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Abstract

Measures of soil electrical conductivity (EC) and elevation are relatively inexpensive to collect and result in dense
data sets which allow for mapping with limited interpolation. Conversely, soil fertility information is expensive to
collect so that relatively few samples are taken and mapping requires extensive interpolation with large estimation
errors, resulting in limited usefulness for site-specific applications in precision agriculture. Principal component
(PC) analysis and cokriging can be applied to create meaningful field scale summaries of groups of attributes and
to decrease the estimation error of maps of the summarized attributes. Deep (0–90 cm) and shallow (0–30 cm) EC,
elevation, and soil fertility attributes were measured in fields under corn (Zea mays L.) and soybean (Glycine max
L.) rotations, at two sites in Illinois (IL) and two sites in Missouri (MO). Soil fertility and topography attributes
were summarized by PC analysis. The first topography PC (TopoPC1) contrasted flow accumulation against el-
evation and curvature, to describe the main topographic pattern of the fields. The first soil fertility PC (SoilPC1)
consistently grouped together cation exchange capacity (CEC), Ca, Mg, and organic matter (OM). SoilPC1 was
well correlated to soil EC for all sites and cokriging with EC had higher r2 in the crossvariogram models compared
to ordinary kriging. The second and third soil fertility PCs (SoilPC2 and SoilPC3) were concerned with soil pH
and P, and reflected historic land use patterns. Maps of SoilPC2 and SoilPC3 had little relationship to soil EC or
topography and so could not be improved by cokriging.

Abbreviations: CEC – cation exchange capacity; EC – soil bulk electrical conductivity; OM – soil organic matter;
PC – principal component; SoilPC – soil fertility principal component; Sph – spherical variogram function; TopoPC
– topography principal component.

Introduction

Site specific management is a developing agriculture
technology that, in part, combines global positioning
systems (GPS) with variable application rate techno-
logy (VRT). The objective is to gather, analyze, and
correctly interpret sufficient information to make ac-
curate and economically viable site-specific manage-
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ment decisions. This is critical because the economic
advantage and environmental benefits of the techno-
logy is dependent upon the quality of the information
utilized (Bullock et al., 1998; Bullock and Bullock,
2000). Information on topography, soil chemical prop-
erties, and several years of yield are now typically
available among farmers and practitioners in the US
Midwest. A characteristic problem, however, is that
the various types of information are rarely collected
from the same locations in a field or at the same
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sampling intensity. In particular, soil fertility informa-
tion is usually discrete with much data collected from
a small number of points, so that the information is
likely to be insufficient for accurate construction of
field-scale maps. However, if soil fertility information
is correlated to a densely sampled variable and the pat-
tern with which the two vary jointly with separation
distance can be modeled, then the relationship can be
used to more accurately describe soil fertility patterns.
This process is termed cokriging and may significantly
improve the quality of soil fertility information for
precision agriculture (Goovaerts, 1998).

Thousands of measurements of in situ soil EC
and elevation may be collected from a single field by
mobile data collection systems, and very accurate in-
formation of the trends across a field can be obtained.
Unlike many soil tests, in situ soil EC and elevation
values are relatively inexpensive to collect and can be
measured with very little or no disturbance of the soil.
Measures of elevation can be made by land-based laser
or via GPS systems. Mobile measuring systems for
soil EC subject the soil to an electrical current and
measure the EC of a relatively large volume of bulk
soil. Systems using coulters attached to a traveling cart
measure the change in EC between one set of coulters
transmitting a current and a second set completing the
circuit. The method integrates the soil EC for the dis-
tance between the coulters, and to a depth similar to
the distance between the coulters. The measure is af-
fected by soil moisture, clay content, soil temperature,
and salinity, and has been found to be a useful meas-
ure of these properties as well as a surrogate measure
of other soil properties with related spatial patterns
(Jaynes, 1996; Sudduth et al., 1999; Johnson et al.,
2001).

Cokriging of soil salinity with soil EC inform-
ation has improved the accuracy of salinity maps
(Pozdnyakova and Zhang, 1999; Triantafilis et al.,
2001). Large temperature differentials and salinity ef-
fects are not expected in typical Midwestern cropping
fields, so clay and water content are expected to be the
main influences in spatial EC patterns (Sudduth et al.,
1999).

A second characteristic of precision agriculture
data is that groups of attributes are often related.
For instance, P, K, Mg, Ca, pH, CEC, and OM are
all measured from the same soil sample. In addi-
tion, topography data sets are generated when slope,
curvature, and flow accumulation are derived from
elevation maps. Therefore, it would be useful to sum-
marize these related sets of attributes, preferably into

one or two meaningful components before relating
them to other attributes (Mallarino et al., 1996). The
multivariate technique PC analysis can be applied to
summarize soil fertility and topography data into new
independent random variables.

