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5 Adapting Geostatistics
to Analyze Spatial
and Temporal Trends
in Weed Populations
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15.1 EXECUTIVE SUMMARY

Geostatistics were originally developed for the mining industry to estimate the loca- !
tion, abundance, and quality of ore over large areas from soil samples to optimize

future mining efforts. These methods have been adapted for many different situations.
In this chapter, geostatistics are used to examine the weed distribution inside a single

production field, variations of distribution over time, skewed data distributions, and

correlations with species traits. A geostatistical study starts with selecting a sampling

plan that “catches” the spatial relationships among the variables of interest. Exploratory

data analysis then examines data distributions and checks whether the prerequisites for
a geostatistical analysis are fulfilled. If necessary, data are transformed and detrended
to meet these prerequisites. Then, empirical semivariograms are calculated and used
to (1) explain small-scale spatial trends (e.g., weed patch shapes and progress in time
as a function of species dispersal and germination traits), (2) determine the variances
for unsampled distances to allow prediction of values in unsampled points and maps to
be plotted, using kriging, and (3) reduce estimation errors at unsampled points. Cross-
semivariograns and cokriging describe covariation of variables in space, and these
relationships are used to estimate a sparsely sampled primary variable with the help

of an extensively sampled secondary variable. Here, these methods were adapted t0

predict weed maps with past observations and variograms. Last, error analysis evalu-
ates how close predicted weed maps are to observations and the risk of spraying insuf-
ficiently or unnecessarily when basing herbicide spraying in precision agriculture on
weed maps predicted with past observations using cokriging.

15.2 INTRODUCTION

Geostatistics, originally developed for the mining industry, have been adapted to nat-

ural resource management, climatology, and ecology. The application of geostatistics
to ecology and related disciplines is hindered by extremely skewed data resulting
from aggregation in vegetation. For instance, weeds occur in patches'-® because they

l
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tend to cluster where conditions, such as nutrient and soil moisture availability, are
favorable for growth, persistence of propagule banks, and limited short distance dis-
persal of seed and propagules.*!

In addition, the relevant working scale of a geostatistical application in an agri-
cultural application can be quite different from the original large-scale mining
applications. For many weed species, their abundance in a given field can mostly be
explained by the past field history,'" without any relationship to neighboring fields.
Moreover, weed densities and locations, unlike ore deposits, vary over time. Indeed,
fields are mostly infested by annual species,'! which emerge, grow, reproduce, and
die inside a single crop season. The success of individual species depends on weather
as well as the crop sown by the farmer and on the choice of control techniques (e.g.,
herbicide and tillage) that interfere with the weed life cycle.'>!* Last, agronomists
and ecologists want not only to predict the future of weed populations but also to
understand and explain these dynamics. The objective of this chapter is to demon-
strate how geostatistics can be used to (1) describe small-scale spatial trends in weed
populations and create weed contour maps, (2) relate the observed spatial variability
to the weeds biological characteristics, (3) describe the development of the spatial
trends over time and to predict the location of future weed patches, and (4) evaluate
the usefulness of actual and predicted weed maps for site-specific herbicide spraying.

15.3 ANALYSIS STEPS

A geostatistical study starts with data collection, choosing an adequate sampling plan
to “catch” the spatial relationships to be studied (Section 15.4). Exploratory data analy-
sis then looks at data distributions and checks whether the prerequisites (i.e., normal or
at least unskewed distribution, independence of mean and variance) for a geostatistical
analysis are fulfilled (Section 15.5). If necessary, data are transformed to meet these
prerequisites (Section 15.6). The next step checks for trends, i.e., large-scale spatial
relationships, in data and tries to remove these with additional data transformations
(Section 15.7). Only then are calculated empirical semivariograms to describe small-
scale spatial trends, i.e., the variance of a variable between locations as a function of
the distance between these points (Section 15.8). Fitting models to these data (Section
15.9) makes possible the estimation of variogram parameters, which can then be corre-
lated to other data to explain small-scale spatial trends (Section 15.10). Semivariogram
models are also used to estimate variance for unsampled distances and, thus, to plot
maps with kriging (Section 15.11). Cross-semivariograns and cokriging (Section 15.12)
describe the variance between two variables as a function of the distance between the
sampling points and then use these relationships to estimate a sparsely sampled pri-
mary variable with the help of an extensively sampled secondary variable. Last, error
analysis compares measured values with predicted values (Section 15.13).

Several software programs were used in the present work. Simple data analyses
were carried out with Excel or SAS.'* All the SAS program samples shown here
were written for a UNIX environment (see an SAS manual,'* for specific SAS script
instructions). SAS was always run in the same directory where the data file was
located; data files were obtained by saving the relevant excel sheets as text files (prn
files, using blanks as separators). In the boxes that contain SAS code, procedure
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used as inputs into the appropriate boxes for the WinGslib

15.4  DATA COLLECTION

15.4.1  EXPERIMENTAL FieLp

The details can be found in Colbach et al.'¢ with only the
main points repeated here. A field survey of weed seed-
ling populations was conducted from 1993 to 1997 at the
Swan Lake Research Farm, Stevens Co., Minnesota. The
field was 54 m wide (east—west) and 244 m long (north—
south). Each year in mid-May, the field was planted
with soybean, using a no-till planter. Rows were spaced
0.76 m apart and oriented north to south axis of the field.
Weeds were treated with postemergence herbicides and
interrow cultivation. An additional application of glypho-
sate was applied to control perennial weeds, either before
planting or after harvest.

15.4.2  SaAMPUNG GriD

The sampling grid must be adapted to capture the Spatial
relationships that are to be analyzed. The minimum sam-
pling distance must be carefully chosen, with this distance
considerably lower than the distance at which spatial rela-
tionships are expected. Usually, regular sampling grids
are preferred to avoid subconscious choices of the asses-
sor (e.g., a preference for large and numerous plants) when
placing quadrats in random sampling plans. In this study,
weed seedlings were identified and counted in permanent
0.Im? quadrats that covered both the crop-row and the
interrow areas. Assessments were carried out once a year
(except in 1995 when the data were not collected) prior
to postemergence herbicide applications. Weed density
by species was obtained at the same locations each year.
Beginning at the field margins, samples were collected at
410 locations located on regular sampling grid with 10 rows
and 41 columns (Figure 15.1).

