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ABSTRACT et al. (1989) modeled ECa as a function of soil water
content (both the mobile and immobile fractions), theApparent profile soil electrical conductivity (ECa) can be an indi-
electrical conductivity (EC) of the soil water, soil bulkrect indicator of a number of soil physical and chemical properties.

Commercially available ECa sensors can be used to efficiently and density, and the EC of the soil solid phase.
inexpensively develop the spatially dense data sets desirable for de- Measurements of ECa can be used to provide indirect
scribing within-field spatial soil variability in precision agriculture. measures of the soil properties listed above if the contri-
The objective of this research was to compare ECa measurements butions of the other soil properties affecting the ECa
from a noncontact, electromagnetic induction–based sensor (Geonics measurement are known or can be estimated. If the ECaEM38)1 to those obtained with a coulter-based sensor (Veris 3100) changes due to one soil property are much larger than
and to relate ECa data to soil physical properties. Data were collected

those attributable to other factors, then ECa can beon two fields in Illinois (Argiudoll and Endoaquoll soils) and two in
calibrated as a direct measurement of that dominantMissouri (Aqualfs). At 12 to 21 sampling sites in each field, 120-cm-
factor. Lesch et al. (1995a, 1995b) used this direct-cali-deep soil cores were obtained for soil property determination. Depth
bration approach to quantify variations in soil salinityresponse curves for each ECa sensor were derived or obtained from

the literature. Within a single field and measurement date, EM38 data within a field where water content, bulk density, and
and Veris deep (0–100 cm depth) data were most highly correlated other soil properties were “reasonably homogeneous.”
(r � 0.74–0.88). Differences between ECa sensors were more pro- Research in Missouri has established direct, within-field
nounced on the more layered Missouri soils due to differences in calibrations between ECa and the depth of topsoil above
depth-weighted response curves. Correlations of ECa with response a subsoil claypan horizon (Doolittle et al., 1994; Sudduth
curve–weighted clay content and cation exchange capacity were gener- et al., 1995, 2001; Kitchen et al., 1999).
ally highest and most persistent across all fields and ECa data types.

Mapped ECa measurements have been found to beSignificant correlations were also seen with organic C on the Missouri
related to a number of soil properties of interest infields and with silt content. Significant correlations of ECa with soil
precision agriculture, including soil water content (Sheetsmoisture, sand content, or paste EC were observed only about 10%
and Hendrickx, 1995), clay content (Williams and Hoey,of the time. Data obtained with both types of ECa sensors were similar

and exhibited similar relationships to soil physical and chemical prop- 1987), CEC, and exchangeable Ca and Mg (McBride et
erties. al., 1990). Because ECa integrates texture and moisture

availability, two soil characteristics that affect productiv-
ity, it can help to interpret spatial grain yield variations,
at least in certain soils (e.g., Sudduth et al., 1995; JaynesEfficient and accurate methods of measuring
et al., 1993; Kitchen et al., 1999). Other uses of ECa inwithin-field variations in soil properties are impor-
precision agriculture have included refining the bound-tant for precision agriculture (Bullock and Bullock,
aries of soil map units (Fenton and Lauterbach, 1999),2000). Apparent profile soil electrical conductivity is
interpreting within-field corn rootworm (Diabroticaone sensor-based measurement that can provide an indi-
barberi Smith and Lawrence) distributions (Ellsbury etrect indicator of important soil physical and chemical
al., 1999), and creating subfield management zonesproperties. Soil salinity, clay content, cation exchange
(Fraisse et al., 2001).capacity (CEC), clay mineralogy, soil pore size and dis-

Two types of portable, within-field ECa sensors havetribution, soil moisture content, and temperature all
been used in agriculture—an electrode-based sensor re-affect ECa (McNeill, 1992; Rhoades et al., 1999). In
quiring direct contact with the soil and a noncontactsaline soils, most of the variation in ECa can be related
electromagnetic induction (EM) sensor. The earliestto salt concentration (Williams and Baker, 1982). In
sensors were of the contact type and included four elec-nonsaline soils, conductivity variations are primarily a
trodes inserted into the soil, coupled with an electricfunction of soil texture, moisture content, and CEC
current source and resistance meter. Hand-carried four-(Rhoades et al., 1976; Kachanoski et al., 1988). Rhoades
electrode sensors were initially used in salinity surveys
(Rhoades, 1993), and later versions were tractor-1Mention of trade names or commercial products is solely for the
mounted for mobile, georeferenced measurement ofpurpose of providing specific information and does not imply recom-

mendation or endorsement by the USDA or the Univ. of Illinois. ECa. The electrode-based sensing concept formed the
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Fig. 1. Veris 3100 coulter-based apparent soil electrical conductivity sensor.

basis of a commercial product, the Veris 3100 (Veris or computer, an analog-to-digital converter, and a GPS
receiver (e.g., Jaynes et al., 1993; Cannon et al., 1994;Technol., Salina, KS). This mobile system (Fig. 1) uses

six rolling coulters for electrodes and simultaneously Sudduth et al., 2001).
Each of the commercial ECa sensors has operationalgenerates shallow (ECa-sh; nominally 0–30 cm) and deep

(ECa-dp; 0–100 cm) measurements of ECa (Lund et al., advantages and disadvantages. The EM38 requires the
user to complete a daily calibration procedure before1999). It includes all necessary components except for

the tow vehicle and global positioning system (GPS) use. Changes in ambient conditions such as air tempera-
ture, humidity, and atmospheric electricity (spherics)receiver and requires no user calibration.