Principal component analysis is a dimension re-
duction technique that takes correlated attributes,
or variables, and identifies orthogonal linear re-
combinations (PCs) of the attributes that summarize
the principal sources of variability in the data. The PC
analysis method is established in soil science (Bur-
rough and Webster, 1976) and has been used more
recently to summarize large data sets gathered in soil
quality research (Wander and Bollero, 1999; Mad-
donni et al., 1999). The value of a PC at a point can
be mapped by kriging methods in the same way that an
individual attribute such as soil P value can be mapped
(Goovaerts, 1997). Cokriging can be applied if there
is a correlation between a PC and a more densely
sampled attribute, such as EC. We hypothesized that a
combination of PC analysis and cokriging will create
meaningful summaries of site-specific management
information and improve the quality of the maps of the
summarized attributes for site-specific applications.

Methods and materials

A survey of deep and shallow EC values was made us-
ing a Veris� technologies Model 3100 (Geoprobe�
systems, Kansas)1 in the fall of 1999 under unsatur-
ated conditions (Sudduth et al., 1999). Between five
and eleven thousand deep (0–90 cm) and shallow (0–
30 cm) bulk soil EC values were collected from each
of four fields in IL and MO. The IL sites were adja-
cent north and south 16-ha sections (‘North Williams’
and ‘South Williams’, respectively) within a 259-ha
field at Williams Farm in McLean County, IL (location
40◦18′11′′ N, 88◦32′36′′ W). The MO sites were an
approximately 14-ha field, ‘Gvillo field’ (39◦14′2′′ N,
92◦8′44′′ W) and an approximately 18-ha subsection
of a field, ‘Field One’ (39◦13′50′′ N, 92◦7′44′′ W) near
Centralia, MO.

The soils of the North and South Williams sites
were predominantly fine-silty mixed mesic Typic En-
doaquoll in the poorly drained depressions and fine
illitic, mesic Mollic Hapludalf on the upper slopes.
These soils formed in a relatively thin layer of loess
over calcareous silty clay loam till (Windhorn, 1998).
The MO soils were claypan soils, predominantly fine
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Table 1. Descriptive statistics and variogram characteristics for electrical conductivity (EC) of the bulk soil for 0–300 mm
(shallow) and 0–900 mm (deep) at four sites in two states

South Williams, IL North Williams, IL Gvillo Field, MO Field One, MO

Deep Shallow Deep Shallow Deep Shallow Deep Shallow

EC EC EC EC EC EC EC EC

Descriptive statistics

Mean, mS m−1 40.9 27.5 39.2 27.5 23.5 15.0 19.3 9.5

Std. dev., mS m−1 11.3 6.4 11.8 7.8 11.3 7.1 2.7 8.1

Min, mS m−1 7.7 12.3 10.7 12.0 2.6 1.5 2.3 1.6

Max. mS m−1 74.5 48.5 74.9 51.9 68.6 44.9 45.1 19.2

Skewness 0.4 0.6 0.5 0.8 0.4 1.5 0.5 0.6

Variogram characteristics

Model type† Sph Sph Sph Sph Sph Sph Sph Sph

Model fit (r2) 0.94 0.91 0.92 0.98 0.99 0.98 0.93 0.93

Range (m) 68 76 84 69 350 428 162 133

Sill /(Nugget+Sill) 0.93 0.91 0.84 0.94 0.92 0.95 0.74 0.66

Cross-validation (r2)‡ 0.89 0.88 0.89 0.88 0.87 0.84 0.90 0.82

N 6823 6823 6612 6612 5076 5076 10806 10806

†Sph=Spherical function fitted to isotropic variogram.
‡Cross-validations were between predicted block kriged values and actual values at each point.

montmorillonitic, mesic Udollic Ochraqualf (Sudduth
et al., 1999).

The soils were sampled in the fall of 1996 in IL in a
modified grid pattern as described in Kravchenko et al.
(1999) and Warrick et al. (1999) and in the fall of 1995
in MO in a grid pattern as described in Kitchen et al.
(1999) and Sudduth et al. (1999). Soil sampling and
extraction was carried out by commercial laboratories
using standard measurement techniques (Kravchenko
and Bullock, 2000; Sudduth et al., 1996). Phosphorus,
K, Mg, Ca, CEC, pH, and OM were measured in all
soil samples.

Regionalized variable theory was used to pre-
dict values of EC and elevation at unknown points
(Goovaerts, 1997; Kravchenko and Bullock, 1999).
Isotropic variograms were calculated for deep and
shallow EC and elevation values at 15 m lags
(Goovaerts, 1997). After a variogram model had been
obtained, ordinary block kriging was applied to create
a surface of mean estimates in 20-m2 blocks.

Elevation was measured on a semi-regular grid of
approximately 10-m or less using a Leica 500 RTK
GPS system in IL and an Ashtech Z surveyor RTK
GPS system attached to a four wheel ATV in MO.
Ground slope, curvature and flow accumulation were
calculated from the elevation map based on the 20-
m2 block size. Slope and curvature were calculated
from elevation differences relative to the immediately

surrounding block values. Flow accumulation was
calculated as the sum of the total blocks in a field
contributing overland water flow to a particular block
(Kravchenko and Bullock, 2000).