; however, these same parameters are
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FIGURE 15.1 Sampling
grid at the Swan Lake 3
experiment station.
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TABLE 15.1 '
Extract of Data File Found on CD in Chapter 15 Folder Labeled

Chapter_15_data.xIs for the Worksheet Data1993

cheal cirar  setvi  sinar

xlocation ylocation agrre  amare  ascsy ) "

0 50 10 0 30 0 5 .
21 6.1 10 0 0 0 0 28 .
61 12.2 0 10 0 0 . .
6. 1 18.3 0 10 0 20 0 . .
61 24.4 0 0 0 0 0 . .
61 30.5 0 0 0 0 0 o .
6. 1 36.6 0 10 0 0 0 " .
gl 42.7 0 0 0 0 0 " .
él 48.8 0 0 0 0 0 " .
61 54.9 0 0 0 0 0

[...]

Note: The file contains several other worksheets that have weed deIlSlty data l)y species and
y F a.
x and y locations from the Swan Lake Research arm, Stevens CO., Minnesot:

Distances between grid points were 6.1 m in both the x and y directilc)nsl,:,se);ccczg
between the last two sample rows that were separated by 3.05 m Seve(rll 11)4 an h 5,1;;,”5
ere identified and analyzed in detail. These included redroot plgwee ( dm[clzg s
Ztroﬂexus L.), common milkweed (Asclepias syriaca)]L.), wild mus;z;n bsqu*] sica
g =Si ] ensis L.)], common
kaber (DC.) L.C. Wheeler (-Sznqus arver L3t gt
dium album L.), Canada thistle (Cm.wum ar\f e (L.
Elglh i:lio 117'2 repens (L.) Nevski], and green foxtail [Setarz.a viridis (L.) Beali\rll.]. oo
i)n tiis study, x and y always indicate spatial coordinates (m), and z, : eCt Ogthe
dent Vari;lble déscribes weed density (plants/m?). TablekIISI.l tslz?v:lsn gnoe;i( tr;ie o
’ 1993 worksheet (fo
15 _data.xls data file for the Da.ta : he C
g::l’::r" 15 ﬁ_le) containing the weed densities counte(.i (.)n.the sampl.nlllg frl;ié;l%?;;
15.2pshows an example of densities counted for S. viridis in 1993 with the p

grid shown in Figure 15.1.

15.5 EXPLORATORY DATA ANALYSIS

15.5.1 OBJECTIVE

istributed
The conditions for geostatistical analysis are that the vglues b; noigz)z}(lggd;tibgue o
and independent. Quite often, this is not the case, especially w 'elrll 0 L8 MR
tion data such as weeds. Weed densities tend to be §kewe;1§ \;;ﬁo ie ! fgthe oy
sampling points having zero or very small Val'ues. (Flgure ; . .f.necessary .
analysis steps is to determine the frequency dlstrlbutl(.)n and, i ICUIating, o
the data to better fit a normal distribution. This step 1nvolY§s ca D
variance, skewness, kurtosis, and a test for normality. In addition, m:



were calculated along
for a possible correlati

15.5.2  MetHoD

Thdere are a range of different softwa
gn tests..In Excel, the statistical fun
e found in the drop-down menu Inse

rows and columns, and a linear r
on between log,

w45 . §
.

(variance) and log,(mean)8 (Box 15.2)

re applications that achieve these calculations
cz;):ns, Ipean, standard error, and skew, can "'
Tt/Functions. In the Excel file available on the

egression was used to check
]

i
i

Adapting Geostatistics to Analyze Weeds 325

400

300

Frequency
®)
S
=)

100

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400
Setvi midpoint

FIGURE 15.3 Distribution of S. viridis densities counted on the Swan Lake experimental
field in 1993. Graph produced with PROC GCHART of SAS.

CD for Chapter 15 with the title Chapter_15_data.xls data, some of these variables
have been calculated and placed on top of each data sheet. In SAS, these variables
can all be calculated with the PROC UNIVARIATE function (Box 15.1). (Note:
remember that the xIs files were converted to prn files for upload into SAS, and, if
using other file formats, use appropriate infile or datafile variables; see Section 15.3.)
Box 15.1 shows part of the output produced by this function for SETVI. To examine
the correlation among data points in both the x and y directions, the mean—variance
correlation can be tested in SAS (see Box 15.2). First, the data for mean and vari-
ance are power transformed in each direction (Box and Cox test!’), using the natural
log [i.e., logmean = log (mean) or logvar = log (variance)], and then the results are
regressed using model logvar = constant + slope x logmean_+ error (Box 15.3).

15.5.3 REesuLts

Basic statistics (Table 15.2) indicate a wide variation in mean plant densities, rang-
ing from 0 for Asclepias syriaca to over 150 plants/m? for S. viridis, and high values
for standard deviations of the means. In the present example, none of the density
distributions were normal, and all were highly skewed. In addition, variance and
mean were always significantly correlated (P values <0.001) (see parameter estimate
in output [Box 15.2] for dependent variable logvar).
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BOX 15.1

put for SETVI variable (bottom)

» descriptive statistics for the other weeds are shown in Table 15.2.

ptive statistics for weed species and extract of out

15_data.xls

SAS program (top) for calculating descri

[

of the Data1993 worksheet of Chapte

GIS Applications in Agriculture: Invasive Species

data tablel;

infile ‘Datal993.prn’ firstobs

.
s’

sinar;

vi

sy cheal cirar set

input xlocation Ylocation agrre amare asc

proc univariate normal:

7

var agrre amare ascsy cheal cirar setvi sinar;

quit;

run;

The UNIVARIATE Procedure

setvi

Variable:

Moments

Sum Weights

369
55820

240140.493

369

151.273713
490.041317
6.43733769

Sum Observations

Variance

Mean

Std Deviation

Skewness

47.2596874

Kurtosis

88371701.4

Corrected SS

96815800
323.943472

Uncorrected SS

25.510532

Std Error Mean

Coeff Variation

[...]