The EM-based ECa sensor most often used in agricul- can affect the stability of EM38 measurements. Sudduth
et al. (2001) reported that EM38 output could drift byture is the EM38 (Geonics Limited, Mississauga, ON,

Canada). Details of the EM-sensing approach are given as much as 3 mS m�1 h�1 and that this drift was not
consistently related to ambient conditions. They sug-by McNeill (1980, 1992). The EM38 is a lightweight bar

and was initially designed to be carried by hand and gested that drift compensation be accomplished by use
of a calibration transect or through frequent recalibra-provide stationary ECa readings. To implement mobile

data acquisition with this unit, it is necessary to assemble tion of the EM38. In contrast, the Veris 3100 system
includes all necessary components and requires no usera data collection system (Fig. 2), including a cart or sled

to transport the sensor, a tow vehicle, a data collector calibration. Thus, the Veris requires less user setup and

Fig. 2. Mobile apparent soil electrical conductivity data collection system, including Geonics EM38 sensor attached to rear-wheeled cart.
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Table 1. Study fields.

State Field Field size Location Dominant soils Sampling date Calibration sites

ha
Missouri F1 35 39�13�48″ N, 92�7�0″ W Mexico, Adco 24 Nov. 1997 21

16 Nov. 1999 19
Missouri GV 13 39�14�5″ N, 92�8�49″ W Mexico, Adco 25 Nov. 1997 15

17 Nov. 1999 15
Illinois WN 16 40�18�18″ N, 88�32�38″ W Varna, Drummer, Chenoa 14 Oct. 1999 12
Illinois WS 16 40�18�5″ N, 88�32�38″ W Varna, Drummer, Chenoa 14 Oct. 1999 17

as much as 50 to 60% smectitic clay. Within each study field,configuration before use and has the advantages of a
topsoil depth (TD) above the claypan (depth to the first Bsingle-vendor system when it comes to troubleshooting.
horizon) ranged from �10 cm to �100 cm.Using a wheeled cart pulled by an all-terrain vehicle

Soils of the Illinois fields include the Varna series (fine,(Fig. 2), an EM38 system is adaptable to a wide variety
illitic, mesic Oxyaquic Argiudolls), Drummer series (fine silty,of data collection conditions. This lightweight system mixed, superactive, mesic Typic Endoaquolls), and Chenoa

requires little power and makes it possible to collect series (fine, illitic, mesic Aquic Argiudolls). Surface textures
data under wet or soft soil conditions. Also, it is possible include silt loam and silty clay loam. Drainage classes repre-
to collect data after a crop has been planted in 76-cm sented at the Illinois fields range from poorly drained to well
rows, up until the time that the crop is 15 to 20 cm tall. drained (Kravchenko et al., 2001).
The Veris 3100 is much heavier and requires a tractor
or truck to pull it through the field, limiting its use to Apparent Soil Electrical Conductivity Sensors
firmer soil conditions and unplanted fields. The newer and Response Curves
Veris 2000XA, which only has four coulters and one The EM sensor used in this research (Geonics EM38) has
measurement depth, can be pulled by a large all-terrain a spacing of 1 m between the transmitting coil located at one
vehicle and can collect data between planted 76-cm end of the instrument and the receiver coil at the other end.
crop rows. Calibration controls and a digital readout of ECa in millisie-

Commercial operators are using ECa sensing systems mens per meter (mS m�1) are included, and an analog data
output allows data to be recorded on a data logger or com-to provide soil variability information to producers. Al-
puter. The EM38 was operated in the vertical dipole mode,though many or most of these are coulter-based sensors,
providing an effective measurement depth of approximatelythe vast majority of research information has been ob-
1.5 m. The vertical-mode ECa measurement from the EM38tained with EM-based sensors. As more use is made of
by Geonics EM38 (designated by ECa-em in this study) is aver-ECa sensing in precision agriculture, it will be important
aged over a lateral area approximately equal to the measure-to compare the data obtained with each type of system ment depth. The instrument response to soil conductivity var-

and to understand how these data are related to soil ies as a nonlinear function of depth (McNeill, 1992). Sensitivity
properties. This study was undertaken to compare ECa in the vertical mode is highest at about 0.4 m below the instru-
data collected on Missouri and Illinois fields with the ment (Fig. 3). The ECa measurement is determined by the
noncontact Geonics EM38 and the coulter-based Veris soil conductivity with depth, as weighted by this instrument
3100 and to relate those data to measured soil proper-
ties. Objectives were to (i) interpret differences in ECa

sensor data in relation to response curves of the sensors,
(ii) document the relationship of ECa data to soil proper-
ties, and (iii) investigate the improvement, if any, ob-
tained by combining multiple ECa variables for estimat-
ing soil properties.

