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DETERMINING YIELD MONITORING SYSTEM DELAY

TIME WITH GEOSTATISTICAL AND DATA

SEGMENTATION APPROACHES

S. O. Chung,  K. A. Sudduth,  S. T. Drummond

ABSTRACT. In combine harvesting, knowledge of the delay time from cutting the crop to sensing the grain flow is required for
accurate spatial location of grain yield data. Currently, either an assumed, fixed delay time is used or the delay time is
determined by visual inspection of yield maps. Geostatistical and data segmentation methods were developed to estimate yield
monitoring system delay time using objective criteria. The methods were validated with an ideal dataset and with elevation
and soil electrical conductivity datasets having known delay times. When applied to yield and moisture content measurements
collected with a commercial yield monitoring system, the methods successfully estimated delay time. In most cases, the results
agreed (µ1 s) with results achieved using a visual method. Grain yield and grain moisture content exhibited different delay
times at different locations within test fields. Thus, it may be appropriate to apply delay time corrections to homogeneous
sub–field areas, instead of on a whole–field basis. Use of these new estimation methods could allow for more accurate and
efficient processing of yield monitor data.
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ield measurement and mapping have been key in
the development of precision agriculture.
On–the–go sensor–based acquisition of crop
yield and position data resulting in yield map

creation was accomplished in the late 1980s by Searcy et al.
(1989). Since that time, yield monitoring systems have been
improved significantly, with some commercial systems
providing average load accuracies of approximately µ1%
(Murphy et al., 1995). The creation of yield maps is critical
to precision agriculture because yield maps provide data
important for the evaluation phase of the precision
agriculture cycle. For example, a yield map can provide local
information on nutrient absorption, soil variability, and
effects of treatment strategies (Reitz and Kutzbach, 1996).
Furthermore, crop yield may be used as a basis for many
agricultural  input recommendations.

Previous research on yield monitors and mapping algo-
rithms has been well reported (Colvin and Arslan, 2000;
Pierce et al., 1997; Birrell et al., 1996; Stafford et al., 1996;
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Missotten et al., 1996). Yield monitoring and map creation is
conceptually  easy to understand, but obtaining an accurate
and reliable yield map is challenging due to six major factors
(Blackmore and Marshall, 1996):
� Time lag (transportation delay time) of grain through the

threshing mechanism.
� Unknown crop width entering the header during harvest.
� The inherent “wandering” error from the GPS.
� Surging grain through the combine transport system.
� Grain losses from the combine.
� Sensor accuracy and calibration.

Numerous researchers have proposed methods to address
these problems and improve the accuracy of yield mapping.
Post–harvest data filtering and correction techniques have
commonly been used (O’Neal et al., 2000; Blackmore and
Moore, 1999; Beck et al., 2001; Rands, 1995). Nolan et al.
(1996) indicated that the coefficient of variation in yield data
was reduced from 32% to 10% by the correction of errors
from GPS wandering, overlapped harvest area, and delay
time. Searcy et al. (1989) estimated delay time and crop
redistribution by an averaging technique and smoothed yield
and position data. Measurement of actual swath width
(Sudduth et al., 1998) and correction of overlapped harvest
areas (Han et al., 1997; Drummond et al., 1999) have been
implemented  to improve point yield estimations.

Blackmore and Marshall (1996) emphasized the impor-
tance of ascertaining the delay time between cutting and
sensing, because if the delay time is not assessed correctly,
then all yield positions will be offset by an incorrect amount.
They further noted that delay time might not be constant
across a field. Lamb et al. (1995) also regarded delay time as
a major source of yield map error. Moore (1998) reported that
incorrect delay time could significantly over– or under–esti-
mate crop yield, and would cause a position offset of yield
measurements within a field.
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In general, previous researchers have chosen to use
constant delay times when creating yield maps of a field.
Several methods have been used to determine these delay
times. Whelan and McBratney (2002) attempted to better
understand the dynamics of grain flow through the combine
by painting individual rows of grain sorghum different
colors, and investigating color variations in the combine
grain flow stream over time. Birrell et al. (1996) and Nolan
et al. (1996) estimated transportation delay time by compar-
ing the time at which the combine head entered or exited the
crop to the time at which the measured grain flow began or
stopped. Chosa et al. (2000) used the elapsed time between
an operator switch closure and the initial mass flow signal
from a grain flow sensor to estimate delay time.

Stott et al. (1993) used visual inspection of the time–vary-
ing yields obtained when harvesting in alternating directions
to estimate delay time. They determined delay time by
matching grain yield for two different directions across a
known zero–yielding portion of the field. This method does
not need additional hardware or sensors and does not require
fieldwork to measure the delay time. However, visual
inspection of each yield map after harvest is time–consum-
ing, and the criteria used to estimate delay time are
subjective. Nevertheless, we have generally relied on this
method to determine delay time in our research data, because
we believe it gives the most reliable estimate.

