Identification of stripe rust resistance genes is extremely important for developing new resistant cultivars to control the disease. A total of 98 Chinese wheat cultivars and advanced lines were inoculated with 26 isolates of \textit{Puccinia striiformis} f. sp. \textit{tritici} (PST) for postulation of stripe rust resistance genes at seedling stage. The results indicated that 42 cultivars and lines possess the resistance gene \textit{Yr9}, either independently or in combination with other resistance genes. Nineteen accessions carry \textit{Yr24} or \textit{Yr26}. Seven entries showed resistant to the 26 isolates tested, whereas, six cultivars and lines were susceptible to all of them. It was indicated in the test that \textit{Yr10}, \textit{Yr15}, \textit{Yr24}, and \textit{Yr26} were effective resistance genes against Chinese PST isolates, while \textit{Yr1} and \textit{Yr6} were susceptible to them. \textit{Yr24} and \textit{Yr26} are probably common genes according to their reaction patterns to the 26 isolates tested, as well as their chromosome location and their origins. SSR analysis indicated that \textit{Yr26} is closely linked to \textit{Xgwm498} and \textit{Xwms273}, with genetic distances of 1.6cM and 2.7cM, respectively. In addition, a new stripe rust resistance gene on Chromosome 7BL was detected in the Chinese wheat line Zhou8425B, which is closely linked to \textit{Xcfa2040} and \textit{Xbare32}, with genetic distances of 1.4cM and 4.8cM, respectively.

\textbf{Additional keywords:} common wheat (\textit{Triticum aestivum} L.), stripe rust, \textit{Puccinia striiformis} f. sp. \textit{tritici}, gene-for-gene specificity, SSR marker