MATERIALS AND METHODS

Study Fields

Data were collected on two Missouri fields and two Illinois
fields. The Missouri fields (F1, 35 ha and GV, 13 ha) were
located within 3 km of each other near Centralia, in central
Missouri. The two Illinois fields (WS and WN, 16 ha each)
were adjacent to each other near Bellflower, in east-central
Illinois. Geographic coordinates of the fields are given in
Table 1.

The soils found at the Missouri sites include the claypan
soils of the Mexico series (fine, smectitic, mesic aeric Vertic
Epiaqualfs) and the Adco series (fine, smectitic, mesic aeric
Vertic Albaqualfs). These soils were formed in moderately
fine-textured loess over a fine-textured pedisediment and are
classified as somewhat poorly drained. Surface textures range Fig. 3. Relative response of apparent soil electrical conductivity
from silt loam to silty clay loam. The subsoil claypan horizon(s) sensors as a function of depth. Responses are normalized to

yield a unit area under each curve.are silty clay loam, silty clay, or clay and commonly contain
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response function (McNeill, 1992). The EM38 was combined ation of the Veris 3100 can be a problem in dry, low-conductiv-
ity soils due to poor electrical contact between the coulterswith a data acquisition computer and differential GPS (DGPS)

system for mobile data collection (Fig. 2), as described by and the soil, such a problem was not observed in these data.
Examination of the Veris data showed it varied smoothly fromSudduth et al. (2001).

The Veris Model 3100 sensor cart (Fig. 1; Lund et al., 1999) point to point except for one small field area where stony
ground presented coulter contact problems. In this area, aidentifies soil variability by directly sensing soil EC. As the

cart is pulled through the field, a pair of coulter electrodes small number of data points with extreme Veris ECa values
were excluded from the data set.transmit an electrical current into the soil while two other

pairs of coulter electrodes measure the voltage drop. The The Veris 3100 and Geonics EM38 were operated in tan-
dem, taking measurements on transects spaced approximatelysystem georeferences the conductivity measurements using an

external DGPS receiver and stores the resulting data in digital 10 m apart. Data were recorded on a 1-s interval, correspond-
ing to a 4- to 6-m data spacing. Between 4400 and 11 000form. The measurement electrodes are configured to provide

both ECa-sh and ECa-dp readings of ECa. As with the EM38, the individual ECa measurements were obtained for each field.
Data obtained by DGPS were associated with each sensorVeris 3100 response to soil conductivity varies as a nonlinear

function of depth. The coulter electrodes of the Veris 3100 reading to provide positional information with an accuracy of
1.5 m or better.are configured as a Wenner array, an arrangement commonly

used for geophysical resistivity surveys. The theoretical re- Using our previously reported approach (Sudduth et al.,
2001), a calibration transect was established in each field tosponse function of the Wenner array (Roy and Apparao, 1971)

is somewhat similar to that of the EM38 although it decreases monitor instrument drift during the survey. Data were col-
lected on this transect at least every hour, and raw ECa read-more rapidly with depth (Fig. 3).

If the response curves of Fig. 3 are integrated with respect ings were adjusted based on any change in calibration transect
data. As expected, the direct ECa–sensing approach of theto depth, differences in the soil volumes measured by the

different sensors are readily apparent (Fig. 4). With ECa-sh, Veris system was much less (�50%) prone to instrument drift
than the EM38. We believe that drift compensation would90% of the response is obtained from the soil above the 30 cm

depth. With ECa-dp, 90% of the response is obtained from the not be a necessary component of Veris ECa surveys although
it should be done for EM38 surveys.soil above the 100 cm depth. With ECa-em, 90% of the response

is obtained above 5 m depth while 70% of the response is Within each field, between 12 and 21 sampling sites were
selected to cover the range of ECa values present. These sitesobtained above about 1.5 m. The curves of Fig. 4 are based

on equations that assume a homogeneously conductive soil were chosen by a soil scientist familiar with the soils in the
particular field with the additional goal of including samplesvolume. Actual responses will vary somewhat due to ECa

differences between soil layers, with a high-conductivity sur- from all of the landscape positions and soil map units present.
One 4.0-cm-diam. core that was 120 cm long was obtained atface layer reducing the depth of response (Barker, 1989).
each site using a hydraulic soil-coring machine. Cores were
examined within the field by a skilled soil scientist and pedo-Data Collection
genic horizons identified. Cores were segmented by horizon

For each field, ECa data were collected with both sensors for laboratory analysis. Soil moisture was determined gravi-
on the same date in the fall of 1999. Additional ECa data were metrically.
collected for the Missouri fields in the fall of 1997 (Table 1). Additionally, samples for each horizon were analyzed at
Soil moisture conditions were relatively dry at the time of the University of Missouri Soil Characterization Laboratory
data collection for all sites and dates because there had been using methods described by the National Soil Survey Center
little profile recharge due to fall rains. Although reliable oper- Staff (1996). Data were obtained for the following properties:

sand, silt, and clay fractions (pipette method); CEC (base �
Al method); organic C; and saturated paste EC.