It is clear that delay time cannot be universal, as it can vary
with make and model of harvest equipment, speed, ground
slope, load, and whether the harvester is moving into or out
of the crop (Nolan et al., 1996). In fact, it is clear that delay
time may vary significantly within a field or even within a
single pass of the harvester. Measuring and calibrating delay
time for every operating time/condition would be tedious and
time–consuming,  if not impossible. Application of the same
value to different sensors on a single combine (i.e., grain flow
and moisture) is not reasonable either, since the sensors are
often mounted at different positions in the grain flow stream.
Yield and grain moisture content may exhibit different delay
times, and these delay times may vary across locations within
a field. If this is the case, then it may be appropriate to apply
variable delay time corrections to yield and grain moisture on
homogeneous sub–field areas. Clearly, a systematic and
objective means of determining delay time that could be
applied to multiple sensors and sub–field areas would be
extremely useful.

The objectives of this study were to: (1) develop
systematic and objective methods to determine delay time for
combine yield and moisture sensor data, and (2) apply these
methods to whole field and sub–field areas to investigate
their performance.

ANALYSIS APPROACH
The visual, map–based method of estimating delay time

can be described as follows. Assuming that the direction of
travel is alternating, as shown in figure 1, then the delay time
that causes the greatest visual similarity between adjacent
transects over several instances is selected, and homogenous
areas become clear (14 s in this case). If an inappropriate
delay time is used, then the edges of those areas will become
blurred, with something of a “saw tooth” pattern (i.e., 12 s or
16 s). In other words, the visual method assumes that the
features in a yield map should appear in natural, continuous,
spatial patterns.

In order to successfully employ the visual method of delay
time estimation on a dataset, several requirements exist. It is
critical that the dataset have significant, widespread spatial
variation in the measured variable. Secondly, variation must
be on a spatial scale compatible with the sampling intensity
of the dataset. Finally, it is important that the measurement
error be relatively small in relation to the variation of the
measured variable. When all three of these requirements are
met, the datasets have significant “clarity,” and we can be
quite confident in the selection of delay time. As these
conditions are less well met, the datasets are more ambigu-
ous, and the estimation of delay time becomes more
problematic.

GEOSTATISTICS
Geostatistics provides a theoretical basis for the use of this

visual method. In essence, the spatial dependency of near
locations is greater than that of far locations (Webster and
Oliver, 1990). Geostatistics, based on the theory of regional-
ized variables, deals with the variance structure of spatial
variables and is the primary tool of spatial variability
analysis. Bakhsh et al. (2000), Borgelt et al. (1997), and
Chung et al. (2000), among others, have described applica-
tions of geostatistics to precision agriculture. Semivariance,
the index of spatial dependency, is expressed in equation 1:

Figure 1. Effect of different delay times on homogeneity of mapped data: 12 s (left), 14 s (center), and 16 s (right).
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Figure 2. Parameters of a typical semivariogram.
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where
h = separation distance or lag
�(h) = semivariance for interval distance class h
zi = measured sample value at point i
zi+h = measured sample value at point i+h
N(h) = total number of pairs for the lag interval h.
Figure 2 shows a typical semivariogram and its parame-

ters. As the separation, or lag, distance increases, semivarian-
ce increases and then reaches a maximum at the level known
as the sill. Range, the limit of spatial dependence, is defined
as the separation distance at which the variogram reaches its
sill (Webster and Oliver, 1990).

Another characteristic of the variogram is the nugget,
which appears on the variogram as a discontinuity at the
origin. A nugget variance is due to measurement errors
and/or micro–variability over distances smaller than the
minimum distance between observations. In practice, the
nugget and other semivariogram parameters are calculated
by regression of semivariances over a certain lag distance
with an appropriate model.

Figure 1 shows that localized areas of a yield map are less
variable if the correct delay time is used. The “saw tooth”
pattern imparted by incorrect delay times increases the
variability between transects, assuming that most actual
yield variations are relatively smooth and well–behaved.
Since nugget variance measures the amount of small–scale
variation in a spatial dataset, we would expect the relation-
ship of nugget and delay time to be similar to figure 3. Nugget
variance should be minimized at the true delay time.

Standard semivariograms are fit over a wide range of lag
distances and are theoretically restricted to a few functional
shapes. Because of this, they may not fit the semivariance
pattern at small lag distances particularly well, as shown in
the example of figure 2. A linear relationship is most
frequently seen in semivariance patterns near the origin
(Journel and Huijbregts, 1978). Thus, in this research, we
decided to use a linear regression through the first few points
of the semivariogram to determine a more reliable nugget–
like parameter, rather than using the nugget calculated from
the overall theoretical semivariogram.

Figure 3. Expected pattern of nugget variance, with minimum value at the
true delay time.

DATA SEGMENTATION

Another approach we used to determine optimum delay
time was a data segmentation procedure based on a quadtree
decomposition.  The quadtree approach was originally used
as a two–dimensional representation of binary images
(Hanan, 1990) and has been used in many areas related to
computer graphics (Vassilakopoulos and Manolopoulos,
1993) and database query. The basic principle of a quadtree
is to cover a planar region of interest with a square, and then
to recursively partition the square into smaller squares until
each square contains a suitably uniform subset of the input.
This approach can be used, for instance, to compress bitmap
images by subdividing them until each square has the same
color value (Leitao et al., 1996).

