring months.

Sanchez et a. (1998) used functional link networks to pre-
dict the nonfulfillment time (NFT) that is required for design
coastal sewage systems. The NFT is a measure of the time
during which concentration limits exceed government regula-
tions. Functional link networks do not contain hidden layers.
This function is taken over by an expanded input layer. The
inputs are augmented by including combinations of input var-
iables or other functions of input variables (derived inputs) to
represent the interactions between the causal variables explic-
itly. They applied this method to two beaches in the city of
Gijon in Spain. The primary network inputs consisted of vol-
ume and duration of discharge, tidal state at the beginning of
discharge, and intensity and direction of wind. A genetic al-
gorithm was utilized to optimize the functional links, and the
augmented list of inputs converged to 34 and 20 for the two
beaches. The contention of these authors is that neura net-
works can be used in lieu of mathematical models to avoid
complexities and increase speed of simulations.

Other studies are worthy of mention in the context of ANN
applications. Schmuller (1990) indicated several environmen-
tal applications for ANNs; however, these were not directly
related to hydrology. Garrett et al. (1993) discussed severd
engineering applications, including the optimization of pump-
ing costs. Sun et al. (1995) trained an ANN to estimate the
snow-water equivalent from the Spatial Sensor Microwave/
Imager. Zhang and Trimble (1995) applied an ANN to forecast
water availability using global and solar indices. Kojiri et al.
(194) combined fuzzy logic and neural networks for reservoir
management. Kao (1996) used an ANN to determine a digital
elevation model (DEM)—based drainage model. Dartus et al.
(1993) used an ANN to study the flood wave propagation in
an open channel. Wen and Lee (1998) were interested in mul-
tiobjective optimization of water pollution control and river
pollution planning for the Tou-Chen river basin in Taiwan.
They used a neural network to replicate a decision maker’s
preference based on the relative importance of input variables
such as 5 day biochemical oxygen demand, cost of wastewater
treatment, and river assimilative capacity. The ANN predicted
a set of output weights that reflected the decision maker’s pref-
erences and could be used in the optimization procedure.

FUTURE OF ANNs IN HYDROLOGY

ANNs have been used by researchers for rainfall-runoff
modeling, streamflow prediction, ground-water modeling, wa-
ter quality, water management, precipitation forecasting, time
series, reservoir operations, and other hydrologic applications.
These studies have indicated that ANNs can perform as well
as existing models. Most mathematical models are able to rep-
resent our limited understanding of the physics. The portion
that is not well understood is either supplemented with em-
pirical knowledge or is lumped under the various assumptions
that may go into the development of the model. In contrast,
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ANNSs can be trained on input-output data pairs with the hope
that they are able to mimic the underlying hydrologic process.
In essence, the physics is locked up in the set of optimal
weights and threshold values and is not revealed back to the
user after training. Therefore, artificial neural networks cannot
be considered as a panacea for hydrologic problems, nor can
they be viewed as replacements for other modeling techniques.
Many studies have also warned about the pitfalls of ANNs and
caution against their use indiscriminately (Chatfield 1993; Car-
penter and Barthelemy 1994; Hill et a. 1994; Jain and Mao
1997). Before embarking on an ambitious use of ANNS, it
would be prudent to take a close look at these references and
form a more objective opinion. At this stage, they may be
perceived as alternative modeling tools that are worthy of fur-
ther exploration. In this context, the writers discuss some fu-
ture avenues of ANN research/application that will further the
role of ANNs in hydrology. The writers pose some important
questions and follow these with a brief discussion.

1. Can ANNSs be made to reveal any physics? This is per-
haps the most commonly asked question by researchers
and practitioners alike. For ANNSs to gain wider accept-
ability, it is increasingly important that they have some
explanation capability after training has been compl eted.
Most ANN applications have been unable to explain in
a comprehensibly meaningful way the basic process by
which ANNSs arrive at a decision. It is highly desirable
that ANNSs be capable of imparting an explanation, even
if only a partial one, as an integral part of its function.
Some effort along these lines has gone into the formation
of knowledge-based ANNs and rule extraction tech-
niques. However, such ideas have not been utilized in
hydrologic applications. Hsu et al. (1997) provided some
heuristic functional relationships between input and out-
put variables of an ANN by using self-organizing feature
maps of the input variables. Knowledge-based networks
are capable of incorporating some theoretical knowledge
from which a network can be constructed. The network
can then be further refined using training examples (Tow-
ell and Shafik 1994).

Many neural networks are fairly well adapted to pro-
viding statistical interpretations in terms of conditional
probabilities, especially in the problem of classification.
For instance, a feedforward network can learn the pos-
terior probability of a classification. This means that the
neural network takes into account the relative frequency
of occurrence of classes by giving more weight to fre-
quently occurring classes. Applications arise in problems
of source identification of contaminants, predicting
streamflows and river stages for high and low flow
events, neura kriging, and many others. Providing some
neuristic or probabilistic interpretation would certainly
enhance the acceptability of neural networks. In a Bay-
esian sense, it would be possible to define prior and pos-
terior probabilities based on concepts of unsupervised
and supervised learning.

Physical understanding can be useful in selecting the
appropriate neural network and the learning algorithm.
Some spatia interpolation problems may be particularly
suited for RBF networks. Problems that involve deci-
sions at several levels, or those dealing with hierarchical
decision making may be better represented through mod-
ular neural networks, which consist of a group of regular
neural networks.