Data Analysis

To allow comparison between ECa sensors, a combined
data set was created for each field. Each Veris data point was
combined with the nearest EM38 data point based on GPS
coordinates. If a match was not found within a 2-m radius,
that point was removed from the data set. Additional data
sets were created to compare across sampling dates on the
Missouri fields. Because measurement transect locations were
not identical between 1997 and 1999, it was necessary to in-
crease the search radius for these data sets to 3 m. Pearson
correlation coefficients (r) were calculated between the vari-
ous ECa sensors and measurement dates.

In this study, soil property data were obtained by horizon,
rather than on an even depth increment. To facilitate compari-
son across calibration points, a depth-weighted mean was cal-
culated for each soil property at each calibration point. To
provide a measure of the variability in each soil property with
depth, a depth-weighted coefficient of variation (CV) was also
calculated. To account for the fact that the response of each
ECa sensor is not constant with depth, three additional sets
of data were created by weighting each soil property profileFig. 4. Cumulative response of apparent soil electrical conductivity

sensors as a function of depth. by the sensor response curve (Fig. 3).
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Analysis of the relationship between ECa and soil properties TD was �100 cm were used because 90% of the theoretical
ECa-dp response is within 100 cm of the surface.was performed for each data source (ECa-em, ECa-sh, and ECa-dp)

and profile-weighted soil property, using the 1999 calibration
point data. These data were examined for spatial autocorrela- RESULTS AND DISCUSSIONtion by calculating the Moran coefficient as suggested by Long
(1996). No significant autocorrelation was detected in any Comparison of Apparent Soil Electrical
ECa data. Only 15% of the soil property data sets showed Conductivity Data
significant (P � 0.05) spatial autocorrelation. With this general

Apparent soil electrical conductivity data obtainedlack of significant spatial autocorrelation, likely caused by the
small number (12–19) and spatial dispersion of the calibration with each sensor exhibited similar qualitative trends at
points in each field, we conducted a nonspatial analysis be- the field scale (e.g., Fig. 5, showing field F1). A statistical
tween ECa and soil properties. Pearson correlation coefficients summary of the ECa data for each field and measure-
were calculated between ECa and soil properties (moisture, ment date is shown in Table 2. In general, the mean
clay, silt, sand, organic C, CEC, and saturated paste EC). ECa-sh and ECa-dp measured by the Veris 3100 were some-
Regressions were performed to estimate soil properties from what higher on the Illinois fields compared with the(i) each individual ECa measurement, (ii) both Veris 3100 ECa Missouri fields; however variation in ECa as measuredmeasurements, and (iii) all three ECa measurements. Only

by the CV was somewhat less. The mean EM38-mea-parameters statistically significant (P � 0.05) were retained
sured ECa was similar for Missouri and Illinois fieldsin the final regression equations.
while the CV was higher for the Illinois fields. ThisOur previous work (Doolittle et al., 1994; Kitchen et al.,

1999; Sudduth et al., 2001) established the utility of ECa-em suggests that the major variability in the soil properties
data for estimating TD on claypan soils. In this study, we that affect ECa on the Missouri fields may be in the
compared the accuracy of TD estimation by ECa-em and ECa-dp upper layers that are more heavily weighted in the Veris
for the Missouri claypan soil fields. Estimations based on ECa-sh 3100 ECa measurements. In contrast, variability affect-
were not included because 90% of the theoretical ECa-sh re- ing ECa on the Illinois fields may be more pronounced
sponse is within 30 cm of the surface. Therefore, ECa-sh data at greater depths.are unable to estimate TDs greater than approximately 30 cm

Correlation coefficients between the various ECawhile the TD on these fields exceeded 100 cm in places. Topsoil
measurements for each field are shown in Table 3. Thedepth (depth to the first B horizon) data obtained at calibra-
highest correlations were observed when comparing thetion points in fields F1 and GV were used to develop linear
same data (ECa-em, ECa-sh, or ECa-dp) across the 1997 andregression equations for estimating TD as a function of the

inverse of ECa (ECa
�1). Only those calibration points where 1999 measurement dates. Soil conditions were similar