The block values of EC and topography attributes
were extracted that coincided with each soil fertil-
ity sampling point, creating multivariate subsets ran-
ging from n = 73 at North Williams, to n = 186 from
Gvillo. This process retained all the original soil fertil-
ity values, of which relatively few were available, and
joined them with an appropriate average of the values
of EC and topography that had been collected around
each the soil sample point.

The subsets of topography and soil fertility data
were summarized by PC analysis using the PRIN-
COMP procedure of SAS (SAS, 2000). Principal
components were calculated based on the correla-
tion matrix. Principal components with eigenvalues
≥ 1 were considered to have a significant contribution
towards the explanation of total variation and thus re-
tained, as suggested by Jolliffe (1986) and Khattree
and Naik (2000). When the correlation matrix is used,
all original variables have unit variances and thus it
is not worth retaining any PC with variance (eigen-
value) < 1 because it contains less information than
an original variable (Jolliffe, 1986). Each PC is a
linear combination of the original variables. The ei-
genvector loading associated with each variable in this
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Table 2. Descriptive statistics of the topography information es-
timated for each soil sample location from North and South
Williams Fields, IL, and Gvillo Field and Field One, MO

Elevation Slope Curvature Flow

accumulation

M degrees 10−2zunits† �cells

North Williams, IL

Mean 237.4 1.10 0.00 9.1

Std.dev. 1.7 0.46 0.03 20.3

Min 233.5 0.24 −0.05 0.0

Max 240.5 2.15 0.09 105.0

Skewness −0.7 0.2 0.3 3.5

South Williams, IL

Mean 233.2 1.23 0.01 7.7

Std.dev. 1.5 0.40 0.03 22.6

Min 230.5 0.52 −0.08 0.0

Max 237.0 2.27 0.08 133.0

Skewness 0.4 0.5 −0.04 4.8

Gvillo Field, MO

Mean 261.7 1.02 0.00 6.2

Std.dev. 2.1 0.58 0.03 15.9

Min 258.1 0.02 −0.08 0.0

Max 264.9 2.93 0.07 177.0

Skewness 0.1 0.70 −0.3 7.3

Field One, MO

Mean 263.5 0.39 −0.00 24.1

Std.dev. 0.6 0.15 0.01 68.9

Min 262.3 0.06 −0.03 0.0

Max 264.7 0.98 0.02 469.0

Skewness 0.2 0.70 −0.1 4.8

†The reasonably expected values of all curvature for a hilly area
(moderate relief) may differ from about −0.5 to 0.5 (ArcView GIS
3.2 Help notes, Environmental Systems Research Institute Inc.)

linear combination represents the contribution of the
original variable to the PC. In this study, variables
with eigenvector loadings ≥ 0.3 were considered in
the interpretation of the PC as suggested by Harris
(2001). To prevent the undue influence of outliers, and
place the emphasis on the median trend rather than the
mean, soil fertility attributes with a skew greater than
one were log transformed before analysis (Parkin and
Robinson, 1992). The same rule was not applied to
the topography data although flow accumulation was
generally skewed, however the skew was too extensive
to be corrected by a single transformation.

Ordinary point kriging and ordinary point cokri-
ging were applied to estimate values of SoilPC1 on a
10 m grid at all four sites (Goovaerts, 1997; Deutsch
and Journel, 1998). Ordinary cokriging was applied

to the values of the first PC scores calculated at each
soil fertility sampling position, and the estimated EC
value at each soil sample point, and the raw EC data.
The improvement in the quality of the soil fertility
maps generated by cokriging as compared to kriging
was measured using cross-validations between known
SoilPC1 values and the predicted values.

Results and discussion

Electrical conductivity

At both North and South Williams the deep and shal-
low EC information was significantly correlated (r =
0.82, P < 0.0001) and both measures exhibited a very
strong fit to a spherical variogram model with a range
of approximately 70 m (Table 1). Cross-validations of
the ordinary block kriging were very high, indicated
excellent prediction of average values in each 20-m2

block (Table 1).
At the MO sites, the mean EC values were lower

than those found at North and South Williams. The
linear correlation between deep and shallow EC was
significant (r = 0.72 at Gvillo and r = 0.73 at
Field One, P < 0.0001 (Table 1). Variogram model
fits and cross-validations were again highly significant
(Table 1). The strong spherical model fits and high
cross-validations were in contrast to the high variabil-
ity at short distances that is generally expected of soil
exchangeable chemistry (Beckett and Webster, 1971).

Topography

The measures of elevation formed linear variograms
and maps with very high cross-validations (r2 = 0.99)
for all sites (Table 2). The descriptive statistics of
the topography subsets from the four sites were also
similar, except that the Field One site was generally
flatter, with a lower average slope and smaller range
of elevation and curvature (Table 2).