The quadtree decomposition procedure was explained
well by Hanan (1990). As an example, consider the spatial
region in figure 4 (left) and the corresponding 23 by 23 binary
array in figure 4 (center). Observe that the ones correspond
to pixels within region A, and the zeroes correspond to pixels
outside region A. The quadtree decomposition of this data is
shown in figure 4 (right). The quadtree decomposition has the
property that at each subdivision stage, the image is
subdivided into four equal–sized parts. Note that for this
dataset, attribute data will be stored for 19 quadtree blocks,
as compared to the 64 blocks in the original classified image.

Similar to the geostatistical approach, if a yield dataset is
corrected with the true delay time, then the discrepancies
between adjacent homogeneous areas are clearer and simpler
than in case of an incorrect delay time. Distorted and
ambiguous features in a yield map will increase the number
of decompositions, or the data segmentation number. The
performance of the data segmentation approach will be
influenced by crispness of the input dataset, the number of
classes used, and the classification scheme selected.

DATA AND ANALYSIS PROCEDURES
DATASETS USED

The feasibility and performance of the geostatistical and
data segmentation methods were investigated using a variety
of test datasets for which delay times were well established.
The methods were then applied to grain yield and moisture
content measurements from three research fields harvested
with a combine equipped with a commercial yield monitor-
ing system.
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Figure 4. Binary data segmentation using a region quadtree: original image (left), classified image (center), and segmented image (right).

Figure 5. Ideal test dataset with clear regions at zero (left) and 5 s (right) delay times.

The first “ideal” test dataset simulated a block of spatial
data with homogeneous sub–field regions clearly separated
by sharp boundaries. The left part of figure 5 shows the
pattern of this generated dataset. Two types of homogeneous
regions were placed next to each other in a checkerboard
pattern. Each homogeneous region consisted of 10 rows Ü
10 columns of grid cells. Data were assumed to have been
“harvested” line by line from the bottom left corner, with
adjacent rows collected in opposite directions. To simulate
the effects of changing delay time, cells were assumed to
have been collected on 1s intervals, and 10 additional
datasets were created by shifting the values of the cells
through the range of µ5 s. The ideal dataset was considered
to be a subset of a larger field consisting of the same repeating
pattern. As a result, each transect was shifted left or right
independently of the rows above or below it (fig. 5, right).

The performance of the developed methods was then
examined with elevation and soil electrical conductivity
(EC) datasets. The elevation and EC data were collected
simultaneously on a 4 ha field using an Ashtech Z–Surveyor
real–time kinematic differential global positioning system
(RTK–DGPS; 3 cm horizontal and 5 cm vertical rms
accuracy) and a Geonics EM38 soil electrical conductivity
sensor, as described by Sudduth et al. (2001). These data were
collected in the back–and–forth pattern previously de-
scribed, with adjacent rows collected in opposite directions.
Elevation data were investigated first, because this dataset
had clear spatial structure and a delay time of 0 s,
disregarding GPS latency issues, which were assumed to be

minor. Based on travel speed and the distance between the
EM38 and the RTK–DGPS antenna, the delay time of the EC
data was between –1 s and –2 s. The elevation data (fig. 6)
exhibited larger homogeneous regions than did the EC data
(fig. 7). The field was divided into four approximately
equal–size regions to examine possible variations in delay
time.

The developed methods were also applied to yield and
crop moisture measurements taken with an AgLeader yield
monitoring system on three research fields. The grain flow
sensor was located at the top of the clean grain elevator, while
the moisture sensor was located at the upper end of the
inclined auger inside the grain tank. The data were collected
in Field 1 (21 ha, corn, 1997), Field 2 (21 ha, corn, 1996), and
Field 3 (17 ha, soybean, 1997) near Centralia, Missouri.
Figure 8 shows the grain yield and moisture maps of Field 1

Figure 6. Elevation data used to test methods.
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Figure 7. Soil EC data used to test methods.

Figure 8. Field 1 grain yield (top) showing regions defined to investigate
variations in delay time. The same division was also applied to the mois-
ture map (bottom).

with delay times corrected by the visual method. Preliminary
visual examination of each map revealed the specific spatial
structure of the corresponding dataset. For example, the
homogeneous areas were smaller in the yield maps compared
to the moisture maps. Boundaries between homogeneous
areas were clearer in the yield map than in the moisture map
for Field 1, while boundaries were clearer in the moisture
map for Field 2.

Variations in spatial structure could also be seen within a
single map. Because of this, the fields were divided into
sub–field regions to investigate possible variations in delay
time. For example, Field 1 was divided into 12 regions
(fig. 8). First, the field was divided into 9 regions of
approximately  equal size, with six containing areas where the
combine was entering and leaving the crop and three where
essentially no starting or stopping of the combine occurred.
Regions 10 and 11 were chosen where clear, large homoge-
neous areas existed. Region 12 was selected to examine delay
time within an area where the combine was entering and
leaving the crop.