Fig. 5. Comparison of apparent soil electrical conductivity (ECa) readings obtained with (left) Geonics EM38, (center) Veris 3100 shallow
electrodes, and (right) Veris 3100 deep electrodes on Missouri field F1 (39�13�48″ N, 92�7�0″ W, Mexico and Adco soils). Within each
map, an equal number of observations is contained in each classification interval.
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Table 2. Statistical summary of apparent soil electrical conductiv-between these two measurement dates. Each occurred
ity (ECa) data.after a water-stressed growing season and little posthar-

ECavest moisture recharge, so we would expect similar ECa

results. In previous work, we also found high correla- Field and year ECa data† Mean Median SD CV
tions (0.85 � r � 0.90) when comparing the 1997 F1

mS m�1 %
ECa-em data used here with other EM38 survey data F1(1997)‡ ECa-em 41.2 40.5 5.7 13.8
collected on the same field under wetter soil conditions ECa-sh 15.2 14.3 4.7 30.9

ECa-dp 21.9 21.2 9.3 42.5in April 1994 and April 1999 (Sudduth et al., 2001).
F1(1999) ECa-em 30.7 30.0 3.8 12.4Within a single measurement date, the highest corre- ECa-sh 9.7 9.3 3.1 32.0

ECa-dp 19.6 18.7 8.5 43.4lations were consistently observed between the ECa-em
GV(1997) ECa-em – – – –data and the ECa-dp data for both Missouri and Illinois ECa-sh 30.9 27.1 12.2 39.5

fields. Correlations between ECa-em data and ECa-sh data ECa-dp 35.5 35.2 13.2 37.2
GV(1999) ECa-em 34.8 35.3 6.4 18.4were lowest while correlations between ECa-dp data and

ECa-sh 15.2 13.0 7.5 49.3
ECa-sh data were intermediate. The reason behind this ECa-dp 23.7 23.5 11.6 48.9

WN(1999) ECa-em 30.7 28.8 8.5 27.7ranking can be discerned from the differences between
ECa-sh 27.7 25.7 8.0 28.9the response curves for the various sensors (Fig. 3 and ECa-dp 39.3 37.4 12.0 30.5

WS(1999) ECa-em 32.8 32.2 8.0 24.44) where the ECa-dp response curve lies between the
ECa-sh 27.9 26.9 6.9 24.7ECa-sh curve and the ECa-em curve. Correlations across ECa-dp 41.1 39.5 11.8 28.7

years and sensors were similar to correlations observed
† ECa-em, vertical-mode ECa measured by Geonics EM38; ECa-sh, shallowacross sensors for a single measurement date. ECa measured by Veris 3100; ECa-dp, deep ECa measured by Veris 3100.

When data from both fields of a state were combined, ‡ Field characteristics and locations are given in Table 1.
correlations were similar, and better in some cases, than
correlations calculated within individual fields. When lower (Table 3). These results indicate that although
data were combined for all fields, correlations between the shallow (ECa-sh) and deep (ECa-dp or ECa-em) ECa data
the two deeper ECa readings did not decrease, but corre- were strongly related within a field or soil association

(the fields from each state had similar soils and werelations of ECa-sh to the other ECa readings were much

Table 3. Correlation coefficients (r) between different apparent soil electrical conductivity (ECa) measurements for study fields.