Tests for Normality

-----p Value------

--Statistic---

Test

<0.0001
<0.0100
<0.0050
<0.0050

Pr < W

0.304304

0.378776

17.66014

86.49038

Shapiro-Wilk

Pr > D

Kolmogorov-Smirnov
Cramer-von Mises

Pr > W-Sqg
Pr > A-Sg

W-Sqg
A-Sqg

Anderson-Darling
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BOX 15.2

for analyzing mean—variance
S program (top) and extract of output (bottom? : : :
ggpen%efcy of the SETVI variable. This test consists in regressing log.(variance)
against log (mean); if the slope is significant (i.e., if Px > |t] is lower tgan .05), the
dependent variable y should be transformed as y°>> (Box and Cox test'?).

data tablel;
infile ‘Datal993.prn’ firstobs = 6; ,
input xlocation ylocation agrre amare ascsy chea

cirar setvi sinar;

y = setvi;

proc sort; by xlocation;

proc means noprint;

var y; by xlocation; .
output out=tablexmean = meanvar = variance;

data tablel; set tablel;
proc sort; by ylocation;
proc means noprint;

var setvi; by ylocation; .
output out=tabley mean = meanvar = variance;

data table2; set tablex tabley;
logmean = log(mean);
logvar = log(variance);

proc reg;
model logvar = logmean;
run; quit;

The REG Procedure
Model: MODEL1
Dependent Variable: logvar

[

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t
Intercept 1 1.66556 0.61979 269 0.03li
logmean 1 1.78683 0.14511 12.31 <.000




BOX 15.3
SAS program for PROC GMAP used to produce the output of Figure 15.2

*---distance between sampling pointg----
%let length = 6.1; I

t=-regding data £ w3
ith observed Lt
e ) weed densities---;
llnfile ‘Datal993.prn’ firstobs = 6;
1np}1t xlocation ylocation agrre amare ascsy cheal
Cirar setvi sinar; :
X = xlocation;
Y = ylocation;
plot= N ; *Creating a plot name from line number N ;

:;C——create coordinate table for proc gmap---,
Oor each (x,y) location, four coordinates (x;length/2

y+length/2), (x+length/2,y—length/2), (x—length/Z/

y-length/2) and (x—length/2,y+length/2) are creat :

where length = sampling distance:- o

data table3; set tablel; ‘

X = x+&length/2;

Y = y+&length/2;

keep x y plot;

data table4; set tablel;

X = x+&length/2;

Y = y-&length/2;

keep x y plot;

data table5; set tablel;

X = x-&length/2;

Y = y-&length/2;

keepx y plot;

data tableé6; set tablel;

X = x-&length/2;

Y = y+&length/2;

keep x y plot;

data table3; set t

reen o e able3 table4 tables tableé6;

broc sort; by plot;

*---draw map---;

gopt;ons reset=all cback=white colors=(white grayee
gll:ay4d graycc graybb grayaa gray77 gray66 graySé
gray44 black); +*color options for background and map;

(@] icati i 2 : {
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BOX 15.3 (continued)

pattern value=msolid; *each basic spatial unit is to

be filled;
proc gmap data=tablel map=table3;
*tablel contains the weed densities, table3 the

coordinates;
id plot;
spatial unit;
choro setvi/coutline=same
midpoints= 0to 150 by 15;
*setvi 1s the variable to represent on the map,
color outline of each plot is the same as the color
used for filling, empty plots are drawn with white
lines, the legend is written in black and densities

are represented from 0 to 150 by 15;

*plot is the identification of the basic

cempty=white ctext=black

the

run; quit;

TABLE 15.2
Exploratory Data Analysis for Weed Species of the Data71993 Worksheet

of Chapter_15_data.xls Calculated Using PROC UNIVARIATE and PROC
GLM of SAS (for SAS Code, Refer to Boxes 15.1 and 15.2)

Standard Mean-
Bayer Mean Deviation Test for Variance
Correlation®

Weed Species Code (Plants/m?) (Plants/m?) Skewness® Normality”

Elytrigia repens ~ agrre 4.6 429 15.86 <0.0001 <0.0001

Amaranthus amare 10.5 19.8 2.88 <0.0001 0.0011
retroflexus

Asclepias ascsy 0.0 0.0
syriaca

Chenopodium cheal 2.7 10.2 523 <0.0001 <0.0001
album .

Cirsium arvense  cirar 4.6 13.0 3.95 <0.0001 <0.0001
Setaria viridis setvi 151.2 490.0 6.44 <0.0001 <0.0001
Brassica kaber sinar 0.8 3.0 3.93 <0.0001 0.0010

* The more different the skewness value (calculated with PROC UNIVARIATE of SAS, see Box 15.1)

is from zero, the more skewed (asymmetrical) the data distribution.
b Probability of error when stating that the distribution is not normal (Shapiro—Wilk test, see Box 15.1).
¢ P statistic for correlation between log (variance) and log,(mean) calculated using PROC REG of SAS

(see example in Box 15.2).
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15.6 DATA TRANSFORMATION

15.6.1 OsjecTIVE

The above analysis indicated that the data were highly skewed, variances and m,

were cqrrelated, and the dependent variable z had to be transformed before anale x
The obqective of this step was to identify a suitable transformation that decorrelys
thg variance and mean values and converts the data to a normal, or less skewed gt
trlbgtlon. One approach frequently used to obtain a normal distribution is to re ’ 'ls
f)uthers. Unfortunately, in the case of weed densities, skewed distributions ar:lo !
Just due to a single point (Figure 15.3). It is therefore necessary to find variable tr. n-
formations that do not remove large portions of the observed data. 3