For all sites, the topography PC analysis consist-
ently formed two PCs, which together accounted for
an average of 72% of the total variability (Table 3).
Common elements in the first PC (TopoPC1) for all
sites were that elevation and curvature were added to-
gether and contrasted by flow accumulation (loading
had opposite sign), indicating that increasing elevation
was usually associated with positive curvature (con-
vex) and decreasing flow accumulation at the whole
field scale.
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Table 3. Principal component (PC) analysis of topography data extracted at each soil sample point. The results of the
analysis at four sites are summarized as the variance (eigenvalue) accounted for by each PC (TopoPC1 and TopoPC2)
for each site, the eigenvectorloadings of each variable in the PC, and correlations between each PC and soil electrical
conductivity (EC)

South Williams, IL North Williams, IL Gvillo Field, MO Field One, MO

Topo- Topo- Topo- Topo- Topo- Topo- Topo- Topo-

PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2

Eigenvalue 1.81 0.95 1.88 1.12 1.57 1.29 1.73 1.24

Prop. var.† 0.45 0.24 0.47 0.28 0.39 0.32 0.43 0.31

Cum. var.‡ – 0.69 – 0.75 – 0.71 – 0.74

PC composition

Elevation 0.60 0.11 0.59 −0.28 0.66 −0.22 0.36 −0.70

Curvature 0.49 −0.64 0.56 0.20 0.44 0.52 0.57 −0.00

Slope 0.46 0.73 −0.16 0.88 −0.54 0.50 0.34 0.72

Flow accumulation −0.43 0.22 −0.55 −0.34 −0.29 −0.65 −0.65 −0.02

Correlations between EC and topography PCs

Shallow EC −0.27∗ 0.15 −0.36∗∗ −0.03 −0.13 0.001 0.22∗∗ 0.31

Deep EC −0.37∗∗ 0.11 −0.51∗∗∗ −0.17 0.22∗∗ 0.08 0.43∗∗∗ 0.30∗∗∗

∗, ∗∗, ∗∗∗significance at the 0.05, 0.01 and 0.001 probability levels, respectively.
†Proportion of the total variance accounted for by each PC.
‡Cumulative proportion of the total variance accounted for.

Considering the results specifically by each site,
at South Williams TopoPC1 had significant positive
loadings for slope, elevation, and curvature and had
a significant negative loading for flow accumulation.
Therefore, TopoPC1 for this site could be described
as an average of slope, elevation and curvature in-
formation, contrasted by flow accumulation. South
Williams is characterized by a large central grassed
drainage-way that bisects long slopes with small inter-
fluves (Figure 1, Ia). Therefore, high values of slope
were usually associated with high values of elevation
and also positive curvature, while flow accumulation
tended to be low at the same points. Similarly, low
values of slope were associated with low elevation,
negative curvature and high flow accumulation. To-
poPC2 at South Williams was mainly concerned with
curvature contrasted with slope. Specifically, Topopc2
contrasted areas of high slope and concavity, which
were mainly on the edges of erosion rills, with areas
of low slope and convexity, such as the interfluves.

For TopoPC1 at North Williams, curvature was ad-
ded to elevation, and contrasted by flow accumulation.
Slope was separated into the second PC (TopoPC2)
where it had a significant contribution (Table 3). This
site had broad, relatively flat areas on the upper el-
evations, with sloped central areas, leading to lower
areas associated with a grassed drainage-way (Fig-
ure 1, Ia). Therefore, many points that had high values

of curvature also had high values of elevation and low
values of flow accumulation, and vice versa. Slope
was contrasted against flow accumulation in TopoPC2.
High scores of TopoPC2 represent areas in the field
with pronounced slopes and low flow accumulation.

For TopoPC1 at Gvillo, curvature and elevation
had significant positive loadings and were contrasted
against slope. In TopoPC2, slope was instead added to
curvature and these two were contrasted against flow
accumulation. This site had a broad, relatively flat area
on the eastern side, with sloped central areas leading
to lower areas associated with a grassed drainage-way.
The elevation rose again in the SW corner of the site
(Figure 1, IIa). Therefore, many points that had low
values of elevation were concave and had high values
of slope and vice versa, describing the average trend
for the field. In TopoPC2, decreasing slope was as-
sociated with negative curvature and increasing flow
accumulation, characterizing the landform associated
with a drainage-way running diagonally across the
field.

At Field One, TopoPC1 was similar to South Wil-
liams (Table 3). Flow accumulation was contrasted
against curvature, slope and elevation. TopoPC2, how-
ever, was different to South Williams, contrasting
slope with elevation rather than curvature. Field One
was gently sloping with a central depression forming
a drainage-way, so that increasing flow accumulation



274

Figure 1. Elevation (a), electrical conductivity (EC) (b), and soil fertility principal component one (SoilPC1) (c) at North and South Williams
(combined) (I), Gvillo (II) and Field One (III).

was particularly related to negative curvature, and to
decreased slope and elevation to a lesser extent (Fig-
ure 1). The upper areas of the site were relatively flat,
so that increasing elevation was related to decreas-
ing slope and this secondary trend was sorted into
TopoPC2.