1999 1997

Field and year Data† ECa-em ECa-sh ECa-dp ECa-em ECa-sh ECa-dp

Field F1‡
1999 ECa-em‡ 1

ECa-sh 0.60 1
ECa-dp 0.74 0.74 1

1997 ECa-em 0.80 0.67 0.83 1
ECa-sh 0.64 0.82 0.69 0.71 1
ECa-dp 0.79 0.71 0.86 0.81 0.79 1

Field GV
1999 ECa-em 1

ECa-sh 0.67 1
ECa-dp 0.84 0.75 1

1997 ECa-em – – – –
ECa-sh 0.66 0.84 0.74 – 1
ECa-dp 0.83 0.69 0.88 – 0.80 1

Both Missouri fields
1999 ECa-em 1

ECa-sh 0.78 1
ECa-dp 0.71 0.72 1

1997 ECa-em – – – –
ECa-sh 0.78 0.87 0.66 – 1
ECa-dp 0.71 0.76 0.84 – 0.84 1

Field WN
1999 ECa-em 1

ECa-sh 0.79 1
ECa-dp 0.88 0.82 1

Field WS
1999 ECa-em 1

ECa-sh 0.78 1
ECa-dp 0.84 0.80 1

Both Illinois fields
1999 ECa-em 1

ECa-sh 0.77 1
ECa-dp 0.86 0.80 1

All fields
1999 ECa-em 1

ECa-sh 0.61 1
ECa-dp 0.86 0.46 1

† ECa-em, vertical-mode ECa measured by Geonics EM38; ECa-sh, shallow ECa measured by Veris 3100; ECa-dp, deep ECa measured by Veris 3100.
‡ Field characteristics and locations are given in Table 1.
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located near each other), their relationship was not con- were generally highest and most persistent across all
sistent across different soil associations. Thus, the shal- fields and ECa data types. This higher correlation with
low (ECa-sh) and deeper (ECa-dp and ECa-em) sensors pro- sensor-weighted data supports our hypothesis that trans-
vide unique information, and data from one cannot be formation of soil property data by weighting with the
inferred from data obtained with the other. However, sensor response function is an appropriate way to help
because the two deeper ECa readings were highly corre- account for curvilinearity in the functional relationship.
lated both within and across fields, it appears that little Other soil properties that exhibited a significant correla-
additional information would be gained on these soils tion in most cases were clay, silt, and CEC of the upper
by collecting both EM38 and Veris data. soil horizon. Some properties, such as profile-average

organic C and CEC were significant on the Missouri
fields but not on the Illinois fields. Significant correla-Relationship of Apparent Soil Electrical
tions with soil moisture, sand content, and paste ECConductivity to Measured Soil Properties
were observed less frequently.A statistical summary of profile-average soil property Quadratic regression analysis was performed to esti-data measured for the calibration points in each field mate soil properties as a function of each of the ECais shown in Table 4. Analysis of variance indicated that variables. Properties estimated were profile-averageprofile-average clay and paste EC were significantly and top-layer clay, silt, CEC, organic C, paste EC, andhigher for the Missouri fields while sand, organic C, and soil moisture (Missouri fields only). The effect of fieldCEC were significantly higher (P � 0.05) for the Illinois
was not statistically significant in the analysis (P � 0.05),fields. Profile CVs of clay, silt, CEC, and paste EC were
so regressions were performed for three data sets: (i)significantly higher for the Missouri fields while profile
Missouri data, (ii) Illinois data, and (iii) all data. Table 6CVs of organic C were significantly higher (P � 0.05)
shows the regression statistics for each analysis. Regres-for the Illinois fields. These higher CVs showed that the
sions for some soil properties were more predictive forclaypan soils of the Missouri fields were more layered in
Missouri fields while others were more predictive forterms of the soil properties affecting ECa. To further
Illinois fields. The most accurate estimates were ob-investigate this layering, mean A-horizon and first
tained for clay, silt, and CEC. Estimates of soil moisture,B-horizon clay and CEC were calculated for the calibra-
organic C, and paste EC obtained by regression on ation points on each field. For the Illinois fields, mean
single ECa variable were of relatively low accuracy.clay and CEC for the first B-horizon were within 2%

Top-layer clay, silt, and CEC were estimated withof the means for the A horizons. For the Missouri fields,
considerably more accuracy than were profile-averagemean clay was 215% greater and mean CEC 185%
values. In most cases, ECa-sh provided the best estimatesgreater for the first B horizon compared with the A
of the top-layer soil properties, as would be expectedhorizons. This significant layering, combined with differ-
from the shape of the ECa-sh weighting function (Fig. 3).ences in response functions (Fig. 3) for the different
Profile-average soil properties were usually estimatedsensors, explains the nonlinear relationship between
with the highest accuracy using ECa-em data althoughdata from the different sensors seen on the Missouri
ECa-dp data were most predictive for some cases (Tablefields (Fig. 6). The similarity of clay and CEC levels
6). Quadratic equations were significant for less thanbetween the A horizon and B horizon for the Illinois
half of the soil parameters; for the others, only the linearfields helps to explain the linear relationship between
ECa term was significant.ECa data obtained from the different sensors on those

A second series of regression analyses included multi-fields (Fig. 6).
ple ECa data sources for estimating the same soil proper-Significant (P � 0.05) correlation coefficients be-
ties listed above. Stepwise quadratic (plus interaction)tween ECa and profile-weighted soil properties for each
analyses included (i) both Veris data sets—ECa-sh andfield are shown in Table 5. Correlations of ECa with

sensor-weighted clay content and sensor-weighted CEC ECa-dp—and (ii) all three ECa data sets (Table 6). In

Table 4. Means and coefficients of variation (CVs indicating variation with depth) for soil properties obtained from by-horizon analysis
of calibration point cores. Means and CVs were calculated for each calibration point and then averaged over all calibration points
in each field.