Since the grain flow sensor and crop moisture sensor were
located at different positions on the combine, separate delay
times were determined. Descriptive statistics of the yield and
moisture datasets are summarized in table 1.

ANALYTICAL PROCEDURES

As previously stated, since standard models may not
provide a good fit to the semivariance pattern at short lag
distances, we used the y–intercept of a linear regression fit to
the first few semivariances as a more reliable nugget–like
parameter. The lag interval used in calculating the semivaria-
nce was 1 m for the ideal dataset and 2 m for the elevation,
EC, yield, and moisture datasets, approximating the spacing
between data points along the measurement transects. These
values provided good resolution in the semivariogram while
maintaining adequate numbers of data pairs in each lag
interval. For yield datasets, the lag interval could be
shortened to 1 m; however, we found no advantage to this
increased data density.

Examination of semivariograms revealed that, for the
datasets used in this study, the first 10 or more semivariance
points were contained within the initial, relatively linear
portion of the curve. A preliminary investigation showed that
using a smaller number of points resulted in increased
estimation errors for the datasets with known delay times.
Therefore, we chose to use 10 points in the linear regression
to minimize the effects of noise in any single variogram point
while representing the shape of the initial portion of the
curve. In the non–ideal datasets, these 10 points spanned a
20–m distance. In our previous experience (e.g.,  Birrell et al.,

Table 1. Descriptive statistics and ranges of delay times examined.

Field 1 Field 2
Field 3

Statistic Ideal
Elevation

(m)
EC

(mS/m)
Yield

(Mg/ha)
Moisture

(%)
Yield

(Mg/ha)
Moisture

(%)

Field 3
Yield

(Mg/ha)

Mean 1.5 299.65 51.42 5.61 19.74 9.11 18.35 2.26
C.V. (%) 33.33 0.32 10.11 31.24 5.72 20.55 4.17 18.95
Range of test data 1 4.16 58.73 12.93 19.1 14.89 17.1 3.40
Number of observations 6400 2624 2624 29914 29906 32799 32795 8089
Ranges of delay times examined (s) (–5, +5) (–5, +5) (–5, +5) (10, 20) (13, 23) (10, 22) (13, 25) (8, 20)
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1996), a 20–m lag distance has generally been well within the
initial,  linear portion of the grain yield semivariogram.
However, users of this procedure are advised to check that
this relationship is also true for their data.

S+SpatialStats version 1.5 (MathSoft, Inc., Seattle,
Wash.) was used to calculate semivariances and to perform
the linear regressions. A range of delay times was applied to
each dataset (table 1), and semivariances were calculated.
The delay time at which the y–intercept of the regressed line
was a minimum was selected as the optimum delay time.

Implementation  of the data segmentation procedure
required that the data be in a square grid of side 2n. Since all
datasets, with the exception of the ideal datasets, initially
consisted of point data, a method was required to convert
these data into a grid form. A nearest–neighbor gridding
algorithm implemented in Surfer version 7.0 (Golden
Software. Inc., Golden, Colo.) was applied to the point data,
with the grid size selected to be approximately equal to the
harvest transect spacing (3 to 6 m for these datasets). This
method provided a close approximation of the point data, but
in the grid form required. The data grid was inserted into a
square grid of side 2n, such that 2n was greater than or equal
to both dimensions of the data grid. Grid cells outside the
field boundary were assigned a class value of zero to
effectively remove them from analysis. Finally, the non–zero
cells in the grid were classified into a user–determined
number of classes, based either on equal size intervals or on
placing an equal number of observations in each class. The
segmentation algorithm was applied to the resulting grid, and
the total number of segments with a non–zero classification
value was calculated.

In the data segmentation procedure, the number of classes
selected could have significant impact on the results of the
analysis. Too few classes could result in over–simplification
of the yield distribution and the resulting grid. Too many
classes could create too much complexity, making the pattern
extremely noisy. In addition, the classification scheme used
could have significant impact on the results. Selecting
intervals of equal size could produce a more intuitive, more
natural–looking classification to represent the yield distribu-
tion, but this method could be severely compromised when
extreme values were present. The equal number of observa-
tions per class method could over–exaggerate small varia-
tions but would be more stable where extreme values were
present. For this analysis, both 5–class and 10–class intervals
were investigated, for both equal interval and equal number
classification schemes.

With an incorrect delay time, the number of segments
obtained from a yield map would be increased due to the “saw
tooth” pattern along the boundaries between adjacent
homogeneous areas. However, at the correct delay time, this
segmentation number should be minimized. Further, this
segmentation number would, in some sense, give an
indication of the “complexity” of the image. The ratio of the
segmentation number at optimum delay time to the maxi-
mum possible segmentation number, equal to the total
number of grid cells, was calculated for each dataset to assess
the complexity of the map and to compare the degree of
complexity between datasets. This “complexity ratio” is a
minimum when the entire grid contains the same value, and
it increases as the number of heterogeneous features next to
each other increases, up to maximum when each cell is
different from any adjacent cells. It should be clear that as this

ratio nears a maximum, the ability of the data segmentation
method to accurately estimate delay time becomes severely
reduced.