The deep and shallow EC trends were compared
to the topography patterns, using a linear correlation
of the kriged block averages of EC and the values of
each topography PC score (Table 3). TopoPC1 at both
North and South Williams had significant negative cor-
relations to soil EC. The negative correlation accorded
with a general increase in EC value in the lower eleva-

tions and large depressions at these sites. Top soil clay
content had a similar pattern at these sites (Omonode,
2001). At Gvillo, high EC values were associated with
one sloped area and an associated interfluve, but the
effect was not consistent in a second sloped area at
this site (Figure 1, IIa). Topsoil depth to the claypan
has previously been found to be an important determ-
inant of clay content near the surface and therefore
EC, in the MO claypan soils (Kitchen et al., 1999).
The claypan is expected to be closer to the surface
in sloped areas where the topsoils have been eroded,
and therefore EC values increase on the sloped areas.
This effect only occurred in one of two sloped areas
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Table 4. Descriptive statistics of the soil fertility information from North and South Williams
Fields, IL, and Gvillo Field and Field One, MO

pH CEC† OM‡ P K Ca Mg

cmolckg−1 % kg ha−1 kg ha−1 kg ha−1 kg ha−1

North Williams Field, IL (n=73)

Mean 6.2 24.7 3.2 37.6 389.3 5216 754.6

Std.dev. 6.2 17.3 3.2 12.3 74.4 893.6 113.5

Min 5.5 13.3 2.4 10.1 237.4 3769.3 532.0

Max 7.0 24.7 3.8 67.2 618.2 8094.2 1097.6

Skewness 0.4 0.9 −0.5 0.3 0.8 1.3 0.9

South Williams Field, IL (n=76)

Mean 6.6 18.1 3.2 49.6 363.3 5996.4 739.9

Std.dev. 0.4 2.7 0.3 24.5 83.4 1004.5 189.9

Min 5.7 13.5 2.4 12.3 232.9 4213.4 487.2

Max 7.7 24.4 3.8 107.5 595.8 8648.6 1285.8

Skewness 0.8 0.3 −0.7 0.8 0.9 0.2 1.1

Gvillo Field, MO (n=186)

Mean 6.7 15.9 2.5 36.4 276.5 5775.1 548.0

Std.dev. 0.3 3.4 0.3 16.3 67.8 1019.2 286.4

Min 5.7 10.2 1.6 10.1 179.2 4129.4 170.2

Max 7.3 25.0 3.4 95.2 471.5 9022.7 1351.8

Skewness −0.9 0.9 0.0 0.9 1.0 0.8 1.2

Field One, MO (n=175)

Mean 6.4 10.6 2.3 16.9 197.0 3248.4 260.7

Std.dev. 0.5 1.8 0.3 6.1 31.8 406.4 106.8

Min 5.0 8.3 1.6 7.0 146.7 2287.0 118.0

Max 7.1 18.0 3.3 42.0 325.9 4411.0 866.0

Skewness −0.7 1.8 0.4 1.2 1.4 0.3 2.3

†Cation exchange capacity.
‡Organic matter.

at Gvillo, so the average topography did not correlate
well to EC (Table 3).

At Field One, EC values increased around a
drainage-way where topsoils have eroded (Figure 1,
IIIb), bringing the claypan closer to the surface. Both
shallow and deep EC patterns had positive correlations
to TopoPC1 (Table 3), indicating that on average EC
increased as curvature increased (became convex) and
flow accumulation decreased.

Soil fertility

The soil fertility data from IL and MO had skewed
distributions and wide value ranges, which are typical
of agricultural soil exchangeable chemistry (Becket
and Webster, 1971; Kravchenko and Bullock, 1999).
The mean soil fertility values from the MO sites were
lower than the IL values, and values for Field One
were lower than Gvillo field (Table 4).

Principal component analysis of typical soil fer-
tility data sets from four sites in two states provided
similar patterns of results. Between 78 and 87% of the
total variability of the soil fertility data from each site
was accounted for by two or three PCs with eigenval-
ues ≥ 1 (Table 5). A strong first PC (SoilPC1), with
eigenvalues greater than 2.5, was generated in each
case, which accounted for an average of 49% of the
total variability. SoilPC1 was consistently associated
with CEC, OM, and the cations (Table 5). At all the
sites, the second PC (SoilPC2) accounted for approx-
imately 25% of variability and was mainly concerned
with pH. The effect of soil P was added to pH for the
MO sites but was contrasted with pH in the IL sites.
A third PC was significant at the IL sites, which was
mainly concerned with K.