Field†

F1 (MO) GV (MO) WS (IL) WN (IL)

Property Mean CV Mean CV Mean CV Mean CV

Soil moisture, g kg�1 146 0.26 146 0.18 –‡ – – –
Clay, g kg�1 354 0.38 321 0.22 300 0.13 298 0.14
Silt, g kg�1 594 0.23 622 0.11 587 0.09 603 0.10
Sand, g kg�1 32 0.84 58 0.39 113 0.43 99 0.64
Organic C, g kg�1 6.4 0.58 6.7 0.60 8.9 0.77 8.0 0.86
CEC, cmol kg�1§ 18.8 0.33 18.2 0.20 21.0 0.17 20.8 0.25
Paste EC, mS m�1¶ 22 0.27 22 0.31 10 0.17 17 0.28

† Field characteristics and locations are given in Table 1.
‡ Soil moisture data not available for Illinois fields.
§ CEC, cation exchange capacity.
¶ EC, electrical conductivity.
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Fig. 6. Relationships between apparent soil electrical conductivity (ECa) data for (top) Missouri field GV and (bottom) Illinois field WS. Re-
lationships appear more linear for WS (40�18�5�� N, 88�32�38�� W; Varna, Drummer, and Chenoa soils) than for GV (39�14�5″ N, 92�8�49″
W, Mexico and Adco soils). ECa-sh, shallow (0–30 cm) ECa measured by Veris 3100; ECa-dp, deep (0–100 cm) ECa measured by Veris 3100;
ECa-em, vertical-mode ECa measured by Geonics EM38.

general, this approach provided little, if any, improve- function of ECa yielded standard errors from 6 to 16 cm
(Table 7). Comparisons between ECa-em and ECa-dp datament over single-factor ECa regressions for top-layer

clay, silt, and CEC, reinforcing our observation that were variable between fields. For field F1, ECa-dp data
were more predictive of TD while ECa-em data were moreECa-sh data were a reasonable estimator of these proper-

ties. Estimates of single-state, profile-average clay and predictive of TD on field GV. Variations in the accuracy
of TD estimations between years could be explained atsilt were generally improved by including both Veris

ECa data sets and were further improved somewhat least partially by the fact that different calibration points
were used between 1997 and 1999. For F1, the 1997by including the ECa-em data. For multistate analyses,

estimates were improved when all three ECa variables calibration points exhibited a reasonably uniform distri-
bution in TD across the range from 0 to 100 cm. How-were allowed to enter the regression but were not im-
ever, in 1999, the calibration-point TDs were clusteredproved by including just Veris data.
between 20 and 50 cm. For GV, a more uniform distribu-Estimates of paste EC and profile-average soil mois-
tion of calibration points was obtained in 1999. Theseture were of low accuracy and were not improved by
results point out the importance of properly selectingincluding additional ECa variables. Estimates of organic
calibration points for relating ECa data to soil physicalC for Illinois fields were improved by including addi-
properties. One way to remove the subjectivity fromtional ECa terms while estimates for Missouri fields were
this process was proposed by Lesch et al. (1995b), whonot. Estimates of top-layer soil moisture, available only
described an algorithmic approach to the selection offor Missouri fields, also improved when additional ECa
optimized locations for calibrating ECa measurements.terms were included. For both single ECa and multiple

ECa regressions, better estimates of soil properties were
obtained within a single state than across both states. SUMMARY AND CONCLUSIONSFor best results, site-specific (or soil-specific) equations
relating soil properties to ECa should be used. Sensor-based measurements of ECa can provide im-

portant information on within-field soil variability. InRegression equations for estimating claypan TD as a
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Table 5. Significant (P � 0.05) correlations between soil properties and apparent soil electrical conductivity (ECa) data for each study field.

Field F1‡ Field GV Field WN Field WS

Soil property Weighting† ECa-em§ ECa-sh¶ ECa-dp# ECa-em ECa-sh ECa-dp ECa-em ECa-sh ECa-dp ECa-em ECa-sh ECa-dp

Soil moisture Sensor‡ 0.54 0.60 –†† – – – – –
Profile avg. – – – – – –
Top layer – – – – – –

Clay Sensor 0.60 0.76 0.74 0.88 0.89 0.83 0.59 0.70 0.78 0.76 0.74
Profile avg. 0.81 0.70 0.80 0.55 0.73
Top layer 0.62 0.75 0.83 0.74 0.60 0.74 0.66 0.54 0.77 0.62

Silt Sensor �0.65 �0.71 �0.73 �0.84 �0.79 �0.60
Profile avg. �0.50 �0.74 �0.61
Top layer �0.52 �0.66 �0.60 �0.68 �0.79 �0.72 �0.63 �0.75 �0.64 �0.60 �0.64 �0.61

Sand Sensor
Profile avg. �0.60
Top layer 0.46 0.59

CEC‡‡ Sensor 0.76 0.61 0.79 0.88 0.88 0.88 0.63 0.76 0.66 0.60 0.51
Profile avg. 0.68 0.54 0.53 0.82 0.79
Top layer 0.74 0.83 0.77 0.79 0.77 0.83 0.78 0.54 0.63

Organic C Sensor �0.75 �0.72
Profile avg. �0.54 �0.60 �0.72 �0.55 �0.60 0.62
Top layer

Paste EC Sensor 0.79
Profile avg.
Top layer 0.85 0.74

† Weighting applied to soil property data before calculating correlations: sensor � weighting function from Fig. 3 for the respective sensor; profile avg.
� depth-weighted average for 120-cm-deep profile sample; top layer � value from top layer of profile sample.