15.6.2 MeTtHOD

Box and Cox'” proposed a transformation to decorrelate variances and means. If the
linear regression log,(variance) = a + b log,(mean) is significant, then, a suglges
t'ransformation for the dependent variable z is z'-"2, Another interesting’ transfor
tion that may be tried is log,(z + k) transformation where k is a constant. The ¢
stant, k, is needed because of the many zero values. In addition, a suital.jle cho
value for k can achieve normality or decrease skewness.!s Other transformatio:

tested on the Swan Lake data included z*, ek, and log,(log,(z + k)). i

15.6.3 Resuits

The .best re§ults (i.e., lowest skewness and decorrelation of mean—variance) wei
obt?med using the log,(z + 1) transformation, even though none of the transformed
variables showed a normal data distribution (Table 15.3) 3

15.7 DETRENDING DATA

15.7.1  OBJECTIVE 4

Detrendipg datasets aims to remove large-scale spatial trends. In the present cas%’?
study, soil depth and texture could, for instance, vary in the experimental field an%
lead to a large-scale variation in weed densities. i

i

15.7.2  MepiaN PousHing -
. 5 “

(];:ven with transform-atlon, a mean-variance correlation was still significant in the
ataset. To reduce this correlation, one should look for a large-scale spatial trend i

the data and apply a detrending transformation such as median polishing:

’ _ . -
Z' =z —row median — column median + overall median

This transformation can only be used for gridded data and only works for addit
trends. It is not adequate if the trend comprises an interaction between row and

Adapting Geostatistics to Analyze Weeds 331

TABLE 15.3
variable Transformation Tested for the S. viridis (SETVI) Densities

Observed at Swan Lake in 1993

Standard Mean-
Variable Mean Deviation Test for Variance
Transformation (Plants/m?) (Plants/m?)  Skewness®  Normality>  Correlation®
None 151.2 490.0 6.44 <0.0001 <0.0001
L I8 1.10 0.742 -0.627 <0.0001 0.2170
log.(y +0.1) 2.22 3.14 —0.441 <0.0001 0.3432
log.(y + 1) 291 2.22 0.053 <0.0001 0.7779
log.(y + 10) 3.75 1.40 0.92 <0.0001 0.0258
exp() 10258 <0.0001
1:13 0.759 —0.629 <0.0001 0.2146

log.(log,(y + 1) +1)

Notes: Statistics were calculated with PROC UNIVARIATE and PROC GLM of SAS. The best trans-

formation is indicated in bold.
2 The more different the skewness value (calculated with PROC UNIVARIATE of SAS, Box 15.1) is
from zero, the more skewed (asymmetrical) the data distribution.
b Probability of error when stating that the distribution is not normal (Shapiro-Wilk test with PROC

UNIVARIATE of SAS, see Box 15.1).
¢ P for correlation between log,(variance) and log (mean) calculated with PROC REG of SAS (see

Box 15.2).

column variables. Other transformations z” = f(z, row, column) should then be tested.
Moreover, median polishing does not work well if the mean plant density is low, for
example, 1 plant/m?. In that case, row, column, and overall median values are nil,
and Equation 15.1 will not modify variable z. If this occurs, the correlation of mean
and variance is then not due to a large-scale trend, but simply to the extreme patchi-
ness of the weed population.

With the 1993 Swan Lake date, median polishing was only possible for the more
frequent species such as AMARE. In this instance, the transformed variable z” pre-
sented independent means and variances (P < 0.05), and the density distribution was
not skewed (0.16 vs. 0.67 for log-transformed data). Despite this apparent improve-
ment of data distribution, median polishing was not satisfactory because it intro-
duced artifacts into the data, i.e., weed patches are now present where there were
none before, etc. This was probably because the seedling densities were so low.

15.7.3 EsTIMATING TREND WITH LINEAR REGRESSIONS

We tried other detrending transformations by estimating the large-scale trend by fit-
ting a linear regression to the log,(z + 1) data (Box 15.4):

log,(z+1) = constant + o.- row + B- column +y - row® + & - column’

+&-row- column+ error (15.2)
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i

The final model using only those explanative variables with alpha <0.05 then consti-
tutes thf? large-scale trend that should be retracted from the z variable. In the case of
the S. viridis data from 1993, the final regression model (15.2) was ‘

trend = 88.06 — 19.48 - x location + 2.34.- y location

+0.64- x location - x location—0.10- x location - v location
The detrended variable then becomes

7 =log,(z+1)—trend (15.3)

The R? of this final model was very low (0.156) (Box 15.4), indicating that there wag
no large-scale trend. In addition, the resulting detrended z” variable presented worse v
distribution characteristics (skewness = —0.097, P for mean—variance correlation =
0.0002) than the untrended log,(z + 1) variable. Consequently, weed densities were
only transformed with log,(z + 1) for the subsequent analysis. As the distance over
which the variograms were calculated was limited and as ordinary kriging (which

does not assume a stable mean over the whole field) was used, the resulting bias
would be negligible. b

15.8 EMPIRICAL SEMIVARIOGRAMS

15.8.1 Osjective

Semivariograms describe small-scale spatial trends, i.e., the variance between loca-
tions as a function of the distance between these points. Semivariograms were devel-
oped for each species and year, using the following equation: |

1 ‘
V= oy D =) (154)

where
Y» s the empirical semivariance for the distance A

N, is the number of points separated by the distance h
z; 1s the weed density at location i

Thi§ statistic is then plotted for each separation distance & (termed an empirical“
s'emlvariogram) and characterizes the spatial variability of weed densities as a func-
t%on of distance among locations. Separate empirical semivariograms were estab-
lished in four directions: along the rows (i.e., 0° or north-south direction), across the
rows (i.e., 90° or east-west direction), as well as along the diagonals (i.e., 45° and
135°) in order to check for anisotropy. For each of these four directions, only points
located at an angle of +a° relative to the nominal direction (i.e., 0°45° 90° or 135°)
were used for the semivariogram. In the present study, the lowest possible angle was
used to optimize the discrimination of the analyzed directions. i
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The maximum distance between points used for the semivariogram can be lim-
ited. Here, distance was limited to 50m for both directions, as the greatest possible
distance for both x and y axes (the field was only 54 m wide).