The analysis revealed some broad similarities
between the various sites, but also differences that re-
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Table 5. Principal component (PC) analysis of soil fertility data. The results of the analysis at four sites are summarized as the variance
(eigenvalue) accounted for by each PC (SoilPC1, SoilPC2 etc for each site), the eigenvectorloadings of each variable in the PC, and correlations
between each PC, the electrical conductivity (EC) and the two topography PCs (TopoPC1 and TopoPC2) for each site

South Williams, IL North Williams, IL Gvillo Field, MO Field One,MO

Soil- Soil- Soil- Soil- Soil- Soil- Soil- Soil- Soil- Soil-

PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC1 PC2

Eigenvalue 3.5 1.44 1.16 2.51 1.62 1.33 4.17 1.46 3.68 1.75

Prop. var.† 0.50 0.21 0.17 0.36 0.23 0.19 0.60 0.21 0.53 0.25

Cum. var.‡ – 0.71 0.88 – 0.59 0.78 – 0.81 – 0.78

PC composition

pH 0.24 −0.53 0.47 −0.08 −0.60 0.27 −0.01 0.73 −0.31 0.53

OM 0.31 0.37 −0.45 0.41 0.32 −0.26 0.35 −0.21 0.38 0.01

P 0.33 0.50 0.31 0.00 0.47 0.47 −0.17 0.56 −0.21 0.56

Ca 0.49 −0.16 −0.17 0.59 −0.13 0.04 0.45 0.29 0.23 0.59

Mg 0.44 −0.37 0.03 0.33 −0.44 0.41 0.47 −0.05 0.47 0.04

K 0.26 0.41 0.58 −0.08 0.30 0.68 0.44 0.15 0.43 0.22

CEC 0.48 −0.04 −0.32 0.60 0.1 0.04 0.48 0.02 0.50 0.07

Correlations between soil PCs, EC and topography PCs

Shallow EC 0.51∗∗∗ −0.27∗ 0.09 0.36∗∗ −0.25∗ 0.22 0.81∗∗∗ 0.16∗ 0.53∗∗∗ 0.17∗∗
Deep EC 0.60∗∗∗ −0.06 −0.05 0.60∗∗∗ −0.06 0.00 0.53∗∗∗ 0.01 0.51∗∗∗ 0.03

TopoPC1 −0.62∗∗∗ −0.21 0.14 −0.50∗∗∗ −0.05 −0.03 −0.23∗∗ 0.25∗∗∗ 0.01 0.07

TopoPC2 −0.05 0.15 0.17 −0.14 0.14 0.24 0.14 −0.33∗∗∗ 0.68∗∗∗ −0.28∗∗

∗,∗∗ ,∗∗∗significance at the 0.05, 0.01 and 0.001 probability levels, respectively.
†Proportion of the total variance accounted for by each PC.
‡Cumulative proportion of the total variance accounted for.

quire a more detailed explanation to understand the
effects generating these results. At South Williams, all
the soil fertility attributes had some contribution to the
first PC (SoilPC1) (Table 5). This PC indicated that all
the soil fertility attributes at this site tended to increase
and decrease at the same points, although only half of
the total variability was accounted for by this average
trend. The first component was significantly correlated
to soil EC and had a significant negative correlation to
the first PC of the topographic information, TopoPC1
at South Williams. These relationships indicated that
a general increase in soil fertility was associated with
the lower elevations around the drainage-way that bi-
sected the site. This pattern was also well described
by soil EC pattern, which reflected a mutual underly-
ing relationship to clay content for both EC and CEC
(Johnson et al., 2001; Omonode, 2001).

The second soil fertility PC (SoilPC2) at South
Williams accounted for an additional 21% of the
total variability. Soil pH was the main contributor to
this component, with a significant negative loading
(Table 5). Magnesium also had a significant negat-
ive loading for SoilPC2 and these two were held in
contrast to OM, P, and K. Up until about 1970, there

had been an active cattle-feeding operation on this
farm which generated substantial amounts of manure
which were dumped close to a house site. We pro-
posed this manure moved down the drainage-way, via
erosion, raising the P and K levels in one corner of
the South Williams site (Kravchenko et al., 1999). The
increase in OM may be an incidental association with
wet conditions in the drainage-way. At the same site,
soil pH values increased markedly in an area where
three trans-continental gas pipelines had been buried,
and the underlying glacial till had been exposed to
the surface. A general increase in soil Mg levels was
also associated with this line of soil disturbance. Phos-
phorus, K, and OM values tended to be low in the same
area. All these patterns were effectively summarized
into SoilPC2 which, unremarkably, had little correla-
tion to the topography or EC, because these patterns
were mainly the result of artificial disturbance.

At South Williams, a third soil fertility PC
(SoilPC3) had an eigenvalue greater than one and
accounted for an additional 16% of the variability.
SoilPC3 was composed of significant soil K, P, and
pH contributions contrasted to OM. At Williams Field,
differential management across large areas of the farm
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has created bands of higher K, P, and pH values,
including the upper part of the South Williams site. Or-
ganic matter levels also tended to drop in this area and
these effects were sorted into a third PC. Again, there
was little correlation to the topography or EC, be-
cause these patterns were mainly the result of artificial
disturbance.