‡ Field characteristics and locations are given in Table 1.
§ ECa-em, vertical-mode ECa measured by Geonics EM38.
¶ ECa-sh, shallow ECa measured by Veris 3100.
# ECa-dp, deep ECa measured by Veris 3100.
†† Soil moisture data not available for Illinois fields.
‡‡ CEC, cation exchange capacity.

Table 6. Regression statistics for the estimation of soil properties as a function of apparent soil electrical conductivity (ECa).

Best single-ECa model Veris ECa Veris � EM38

Soil property Locations ECa data† R 2 SE‡ R 2 SE R 2 SE

Top layer
Moisture MO§ ECa-sh, q¶ 0.20 49.7 0.30 47.2 0.60 37.4
Clay MO ECa-sh 0.63 34.7 0.63 34.7 0.70 31.9

IL ECa-sh 0.53 25.6 0.55 25.6 0.55 25.6
All ECa-sh, q 0.78 31.2 0.78 31.2 0.78 31.2

Silt MO ECa-sh, q 0.62 41.2 0.62 41.2 0.63 40.7
IL ECa-dp, q 0.48 34.2 0.47 33.7 0.51 32.4
All ECa-sh, q 0.73 39.1 0.73 39.1 0.74 38.7

CEC# MO ECa-sh 0.56 3.40 0.56 3.40 0.56 3.40
IL ECa-em 0.61 2.80 0.46 3.30 0.61 2.80
All ECa-sh 0.60 3.44 0.60 3.44 0.61 3.36

Organic C MO ECa-sh 0.17 1.90 0.17 1.90 0.17 1.90
IL NS†† NS NS
All ECa-sh, q 0.46 3.56 0.51 3.42 0.58 3.22

Paste EC MO ECa-dp, q 0.28 5.9 0.28 5.9 0.31 5.8
IL NS NS NS
All ECa-dp 0.15 10.7 0.15 10.7 0.30 9.8

Profile average
Moisture MO ECa-sh 0.20 14.8 0.20 14.8 0.20 14.8
Clay MO ECa-em 0.23 49.2 0.33 46.7 0.60 37.4

IL ECa-em 0.47 29.6 0.53 28.3 0.50 28.6
All ECa-em 0.30 44.5 0.20 48.3 0.43 40.5

Silt MO ECa-em 0.28 46.4 0.37 44.0 0.44 41.7
IL ECa-em, q 0.15 52.5 NS NS
All ECa-dp 0.10 52.1 0.10 52.1 0.10 52.1

CEC MO ECa-em 0.48 2.86 0.44 3.00 0.48 2.86
IL NS NS NS
All ECa-dp 0.20 4.26 0.20 4.26 0.28 4.06

Organic C MO ECa-em, q 0.41 1.40 0.32 1.48 0.41 1.40
IL ECa-em 0.20 2.86 0.50 2.30 0.62 2.01
All NS 0.19 2.43 0.19 2.43

Paste EC MO ECa-sh 0.18 4.2 0.18 4.2 0.18 4.2
IL NS NS NS
All ECa-sh, q 0.43 5.1 0.43 5.1 0.43 5.1

† ECa-sh, shallow ECa measured by Veris 3100; ECa-dp, deep ECa measured by Veris 3100; ECa-em, vertical-mode ECa measured by Geonics EM38.
‡ Standard errors are in the units of g kg�1 (moisture, clay, silt, and organic C), cmol kg�1 (CEC), and mS m�1 (paste EC).
§ Field characteristics and locations are given in Table 1.
¶ The letter “q” denotes quadratic regression; all others are linear.
# CEC, cation exchange capacity.
†† NS, no significant (P � 0.05) regression.
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Table 7. Regression equations and statistics for estimation of claypan soil topsoil depth (TD, depth to the first B horizon) as a function
of apparent soil electrical conductivity (ECa).

Calibration
Field and year ECa data† Calibration equation r 2 SE points used

cm
F1 (1997)‡ ECa-em‡ TD � 7390 ECa-em

�1 � 137 0.81 10.7 18
ECa-dp TD � 918 ECa-dp

�1 � 11.7 0.87 8.9 18
F1 (1999) ECa-em TD � 1560 ECa-em

�1 � 18.6 0.27 9.0 18
ECa-dp TD � 278 ECa-dp

�1 � 13.8 0.62 6.5 18
GV (1997) ECa-dp TD � 1670 ECa-dp

�1 � 19.2 0.66 15.3 13
GV (1999) ECa-em TD � 5220 ECa-em

�1 � 118 0.86 10.6 13
ECa-dp TD � 646 ECa-dp

�1 � 2.4 0.69 16.1 13

† ECa-sh, shallow ECa measured by Veris 3100; ECa-dp, deep ECa measured by Veris 3100; ECa-em, vertical-mode ECa measured by Geonics EM38.
‡ Field characteristics and locations are given in Table 1.
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