15.8.2 METHOD

In the original paper by Colbach et al.,'s the semivariograms were calculated with
GSLIB (DOS version) using the GAMY function, which is convenient for irregular
data as the sampling grid in this research was not entirely regular. To run GAMY,
parameterize the GAMYV.par file located in GSlib/DOSEXEC/GAMYV (see, e.g.,
Box 15.5) and double click on GAMV.EXE located in GSlib/DOSEXEC/BIN and
enter the parameter file name (i.e., GAMV.par with the relevant path if applicable). The
output will be located in the directory specified in the GAMV.par file. Alternatively,
gamv function in the drop-down menu of Variogram of WinGslib could be used
(Figure 15.4). On the Files page, Input and Output Files are defined, as well as
the number of lags, unit lag separation distance, and lags tolerance. On the
Variograms page, data for the azimuth (angles and associated information) and
Tail/Head data are selected for the variograms. After data entry, click the triangular
“play” button to run the program. The ‘“page” button can then be clicked to see the
output. Here, we also used PROC VARIOGRAM of SAS to calculate variograms,
followed by PROC GPLOT to draw the graph (Box 15.6).

15.8.3 Resutts

Figure 15.5 shows an example of the empirical semivariograms calculated along
rows (0° direction), columns (90°), and the two diagonals (45° and 135°) for SETVI
in 2003. For both directions, variance was high at the lowest sampling distance
(i.e., 6.1 m); this variance at low distances close to zero is called nugget. Variance
increased more or less with increasing distance between analyzed data points. In the
case of the 135° direction, variance reaches a threshold value (called sill) at approxi-
mately 25m while in the 0° direction, variance continued to increase up to 40m.
These distances are called ranges, and a variation in range with direction points to
geometric anisotropy. Final variance was much lower in the 0° direction than in any
other direction, pointing to a marked zonal anisotropy.

The conclusions that can be drawn from a graphical analysis of empirical semi-
variograms are though limited. Thus, the next step fits models to the empirical
semivariogram.

15.9 SEMIVARIOGRAM MODEL FITTING
15.9.1

Empirical semivariograms allow description of spatial correlations. Fitting models
to these data makes possible the estimation of (1) variance for unsampled distances,
which is necessary to plot maps, and (2) variogram parameters, which can then be
correlated to other data.

OBJECTIVE
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L = v ¥ Frocsi 31 2 o

-

\Twpe
Traditional semi-variogram e
Traditional cross semi-variogram

FIGURE 15.4 Using WinGslib to process Variogram information using gamyv function for.
parameters given in Box 15.5 (DOS code for GSLIB). i

Various contrasting models can be fitted to empirical variograms, for example,
linear, power, spherical, exponential, or Gaussian models. The latter can be problem:
atic as its derivative at distance = 0 is zero. In the present case, the linear and pow
models were inadequate because they do not allow for a sill value (i.e., varianc
reaching a threshold for large distances). Spherical (vs. exponential) models prese
the advantage of having a “real” range (i.e., the distance when variance reaches s
sill). Here, a nested spherical model was used, i.e., a sum of two spherical models ané
a nugget value, with ranges depending on the directions.

3
) =c- 1.5.h_o,5.(£)

a a

ith < q
Model 1:

ith > a OEE

oo

=
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BOX 15.6

SAS program for calculating (PROC VARIOGRAM) and drawing (PROC
GPLOT) an empirical semivariogram. Output is shown in Figure 15.5. The
information used for computing the semivariograms is described in Box 15.5.

data tablel;

infile ‘Datal993.prn’ firstobs = 6;

input xlocation ylocation agrre amare ascsy cheal cirar
setvi sinar;

x---data transformation---;
logsetvi=log(setvi+l);

x-_-calculating empirical semivariogram---;
proc variogram outVar=tabVariogram;

compute angletolerance=0.1 lagdistance=6.1
tions=4 maxlags=38;

coordinates xcoord=xlocationycoord=ylocation;
directions 0 (0.1) 45(0.1) 90 (0.1) 135(0.1);
var logsetvi;

ndirec-

*---drawing graph of empirical semivariogram---;
goptions reset=all cback=white colors=(black red blue
green orange);*

symboll v=dot;

axisl order=(0to 10by 1);

axis2 order=(0to 55by 5);

proc gplot data=tabVariogram;

plot variog*distance=angle /vaxis=axisl haxis = axis2;
run; quit;
* Color graph is on the CD accompanying this book.
3
ifh < a, Ya2(h)=cy- 1.5~£—0.5-(—h-)
a) a,)
Model 2 :
lf h > ay ’Yz(h) =0
Total model: yY(h) = ¢y +Y1(h) +7>(h) (15.5)

Where
¢, is the nugget (representing small-scale variation that cannot be described with
the present sampling scheme)
¢, and ¢, are the contributions of the first and second spatial structures to the total
variance (sill)
a, and a, are the ranges (with different values for the 0° and 90° directions)
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FIGURE 15.5 Example of empirical semivariogram calculated with Equation 15.4 fo
S. viridis in 1993 with PROC VARIOGRAM of SAS (Box 15.6) (black circles appear in th

legend because of empty lines in the SAS data table, which are considered as a fifth direc’
tion™” by PROC GPLOT).

This model was fit to the empirical semivariogram for each species and year using
an iterative least-squares procedure. Points with fewer than 50 pairs were excluded
because they were considered unreliable.'-2! Values for the ranges (a;, a,), contribu-
tions (cy, ¢,), and nugget (c,) were estimated using weighted least squares based on
number of pairs, N,. 1

Equation 15.5 has the advantage of covering a large range of possible situations.