At North Williams, the same causal effects operat-
ing on a different topography produced a PC analysis
that was clearer in some respects. CEC, Ca, Mg, and
OM were grouped together into SoilPC1, which ac-
counted for 36% of the variability. SoilPC1 again had
a significant positive correlation to deep EC and a
significant negative correlation to TopoPC1. At North
Williams, CEC, Ca, OM, and Mg levels tended to be
high in the sloped areas associated with rill erosion and
also adjacent to a grassed drainage-way. Rill erosion
marks concave areas on the slopes where overland
flow is accumulating and where the topsoils have been
eroded, decreasing the depth to the glacial till layer.
Soil OM increased in these areas, possibly because
the increased flow accumulation interacted with the
impeded drainage of the shallow profile, resulting in
generally wetter soils and increased rates of organic
matter accumulation. Prior to drainage, the same ef-
fect was operating in the larger depressions, creating
a characteristic change to organic-matter-rich Typic
Haplaquolls in undrained areas (Malo and Worcester,
1975). Soil EC was also higher in these areas, con-
sistent with shallow profiles on the slopes and an
increased clay content in flow-accumulating areas.

SoilPC2 at North Williams was similar to the same
component for South Williams, and mainly concerned
with pH (Table 5). Manure dumping and ground dis-
turbance again created distinctive pH, P, and Mg pat-
terns that were not related to the topography or EC
patterns. SoilPC3 at North Williams was also similar
to the South Williams third component, emphasizing
soil K, but this time associated with soil Mg and soil
P. While previous management practices have raised K
levels in a band across the farm, changing soil types in
this area and topography have created erratic patterns
of association to the other nutrients. Once again, this
third component had little correlation to soil EC or
topography.

At the MO sites, PC analysis of the soil fertility
data gave results that were similar to the IL sites. At
Gvillo, SoilPC1 was an average of CEC, K, Ca, and
Mg and also had a significant contribution from OM.
The CEC and cations all increased markedly in one
sloped area of the site, but not in second sloped area.

Soil OM increased on all the sloped areas, and also in
the lower elevations of the site.

The soil CEC, Ca, K, and Mg patterns were very
similar to the EC patterns, and SoilPC1 had a highly
significant correlation to both shallow and deep EC
(Table 5). Exposure of the claypan into the topsoil
markedly increases the clay content, increasing the
CEC, and creating the associated increases in ex-
changeable Ca, K, and Mg. Unlike the IL sites, there
was little correlation between SoilPC1 and the topo-
graphy because increases in shallow EC and SoilPC1
were specific to only one of the two sloped areas
(Figure 1, IIb).

SoilPC2 for Gvillo once again was mainly con-
cerned with the soil pH, and also had a significant
positive contribution from soil P. Phosphorus and pH
values were high near the eastern end of the field.
Old photographs of the site indicated that this area
had been used for animal production in the past, so
that manmade disturbance of the fertility patterns was
again sorted into SoilPC2.

At Field One, SoilPC1 consisted of an average of
CEC, K, Mg, and OM contrasted against pH and P
(Table 5). CEC, K, Mg, and OM values increased in
a lower sloped area of the field where pH and P levels
were low. Like all the other sites, soil EC had a signi-
ficant correlation to SoilPC1. At Field One, the CEC,
K, and Mg trends corresponded to the exposure of the
claypan into the topsoil in the sloped areas immedi-
ately surrounding the main drainage-way. In contrast
to the other sites, SoilPC1 at Field One also had
a highly significant positive correlation to TopoPC2,
which was a contrast between increasing slope and
decreasing elevation that also described the SoilPC1
pattern well.

Calcium had little contribution to SoilPC1 at Field
One and instead was averaged with P and pH to form
the second component. Differential lime application
and historic animal production locations have created
areas of high Ca, pH, and P values at the southern end
of the field. Once again, there was little correlation
between SoilPC2 and EC or topography at this site.

Co-kriging

The correlations between the SoilPC1 and EC indic-
ated that the data intensive EC values at each site
were suitable for co-kriging to improve the accuracy of
maps of SoilPC1, as suggested by Goovaerts (1998).
TopoPC1 was also correlated to SoilPC1 but not as
consistently across all sites, so that cokriging with
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Table 6. Variogram and crossvariogram models, and cross-validations for cokriging of the first soil fertility principal
component (SoilPC1) and electrical conductivity (EC) at four sites. Variograms for SoilPC1, EC, and the crossvariogram,
were modeled for four sites using linear combinations of nugget and spherical (Sph) functions where h is distance (m)

South Williams, IL North Williams, IL Gvillo Field, MO Field One, MO

Variogram for SoilPC1, 0.3+0.1Sph(h/67)+ 0.18+ 0.01+ 0.01+0.3Sph(h/67)

γPC1 0.74Sph(h/182) 0.81Sph(h/91) 1.35Sph(h/334) +0.52Sph(h/152)

Variogram for EC, γEC 10+108Sph(h/67)+ 23+ 6+ 1.5+3.2Sph(h/67)+
11Sph(h/182) 108Sph(h/91) 80Sph(h/334) 2.7Sph(h/152)

Cross-variogram, γPC+Ec 1.7+1Sph(h/67)+ −2+ 0.1+ 0.01+
2.8Sph(h/182) 6.5Sph(h/91) 9.2Sph(h/334) 1.12Sph(h/152)

Cross-validations between actual and predicted values (r2)†

Kriging 0.21 0.19 0.69 0.66

Cokriging 0.38 0.37 0.73 0.72

†Cross-validations are the regression between actual and predicted values for kriging alone, or cokriging with EC, for
SoilPC1 at each site.