A subjective, visual method commonly used in determin-
ing delay time was also applied to the grain yield and
moisture datasets. An individual experienced in processing
yield data examined each yield and moisture dataset visually
and selected delay times for each region in the field such that
discrepancies in visual features were minimized. In addition,
the individual rated the selection of each delay time with a
confidence factor (1 to 10) that subjectively indicated the
level of clarity of the map and the resulting certainty in the
selection of that delay time. The results of the geostatistical
and data segmentation methods were then compared to the
delay times estimated by the visual method.

RESULTS AND DISCUSSION
GEOSTATISTICAL METHOD

Figure 9 shows variograms for the ideal dataset with delay
times of 0 and 5 s. The semivariance of the dataset at a delay
time of 0 s increases with a linear pattern until lag distance
reaches 10 m (10 cells) and then oscillates. This variogram
pattern indicates that there is one variation component within
10 m of lag distance and another periodic component beyond
that range. The variogram for the dataset at 5 s delay time
shows a pure nugget effect, representing the dominance of a
small–scale variation without other large–range components.
The sills of the two variograms are approximately identical.
Figure 10 shows how the intercept of the regression line
responded to changes in delay time for the ideal dataset.
These results supported our hypothesis that the y–intercept
should decrease as the homogenous regions of the map
increased in size.

Figure 11 shows results of the geostatistical analysis of
elevation data (left) and EC data (right) for both the
whole–field and region 1 datasets. The results for the
elevation data were more stable and symmetrical across zero
delay time, compared with the slightly more asymmetrical
case of the EC data. As expected, the minimum value
consistently  occurred at a delay time of  0 s for the elevation
data. The results were not quite as well behaved for the EC
data, but the delay times were clearly in the range of –1 s to

Figure 9. Semivariogram of the ideal test data at zero and 5 s delay times.
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Figure 10. Change of variogram intercept with different delay times for
the ideal dataset.

–2 s. This variability was reasonable, given the non–constant
speed of the ATV during data collection. Estimated delay
times for the elevation and EC data are summarized in
table 2. Delay times were within the expected ranges for all
analyses of these datasets.

Figure 12 displays results for yield and moisture data from
regions 10 and 11 of Field 1. The yield data showed clear
patterns, with an optimum delay time of 14 s in region 10 and
13 s in region 11. The results for grain moisture were less
clear, possibly due in part to the relatively small range of
moisture variation within this field. The results for region 11

showed a constantly decreasing intercept over the range of
examined delay times, not clearly indicating an optimal
delay time. The moisture data from region 10 showed slightly
better results, locating a marginally optimal delay time of
17 s. Visual analysis of these maps provided similar results
(table 3). The visual method gave a delay time of 14 s for
grain yield in region 10, with a high confidence rating (9) for
this estimate. A delay time of 12 s was chosen for yield in
region 11, with a slightly lower confidence rating (8). The
visual method was not able to indicate an appropriate delay
time for the moisture data in region 11, and in region 10 a
delay time of 17 s was selected with the lowest of confidence
ratings (1).

Estimated delay times for the grain yield and moisture
datasets are summarized in tables 3 and 4. For yield data, the
delay times estimated by the geostatistical method were the
same as those determined by the visual method in 5 of the
12 regions of Field 1 (table 3). In the seven other regions of
that field, the geostatistical method differed from the visual
observer by only 1 s. Averaged over all regions of Field 1, the
delay time from the geostatistical approach was about 1 s
greater than from visual observation. For moisture measure-
ments, estimated delay times were the same as those
determined by the visual method in 3 of the 12 regions of
Field 1, and 3 other regions showed a 1 s difference. The
geostatistical method could not determine optimum delay
times in 2 regions where the visual observer also could not
find map features clear enough to estimate delay time.

Figure 11. Change of variogram intercept with different delay times for elevation data (left) and soil EC data (right).

Table 2. Delay times determined for elevation and EC data using variogram intercept and segmentation methods.