The most complicated situation occurs when all parameters are significantly dif-
ferent. A nested model is necessary when sills differ between directions (i.e., zonaif"

anisotropy). If, however, the sills are identical and only the ranges differ, the ana-

lyzed variable presents a geometric anisotropy. Equation 15.5 can then be reduced

to a single model with one sill, irrespective of direction. Only the ranges then vary
with the direction.

15.9.2 MEetHOD

PROC NLIN of SAS was used to fit Equation 15.5 and estimate its parameters
(Box 15.7).

15.9.3 Resuits

Figure 15.6 shows an example of fitting a nested spherical model to an empiri-
cal semivariogram. For direction 0, the final variance (i.e., silll) is lower than for

h

Adapting Geostatistics to Analyze Weeds

see also Figure 15.6) for fitting a

ut extract (bottom,

BOX 15.7
tion (determined on graphs);

e
7

gauss;

ing the parame

must follow program shown in Box 15.6) and outp
h
set tabVariogram

o
s

data tabVariogram
50;
proc nlin eformat method

i airs;
*to eliminate distances with less than 50 p
nugget= 1.4

if count >
itera
*initial parameter values toO set off ite

SAS program extract (top,
for nugget, cl andal_0.

parms
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BOX 15.7 (continued)

The NLIN Procedure

Approx

Mean
Square

Sum of
Squares

Pr > F

F Value

DF

Source

-9.21

1.2939
0.0148

2.5877
0.3707
2.9584

Regression
Residual

25

27

Uncorrected Total

26 0.2342

Corrected Total

Approximate 95%
Confidence Limits

Approx
Std Error

Label

Estimate

Parameter

1.4000
1.4000
3.5671
45.0000

1.4000
1.4000
0.7883
45.0000
-34.1227

1.4000
1.4000
2.1777
45.0000

nugget

cl
c2
al
a2

0.6746

0

26.3363

0

74.3579
0.2163
0.2333

0.00138

20.1176

90

= 1.4

cl <

0.0649
0.0657
0.00013

0.0368
0.0407
0.000368

0.1406
0.1495
0.000624

Bound4
Boundeé
Boundl

nugget <= 1.4

45 <

0

al _
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FIGURE 15.6 Example of fitting a nested spherical model (——) using Equation 15.5 to an
empirical semivariogram for directions 0° and 90° for S. viridis in 1993 with PROG NLIN

(Box 15.7). Lines and text were added manually to the SAS output graph.

direction 90 (i.e., sill2), pointing to lower variability in weed densities along vs.
across crop rows. The nugget (i.e., the variance at zero distance) did not depend on
the direction and is considered as “white noise,” i.e., small-scale variability that
cannot be described with the present sampling scheme. The contribution ¢, of the
first model is the difference between silll and the nugget; it was reached after dis-
tance al_0 = 40m in the 0° direction, whereas it was present at all distances in the
90° direction as al_90 was nil. In any other direction, the ¢, contribution depended
on the value of rangel varying with the angle (see Box 15.7). The contribution ¢, of
the second model is the difference between sill2 and the nugget; it was reached after
distance a2_90 = 29 m in the 90° direction, whereas its effect was negligible in the
0° as the a2_0 was infinite. In any other direction, the ¢, contribution depended on
the value of range2 varying again with the angle (see Box 15.7). Model fitting was not
always easy as variance did not increase smoothly (Figure 15.5). In addition, with
nonlinear regressions, the result can vary considerably with the initial values used
for the parameters or the method (DUD vs. GAUSS), and sometimes, it is necessary
to manually limit the possible ranges for parameters (with the bounds option) to
achieve not only convergence during NLIN iteration but also visually satisfactory
results, i.e., fitted lines vs. observations.

In the field, this directional effect (anisotropy) was evident as elliptical weed
patches that were longest in the direction of the crop rows (Figure 15.2). The most
likely reason for the difference in ranges (geometric anisotropy) is that weed seeds and
other propagules are moved in the direction of crop rows by agricultural implements,
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such as tillage and harvesting equipment. Other factors, such as water and gravity,
also may play a role in creating this distribution. A possible explanation for the dif-

ference in total variation (zonal anisotropy) would be the variation in performance of
field implements (e.g., planter, cultivator, and combine). The differing speeds, depth

adjustments, etc. that occur during north—south passes of these tools across the field

may have contributed to an east-west heterogeneity in weed growth conditions.

15.10 ANALYSIS OF VARIOGRAM PARAMETERS

15.10.1 OBJECTIVE

The analysis of variogram parameters is pertinent when several variables are investi-
gated in a site to examine the differences in weed densities and species. The simplest

way is to explain variogram parameters as a function of a year and a weed species
effect:

Variogram parameter = constant + year effect + species effect +error ~ (15.6)

This linear model was tested separately for each of the five parameters, i.e., the
nugget, and the two contributions. The two ranges were analyzed together, adding a

direction effect to model Equation 15.6.

The most interesting way is to look for relationships between the different
variogram parameters and a series of explanatory variables that discriminate the

datasets. Here, two types of discriminating variables are pertinent: environmental
variables that explain the year effect and life traits that explain the differences
among weed species. We concentrated on species characteristics by looking at the

effect of pre- and postharvest seed production on spatial variability. The model

used was as follows:

Variogram parameter = constant
+ year effect
+ B X numbers of seeds dispersed before harvest

+ ¢’ X numbers of seeds dispersed during harvest
+ error (15.7)

where B and y are the parameters associated to the covariates “seeds dispersed

before harvest” and “seeds dispersed after harvest,” respectively. Seed production
data were not collected during the field trials but were adapted from the means of the
two values reported by Forcella et al.?? for seed production by annual species. Other
models looked at the effects of plant densities or germination behavior. In all cases,
only explanative variables significant at P = 0.01 were kept in the final model.

15.10.2 METHOD

Analyses were carried out with PROC GLM of SAS. Programs are given in Box 15.8
(Equation 15.6) and Box 15.9 (Equation 15.7).