TopoPC1 or elevation alone was not as effective as us-
ing EC. A linear combination of nugget and spherical
models was applied to model the SoilPC1 variogram,
the EC variogram (deep EC for the IL sites and shal-
low EC for the MO sites), and the crossvariogram
within the required constraints (Table 6) (Goovaerts,
1997). Values of SoilPC1 were then estimated on a
10 m grid at each site (Figure 1, Ic IIc IIIc).

The cross-validations indicated that cokriging im-
proved the accuracy of the prediction of the SoilPC1
values in all cases. Similar effects were found by
Pozdnyakova and Zhang (1999), where cokriging of
the soil sodium adsorption ratio using soil EC values
markedly improved the prediction of the adsorption
ratio values. Cross-validations between known and
estimated SoilPC1 values nearly doubled at the IL
sites, where less than 72 SoilPC1 values were known
over 16 ha (Table 6). The improvement in prediction
was more limited in the MO fields where more than
173 SoilPC1 values were known over areas of 14 and
18 ha. Intensively measured EC values are a useful
tool for improving the quality of maps of SoiPC1
where few values are known, although the meaning
of SoilPC1 and the exact fit to the EC pattern will be
specific to the site and probably also the soil moisture
conditions at the time of EC measurement (Nugteren,
2000). Cokriging with intensively measured Soil EC
values will also be useful to improve the accuracy of
maps of the individual soil fertility attributes that were
summarized in SoilPC1, such as maps of soil organic
matter.

Interpretative summary

Principal component analysis was applied to the sub-
sets of topography and soil fertility attributes, and
successfully formed summary components that had
a consistently meaningful interpretation. The average
topography pattern of a typical field in a gently slop-
ing glacial till landscape was broken into two PCs that
captured 73% of the variability. Increasing elevation
and positive curvature (convexity) were associated
with decreasing flow accumulation at most sites to
form the first topography PC (TopoPC1). The second
topography PC (TopoPC2) was often concerned with
slope, sorted as a secondary pattern because areas
of greater slope tended to occur in areas of medium
elevation, flow accumulation, and curvature.

Principal component analysis of the soil fertility
data grouped the data into two or three components
that explained between 78 and 87% of the total vari-
ability. The CEC, Ca, Mg, and OM fertility values
were usually grouped together to form the first soil
fertility PC (SoilPC1). Soil EC was a highly correlated
to values of SoilPC1, and more consistently related to
SoilPC1 than the topography PCs. At the IL sites, rill
erosion has exposed the underlying glacial till into the
topsoil in concave areas on the slopes, creating areas
of high SoilPC1 and EC values. There were also high
values of SoilPC1 in the larger depressions around
drainage-ways, reflecting a historic build up of soil
fertility in undrained depressions. At the MO sites,
exposure of the claypan in eroded areas on the slopes
was the dominant effect, causing sharp increases in
SoilPC1 and EC. Therefore, soil EC was significantly
correlated to SoilPC1 at all sites, although the factors
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generating the EC patterns and relationships between
soil fertility, EC, and topography were different for the
two states.

The second soil fertility PC (SoilPC2) was con-
cerned with pH at all sites and usually also P. A third
component (SoilPC3) was associated with K at the IL
sites. SoilPC2 and SoilPC3 reflected the historic man-
made disturbance of the natural patterns, creating soil
fertility trends that were not related to the topography
or EC patterns. Land use history, particularly amal-
gamation of the current field from smaller areas that
have had different uses, was the main determinant of
the present day pH and P patterns. Land use history
was also an important determinant of the K pattern for
the IL sites, but not the MO sites, reflecting the change
in K retention properties between the soils in the two
states.

Principal component analysis was concluded to
be a useful way of summarizing soil fertility and to-
pography information from precision agriculture sys-
tems. The method was very useful to sort information
and identify sets of attributes with similar trends.
Traditional soil fertility information is expensive to
collect. Soil EC information is relatively inexpensive
to collect and can be gathered in great intensity from
a field, generating accurate maps. When a correla-
tion was found between the soil fertility PCs and EC,
cokriging with EC improved the accuracy of maps of
the soil fertility patterns. The topography information
was less useful. A combination of PC analysis and
cokriging was concluded to be an effective method of
summarizing precision agriculture information and in-
creasing the quality of maps of traditional measures of
soil fertility. When land management history determ-
ined the main patterns of nutrient, such as P or pH,
there was little correlation to topography or EC so that
the accuracy of maps of such attributes could not be
improved by cokriging.
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Endnotes

1Mention of a trademark does not constitute a guaran-
tee of, or warranty, of the product, nor does it imply an

approval to the exclusion of other products that may be
suitable.
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