Variogram
[ ]

Segmentation, 5 Classes[b] Segmentation, 10 Classes[b]g
Intercept[a]

Equal Number Equal Interval Equal Number Equal Interval

Elevation EC Elevation EC Elevation EC Elevation EC Elevation EC

Whole field 0 (–0.013) –2 (3.293) 0 (0.348) –2 (0.717) 0 (0.327) –3 (0.332) 0 (0.584) –2 (0.883) 0 (0.526) –2 (0.606)
Region 1 0 (–0.024) –1 (2.470) –1 (0.427) –2 (0.660) 0 (0.468) –3 (0.537) –2 (0.711) –1 (0.843) 0 (0.706) –2 (0.734)
Region 2 0 (–0.001) –2 (3.555) 0 (0.351) –2 (0.559) 0 (0.453) –1 (0.365) 0 (0.671) –3 (0.807) 0 (0.706) –1 (0.537)
Region 3 0 (–0.010) –1 (1.657) 1 (0.256) –1 (0.763) 1 (0.294) [c] 1 (0.542) –1 (0.917) 1 (0.515) –1 (0.862)
Region 4 0 (–0.021) –2 (1.733) 0 (0.383) –2 (0.625) –1 (0.453) –2 (0.542) –2 (0.621) –2 (0.834) –1 (0.659) –2 (0.708)
Range 0 (–2, –1) (–1, 0) (–2, –1) (–1, 1) (–3, –1) (–2, 1) (–3, –1) (–1, 1) (–2, –1)
Average 0.00 –1.50 0.00 –1.75 0.00 –2.00 –0.75 –1.75 0.00 –1.50
[a] Value in parentheses is y–intercept: m2 for elevation and (mS/m)2 for EC.
[b] Value in parentheses is the ratio of segmentation number to the number of grid cells.
[c] Delay time estimation was not obtained within the range examined.
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Figure 12. Change of variogram intercept with different delay times for grain yield (left) and moisture data (right) in regions 10 and 11 of Field 1.

Table 3. Summary of delay times determined for Field 1 using variogram intercept, data segmentation, and visual methods.

Yield Moisture

Intercept[a] Segmentation[b] Visual[c] Intercept[a] Segmentation[b] Visual[c]

Whole field 14 (0.342) 14 (0.707) 14 (7) 21 (0.553) 19 (0.790) 19 (3)
Region 1 14 (0.093) 14 (0.584) 14 (7) 19 (0.059) 20 (0.708) 18 (3)
Region 2 14 (0.218) 13 (0.743) 13 (7) 20 (0.074) 20 (0.804) 19 (2)
Region 3 13 (0.734) 14 (0.587) 14 (8) 14 (0.730) 18 (0.693) 18 (1)
Region 4 14 (0.405) 15 (0.774) 14 (9) 18 (0.063) 21 (0.774) 18 (2)
Region 5 13 (0.211) 14 (0.820) 13 (4) 16 (1.322) 19 (0.846) [e]

Region 6 15 (0.214) 15 (0.820) 14 (5) [d] 21 (0.819) [e]

Region 7 14 (0.494) 16 (0.609) 14 (7) 18 (0.287) 17 (0.676) 18 (1)
Region 8 13 (0.237) 13 (0.738) 12 (8) 17 (0.225) 19 (0.836) 18 (1)
Region 9 14 (0.362) 14 (0.856) 13 (4) 21 (0.206) [d] [e]

Region 10 14 (–0.011) 14 (0.702) 14 (9) 17 (0.070) 17 (0.833) 17 (1)
Region 11 13 (0.170) 13 (0.801) 12 (8) [d] 20 (0.911) [e]

Region 12 14 (0.550) 16 (0.818) 13 (6) 15 (0.605) [d] [e]

Range 13 – 15 13 – 16 12 – 14 14 – 21 17 – 21 17 – 19

Average 14.25 13.75 13.33 19.20 17.5 18.0
[a] Value in parentheses is y–intercept: (Mg/ha)2 for yield and %2 for moisture.
[b] Using 5 classes and equal number classification; value in parentheses is the ratio of segmentation number to the number of grid cells.
[c] Value in parentheses is qualitative confidence factor (1–10 scale).
[d] Optimum delay time was not estimated within the range of times examined.
[e] Map features not clear enough for visual estimate of delay time.

Table 4. Summary of delay times determined for Field 2 and 3 using variogram intercept, data segmentation, and visual methods.
Yield, Field 2 Moisture, Field 2 Yield, Field 3

Intercept[a] Segmentation[b] Visual[c] Intercept[a] Segmentation[b] Visual[c] Intercept[a] Segmentation[b] Visual[c]

Whole field 17 (1.181) 21 (0.846) 17 (4) 20 (0.196) 22 (0.798) 22 (5) 12 (0.053) 10 (0.888) 12 (4)
Region 1 19 (2.087) 23 (0.831) 18 (2) 20 (0.279) 18 (0.830) 22 (4) 12 (0.057) 17 (0.923) 12 (3)
Region 2 15 (0.930) [d] 17 (1) [d] 22 (0.873) 23 (3) 10 (0.047) 11 (0.939) 11 (1)
Region 3 19 (0.869) [d] [e] 20 (0.096) 21 (0.894) 21 (1) 13 (0.074) 12 (0.918) 12 (2)
Region 4 17 (1.491) 19 (0.800) 17 (3) 21 (0.246) 21 (0.821) 22 (3) 12 (0.033) 10 (0.893) 12 (4)
Region 5 16 (0.698) [d] [e] 21 (0.118) 22 (0.859) 22 (3)
Region 6 16 (1.012) 19 (0.955) 16 (1) 18 (0.072) 23 (0.909) 22 (1)
Region 7 15 (1.483) 23 (0.823) 16 (2) [d] [d] 21 (2)
Region 8 17 (0.655) 23 (0.864) 17 (1) [d] 23 (0.931) [e]