Adapting Geostatistics to Analyze Weeds

BOX 15.8

SAS program (top) and output extract (bottom) for analyses of variance of semivariogram parameters.

*---reading data file---;

data tablel;

=2y

‘variogramParameters.prn’ firstobs

infile

0 a2 90;

input year species$ nugget cl c2 al

*---aggregating 2 ranges into a single range variable---;

data table2;

range

set tablel;

direction

keep year species direction range;

data table3;

set tablel;

a2 90;

range

90;

direction

keep year species direction range;

data table2;

set table2 table3;

*---analysis of variance---;

proc glm data

tablel;

class year species;

(continued)
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15.10.3 REsuLts

The output extract in Box 15.8 indicates that the range was not significantly infly-
enced by the survey year (Pr > F = 0.4525). The most important effect (i.e., highest
F'value) was due to the direction, with significantly higher ranges in the 0° direction
for all species. Ranges varied significantly among species, from 6m for ASCSY to
30m for SETVL '
This species effect was then further explained by covariables describing seed
dispersal and germination behavior. The results of linear model Equation 15.7 indj-
cate that an increase in seed dispersal before harvest resulted in a decrease in Spatial
variability in the direction of the crop rows (c,) but increased unexplained variabil-
ity (nugget) (Table 15.4). Indeed, the sampling grid used in this work was not fine
enough to model the effect on patch shape of preharvest seed dispersal, i.e., seeds
falling close to their source plants. The simultaneous decrease in the magnitude of
spatial variability between directions (c,) suggests that preharvest seed dispersal is
spatially uniform in all directions. This is not surprising in fields planted with small-
stature crops, like Glycine max, where weed seed heads are usually positioned above
the crop canopy. Even if seeds were moved slightly further in one direction by wind
gusts or animals, these movements probably would have resulted in dispersal more
random than that of combines and would have contributed little to changes in direc-
tional spatial structure.

An increase in weed seed dispersal during harvest resulted in an increase |
in spatial variability in the direction of crop rows but had no effect on differences in
spatial variability along the rows vs. across rows. Moreover, the range parameter
tended to decrease as more seed is dispersed during harvest. This decrease is not
easily explained but could be the result of an overlap with existing weed patches and
greater dispersal distance as influenced by the combine harvester. Weed densities in

the patch intersection would not be correlated to densities in the centers of existing
patches.

15.11 KRIGING
15.11.1  OsjecTIvE

The next step in the analysis process is kriging to estimate seedling densities (or other
variables) on unsampled locations and plot maps. Kriging is an interpolation tech-
nique that estimates the value of an attribute, z, at unsampled locations in the field
based on available data at neighboring locations as well as semivariogram model
parameters. Basically, there are two types of kriging, ordinary and simple kriging.

Simple kriging assumes a stable mean for the whole field that must be incorpo-
rated into the kriging analysis. This method is not convenient in the present case as
the analyzed weed variables were often skewed, with mean-variance dependence,
even after variable transformation.

Ordinary kriging, on the other hand, uses a variable mean. This kriging method is

more adequate for analyzing weed densities due to the dataset values skewness and
mean-variance correlation.

Adapting Geostatistics to Analyze Weeds

TABLE 15.4

Effect of Direction, Year, and Seed Rain Timing on the Parameters of the Semivariogram Models

Seed Dispersal

Year Effect Before Harvest During Harvest

Direction Effect

Regression

Regression

Regression

Regression

Variogram

Parameter

=0)

P(H

Parameter
0.0120
-0.00707
—-0.00495

0)

0.0015
0.0056
0.0766
0.9778

Parameter P(H

=0)

Parameter P(H

=0)

P(H

Parameter

-0.0192

0.0019
0.0001
0.5464
0.0181

0.4840
0.0833
0.5293
0.3958

Not tested
Not tested
Not tested

0.0074

Nugget

0.0218

¢

¢

—0.529*

6.6
—6.6

0°

Range

90°

* Regression parameters were only shown for significant variables.

Notes: Results of linear model (Equation 15.7) with PROG GLM (see Box 15.9). Regression parameters were only shown for significant

variables.
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When estimating variable z at an unsampled location, kriging software pro-
grams use the measured z values of the neighboring locations located within g
specified search radius. This radius should be smaller than the semivariogram
range. Indeed, locations farther than the range are only randomly correlated, and

this information, therefore, will not increase the quality of the estimation on the

unsampled point.

15.11.2 MEeTHOD

Various software programs exist for kriging and drawing maps, though with varying ..

degrees of complexity. In the original work,'® we used the KB2D and KB3D functions

of GSLIB for bi-dimensional and three-dimensional kriging, respectively. These

func.tions accept sums of any number of variogram models, including combinations
F)f different models (e.g., a spherical + power model). The data resulting from krig-
ing can then be processed with yet another function and/or software to draw maps
for instance, PIXELPLT of GSLIB, which produces a postscript file. Here, we use(i 1
PROC KRIGE2D of SAS for kriging followed by PROC GMAP for drawing the
map (Box 15.10). ‘

15.11.3 Resutts

P

Maps estimated with ordinary kriging for S. viridis plant densities in 1993 with

the SAS program (Box 15.10) are presented in Figure 15.7. When compared to
the original map showing the sampled densities (Figure 15.2), it clearly appears
that the weed patches are located in the same parts of the field in both maps, but
the kriged map has “smoothed” the raw map into a continuous and more detz;iled '
representation. i

15.12 CROSS-SEMIVARIOGRAMS AND COKRIGING
15.12.1 OBJECTIVE

Cross-semivariograns are based on a similar principle as semivariograms, but
instead of looking at correlations between locations for a given variable, they
describe the variance between two variables as a function of the distance between ;
the locations where the variables were measured. Quite often, the variables to be
co.rrelflted are a biological (e.g., crop yield) and an environmental variable (e.g.,
soil .nl'trogen content). Cross-semivariogram models are then fitted and used for
cokriging. While kriging only uses measurements of one variable to estimate this
same variable, cokriging is usually used to estimate a sparsely sampled primary
variable (e.g., soil nitrogen) with the help of an extensively sampled secondary vari-
able (e.g., weed density). The idea is to estimate a variable that is expensive tO

sample with the help of an easy-to-measure variable. Cokriging requires the semi- '

variograms fpr the primary and secondary variable, their cross-semivariogram, and
their respective means. 1
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I