2. Can an optimal training set be identified? The question
is meaningful only if oneiswilling to look at alternatives
other than a brute-force trial-and-error method. In many
hydrologic applications, there is a prohibitive cost and



time associated with data collection. Unfortunately,
ANNSs are data intensive. Without training data, ANN can
not learn at all. But repetitive data could slow down
ANN training. Therefore, the question of generating an
optimal training data set takes on importance in this con-
text. Having too few data sets will lead to poor gener-
alization by the network. An optimal data set for training
would be one that fully represents the modeling domain
and has the minimum number of data pairs in training.
All the hydrologic conditions should be considered when
other models are used to generate data for ANN training.
Moreover, an optimal data set would be chosen in such
a way that the ANN would perform well during predic-
tion. The purpose would be not to invest in generating
those training examples that will yield only margina im-
provement in network performance. To our best knowl-
edge, this question has not been addressed satisfactorily.

Other related issues arise from this question. Very of-

ten, we may have no alternative but to proceed with lim-
ited data. Under these circumstances, can we say when
generalization will fail so that we understand the range
of applicability of the ANN? Unfortunately, this question
cannot be answered easily because cross validation does
not always provide a complete answer. We need a tech-
nique that can anticipate or predict the set of circum-
stances in which the network will fail. Here again, phys-
ically-based methods have an advantage, because the
physics can be used to fill the gaps where data is not
available. In case of artificial neural networks, it would
be useful if the user could identify regions in the input
space that are not represented sufficiently in the training
data set.
. Can ANNSs improve on time series analysis? There are
severa related questions in this category as well. Many
ANN applications have shown how they can predict fu-
ture streamflows or river stages based on past measure-
ments and have compared their performance with time
series models. Apart from some comparative statements
about ANNSs being better, there have been little, if any,
insights provided by ANNSs in this context. One of the
important issues in time series analyses is memory struc-
ture, which is usually characterized by a covariance func-
tion. Typically, recurrent ANNs have been used to rep-
resent the dependence in time series. Some studies have
used historical inputs, with the time window being dic-
tated by the correlation length. These studies have pro-
vided useful information, but they have invariably re-
sulted in more complicated networks. Indeed, this has
been the primary means of incorporating time-dependent
changes into network learning. This would imply that
ANNSs are restricted to time-homogeneous cases. Con-
sequently, changes in land use, irrigation patterns, crop
rotations, and others cannot be accommodated easily at
this stage.

It is obvious that ANNSs are based on concepts differ-
ent from those of time series models. An extremely pow-
erful use of ANNSs, and one that has received very little
attention in hydrology, would be for data exploration
with an added goal being the discovery of unknown de-
pendencies and relationships among the variables. It
would appear that ANNs should learn interesting and
new nonlinear relationships and bring out features of the
input data that are not revealed by other techniques. We
need to find innovative ways of extracting this infor-
mation. Scientific theories cannot be formulated as long
as this information is buried in the weight and threshold
vectors of atrained network in an incomprehensible fash-
ion.

4. Can training of ANNs be made adaptive? Most studies
agree that the process of training is an important aspect,
and the performance of an ANN is crucialy dependent
on successful training. This is aso the most time-con-
suming part, with some ANNs requiring severd
thousands of epochs before training can be accom-
plished. An unfortunate aspect of this process is that if
new training examples become available, there seems to
be little alternative but to retrain the network all over
again. Thus is true especially when a hydrologic process
is dynamic and evolves aong with the time. A network
already trained on previous examples may not be suitable
to the current hydrologic condition. The ability to incor-
porate this new information into our forecast is desirable.
If ANN weights and thresholds can be assigned some
physical or statistical interpretation, it is likely that train-
ing can be handled in an adaptive fashion.

5. Are ANNs good extrapolators? Several studies have re-
ported that ANNs perform well when it is faced with
problems that fall within the domain of inputs that were
used for training. This can be seen as a problem of in-
terpolation. However, these studies reported that the per-
formance of an ANN deteriorated rapidly when the input
vectors were far from the space of inputs used for train-
ing. In this sense, ANNSs are not very capable when it
comes to extrapolation. One way around this problem
would be ensure that an ANN does not have to extrap-
olate by using the widest limits of examples during train-
ing. This goes back to the idea of finding an optimal set
of training patterns, so that during prediction the ANN
does not face any input that is far removed from the
examples it saw during training. There are no easy an-
swers to this problem when extrapolation must be per-
formed. All empirical models suffer in this aspect to
some degree.

CLOSING REMARKS

The proper use of an ANN requires not only a physica
understanding of the hydrological process under consideration
but also a knowledge of ANNs and their operation. Trying to
extract rules from a network or impart them with some expla-
nation capability will entail extra computer effort. These fun-
damental aspects will lead to the construction of good training
and validation data sets, selection and inclusion of relevant
input variables, and development of proper ANN architectures
and selection of training algorithms. While the articles re-
viewed in this paper on ANN applications in hydrology are
not exhaustive, it is obvious that ANNs have made a signifi-
cant impact in this area. Many other applications should be
forthcoming, especially if this technique gains acceptance
among hydrologists.
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