Region 9 18 (0.940) [d] [e] 17 (0.085) 20 (0.945) [e]

Range 15 – 19 19 – 23 16 – 18 17 – 21 18 – 23 21 – 23 10 – 13 10 – 17 11 – 12
Average 16.89 21.40 16.83 19.50 21.25 21.86 11.75 12.50 11.75
[a] Value in parentheses is y–intercept: (Mg/ha)2 for yield and %2 for moisture.
[b] Using 5 classes and equal number classification; value in parentheses is the ratio of segmentation number to the number of grid cells.
[c] Value in parentheses is qualitative confidence factor (1–10 scale).
[d] Optimum delay time was not estimated within the range of times examined.
[e] Map features not clear enough for visual estimate of delay time.
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The geostatistical method also performed quite well for
Fields 2 and 3 (table 4), where map features were generally
less clear than for Field 1. Delay times for yield were within
2 s of those determined by the visual method for both fields.
The confidence level assigned by the visual observer was low
in all cases. For moisture data from Field 2, the geostatistical
method determined a delay time in 6 of 9 regions, and in 4 of
these 6 regions the delay time differed by less than 2 s from
the visual method. When averaged over all regions of Field 2,
the geostatistical method under–estimated moisture delay
times by about 2 s compared with the results by the visual
method. Yield delay times were nearly identical for geostatis-
tical and visual methods when averaged over Field 2 and
Field 3.

Figure 13 illustrates an issue associated with the applica-
tion of the geostatistical method to region 3 of Field 1. The
left image in this figure shows the yield map created with a
13 s delay time, as determined by the geostatistical method,
while the right image used a 14 s delay time, as selected by
the visual observation method. By comparing the circled
areas, it is clear that the 14 s delay was superior to the 13 s
delay. However, there were a number of data points at the
start or end of several transects where measured yield was
quite low, but the adjacent yield in the end rows was high.
When these low–yield points fall very near high–yield points
in the end rows, the semivariance at very short lags (i.e., the
nugget) increases rapidly. This indicates that the effect of
spurious data may be significant for the geostatistical
method, and must be considered before the method is
applied.

Another point can be demonstrated by the yield map for
region 7 of Field 1 (fig. 14). The delay times estimated by
both the geostatistical and visual methods were the same
(14 s). However, a more detailed visual investigation of the
map revealed different delay times in the smaller regions
seen in the left and right portions of the figure. The left
portion showed a clearer image at 14 s (fig. 14, left), while
the right portion showed better results with a 13 s delay time
(fig. 14, right). This illustrates that subdivision of fields into
smaller areas may result in better estimation of optimal delay
time.

DATA SEGMENTATION METHOD
The results from the segmentation method were similar to

those for the geostatistical method. Figure 15 shows the
results from the ideal dataset, where the segmentation
method produced an estimated delay time of zero, as did the
geostatistical  method.

Segmentation was performed on the elevation and EC data
with 5 and 10 classes based on the equal number and equal
interval classification schemes, with the results summarized
in table 2. The estimated delay time for the EC data was
occasionally outside the range of expected values (–1 to –2 s)
with the 5–class/equal interval and the 10–class/equal
number classification schemes. The 5–class/equal number
and 10–class/equal interval classification schemes provided
estimated delay times within the expected ranges in all cases.

Figure 13. Yield maps for region 3 of Field 1 (fig. 8), after application of the 13 s delay time from the geostatistical method (left) and the 14 s delay time
from the visual method (right).

Figure 14. Yield maps for region 7 of Field 1 (fig. 8), after application of a 14 s delay time (left) and a 13 s delay time (right).
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For yield and crop moisture measurements, the 5–class/
equal number classification scheme was chosen since this
classification provided more reliable delay time estimates on
elevation and EC data. Results are summarized in tables 3
and 4. Variation in segmentation number with changes in
delay time for region 10 of Field 1 for both yield and moisture
data is displayed in figure 16. The pattern of variation in
segmentation number appeared more complex but gave
similar results to those from the geostatistical and visual
methods. For 4 of the 12 regions of Field 1, the segmentation
method achieved the same delay time for yield as did the
visual method. For 6 additional regions, the results differed
by only 1 s. Only two regions of the field differed by more
than 1 s. As with the geostatistical method, there were two
regions of the field (regions 9 and 12) where the segmentation
method was unable to estimate delay time for the moisture
data.

Delay times determined by the data segmentation method
differed by less than 1 s from the visual method in 5 of
9 regions for the Field 2 moisture data, and by less than 2 s
in 3 of 4 regions for the Field 3 yield data (table 4). The data
segmentation method did not perform well for the Field 2
grain yield measurements. Delay times were not determined
in 4 regions, and were over–estimated by about 5 s when
compared to the visual method over all regions. Visual
estimation was also difficult for this dataset.

COMPARING METHODS
The performance of the visual method was influenced by

the clarity of the features in the dataset examined. When
features on a map were clear and obvious to the visual
observer, the confidence factor selected was relatively high.
From clearest to most ambiguous, the datasets were: ideal
case, elevation, EC, Field 1 yield, Field 1 moisture, Field 2
moisture, Field 3 yield, and Field 2 yield. Map clarity, as
indicated by the confidence rating of the visual observer, will
not necessarily have the same meaning as the complexity
ratio of a map indicated by the data segmentation method
(one can clearly envision a map that is very complex but still
contains many clear, small, spatially distributed patterns).
However, for the datasets investigated in this study, the
complexity ratios showed very similar trends to the confi-
dence ratings of the visual method. The complexity ratios
were 0.123 for the ideal dataset, 0.256 to 0.427 for elevation

data, and 0.559 to 0.763 for EC data when the 5–class/equal
number classification scheme was applied (table 2). For the
yield and moisture maps, Field 1 had smaller complexity
ratios than Field 2 and Field 3. The complexity ratios of yield
maps were smaller (0.584 to 0.856) than those of moisture
maps (0.693 to 0.911) on Field 1 (table 3), and moisture data
had smaller values (0.798 to 0.945) than yield (0.800 to
0.955) on Field 2 (table 4). One likely factor causing the high
complexity ratio on Field 2 was a systematic noise compo-
nent (caused by management factors) contained in the yield
map. The Field 2 yield map showed a number of alternating
adjacent strips of high and low yield running in a north–south
direction, which would be detrimental to the performance of
the data segmentation method. When compared to the visual
method, the geostatistical method showed better perfor-
mance for most yield datasets, while the data segmentation
method generally provided better results on the moisture
datasets (tables 3 and 4).

In spite of noise in the datasets, the geostatistical and data
segmentation methods performed quite well and showed
similar results in the estimation of delay times for data
collected in a back–and–forth pattern. The geostatistical
method used the y–intercept of a linear regression in the
short–range, rapidly increasing portion of a variogram to
produce  a  “nugget–like” result.   This  method produced  a

Figure 15. Number of segments for the simulated ideal dataset, showing
a minimum at zero delay time.

Figure 16. Number of segments for the yield data (left) and moisture data (right) of region 10 of Field 1.
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more reliable pattern in the objective function used to
estimate delay time than did the data segmentation method.
This method, in effect, measured the amount of variability
over small lag distances, identifying variations in the borders
between adjacent homogeneous areas. For this reason, large
differences in measurement values that are very close
together, whether due to edge effects or spurious data, would
cause significant errors in the estimation of delay time.

The data segmentation approach should be far less
susceptible to these problems, since individual spurious data
points would, in general, affect at most a very small region
of the grid. In fact, in region 3 of Field 1, where the
geostatistical  method had significant difficulty, as shown by
a relatively large intercept (0.734 (Mg/ha)2), the segmenta-
tion method selected the same delay times as the visual
method. The visual method experienced difficulty in deter-
mining moisture content delay times, having very low
confidence ratings (6 regions) or no estimate at all (5 regions)
on 11 of the 12 regions in Field 1. In contrast, at least one of
the two objective methods estimated a delay time for every
region in Field 1 (table 3). Only for one case (moisture data
for region 7 of Field 2) could neither method determine a
delay time. The visual confidence rating for this data was also
very low (table 4). We might expect that an approach
combining both methods could increase the accuracy of
delay time estimation. Automated procedures to estimate
delay times for yield monitoring systems seem to show
promise.

SUMMARY
Geostatistical  and data segmentation methods were

developed to estimate delay time in yield monitoring data
with objective criteria. These methods were validated with
ideal datasets and near–ideal datasets (elevation and EC data)
and were then applied to grain yield and moisture data. Major
results of the study were:
� A geostatistical method was developed to take advantage

of the variability structure over small lag distances as a
measure of discrepancy between adjacent homogeneous
areas. A “modified nugget” was calculated, and the
optimum delay time was determined at its minimum
value.

� A data segmentation method was developed by modifying
the concept of a region quadtree. This method evaluated
the degree of complexity required to accurately represent
a given set of data, with the assumption that less
complexity would be seen in data with optimal delay
times. Data were transformed into a grid, classified, and
segmented recursively until all the values were the same
within a given sub–field region. The number of classes
and the classification scheme used influenced the
performance of this method.

� Both methods performed well on test datasets when results
were compared to known delay times. Furthermore, they
provided reasonable estimates of yield and moisture delay
times when compared to a more subjective, visual
method. The geostatistical method performed more
reliably in general, but the data segmentation method
yielded better results near field boundaries and for
moisture data in some cases. The performance of the

methods was influenced by the clarity and complexity of
datasets.
Optimal delay times for grain yield and moisture varied in

different parts of the test fields. For given sub–field regions,
yield and moisture content had different delay times.
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