BOX 15.10

SAS program for kriging and drawing a density map for S. viridis in 1993; the
output graph is shown in Figure 15.7. Kriging is ordinary, using only observa-
tions located in a radius of 20m for estimations (radius = 20); the observed
variable is setvi. The variogram is a nested model of two spherical models
(form option), using the parameter values determined with the program of Box
15.7. The nugget option indicates the nugget irrespective of direction. The scale
option lists the contributions, and the range option lists the maximum ranges
for the 90° and 0° directions (see angle option). The ratio option lists the ratio
of minimum range/maximum range for the two directions, here 1/45 (Instead of
0/45 to avoid nil ranges that are not accepted by KRIGE2D) and 20.1/400000.

*-__-defining kriging step as macro-variable---;
%let length = 1 ;

*---reading data file---;

data tablel;

infile 'Datal993.prn’ firstobs = 6;

input xlocation ylocation agrre amare ascsy cheal
cirar setvi sinar;

*_--transforming weed densities---;
logsetvi:log(setvi+l) ;

*---kriging with nested anisotropic spherical model---;
proc krige2D data=tablel outest=table2;

coordinates xcoord=xlocationycoord=ylocation;

grid X=0to 54by 1y=0to 244 by &length; *grid of coordi-
nates for estimating densities;

predict radius=20var=logsetvi ;

model form=(spherical spherical) nugget = 0.92
range=(40.9 400000)

ratio=(0.0244 0.0000732) scale=(1.60 2.7) angle=(0 0);

*-__retransform weed densities---;

data table2; set table2;

estimate = exp(estimate)-I; *estimate 1is variable cre-
ated by proc krige2D;

plot = N _; *creating a plot name from line number
_N_7

*___create coordinate table for proc gmap---;

*for each (x,y) location, four coordinates (x+length/2,
y+length/2), (x+length/2,y-length/2), (x-length/2,
y-length/2) and (x-length/2,y+length/2) are create where
length = kriging step.

(continued)
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BOX 15.10 (continued)

gxc and gxy are variables Created by proc krigezp,
data table3; set table2;

X = gxc+&length/2;

Y = gyc+&length/2;

keep x y plot;

data table4; set table2;

X = gxc+&length/2;

Y = gyc-&length/2;

keep x y plot;

data table5; set table2;

X = gxc-&length/2;

Y = gyc-&length/2;

keep x y plot;

data tableé6; set table2;

X = gxc-&length/2;

Y = gyc+&length/2;

keep x y plot;

data table3; set table3 tabled table5 tableé6;

keep x y plot;

proc sort; by plot;

*---draw map---;,

goptions reset=all cback=white colors=(white grayee
graydd graycc graybb grayaa gray77 gray66 gray56
gray44 black ); *color options for background and map;
pattern value=msolid; *each basic spatial unit is to
be filled;

broc gmap data=table2 map= table3; *table2 contains
the weed densities, table3 the coordinates;

id plot; *plot is the identification of
the basic spatial unit;

choro estimate/coutline=same cempty=white ctext=black
midpoints = 0 to 150 by 15;

*estimate is the variable to represent on the map, the
color outline of each blot is the same as the color
used for filling, empty plots are drawn with white
lines, the legend is written in black and densities
are represented from 0 to 150 by 15;

run; quit;

GIS Applications in Agriculture: Invasive Species
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15 030 Eemmm 45
75 SR 90 105
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Kriging estimate 0

FIGURE 15.7 Maps of S. viridis seedling densities for 1993 at the Swan Lake Research
Farm based on kriging with SAS program shown in Box 15.10.

In this case study, both methods were used somewhat diffe.rt?ntly. Crpss—
semivariograms were used to look for correlations between weed dePS}tles of a given
species of years j and j + 1. The aim was to test Whether cokr‘lgmg C(?uld use
the sampled data of year j to predict the weed distribution of year j + 1. Nelther thg
semivariogram of year j + 1 nor the cross-semivariogram for years j and j + 1 c01.11
be known in advance. Therefore, we used the semivariogram anc.i thﬁ: mean density
of year j also for year j + 1 as well as the mean of past cross-semivariograms for all
pairs of years i and i + 1 with j <.
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15.12.2  CROSS-SEMIVARIOGRAMS

Empirical cross-semivariograms were calculated as follows:

1 ‘
Th= 2-N, Z(Zim,j = % ) Zivh,jr1 = Zijar) (15.8) 1

where z,; was the weed density of a given species at location i for year j. In the origj- ‘
nal work,'® the empirical cross-semivariograms were calculated with the GAMV _‘
function of GSLIB (Box 15.5). The same type of variogram models as for semj.

variograms can then be fitted to the empirical cross-semivariogram, using the same
methods (see Section 15.9).

15.12.3 COKRIGING

The semivariogram and mean of 1996 as well as the cross-semivariogram of“"'
1993 and 1994 (Table 15.5) were then used to predict the weed map of the
1997 from the observations of 1996. Cokriging was carried out with the three-
dimensional COKB3D function of GSLIB (DOS version). These calculatio '
are beyond the scope of this chapter although cokriging parameters are given ‘
in Box 15.11. The resulting maps (shown in Figure 15.8) were drawn with
PIXELPLT (Box 15.12) after back transforming the output file produced by
COKB3D with exp(z) — 1. ]

Cokriging with the 1996 observations and mean for predicting 1997 weed den-
sities predicted patch location correctly though weed densities were grossly over-
estimated. Using the actual density mean of 1997, rather than the 1996 mean,

TABLE 15.5

Variogram Models Used for Predicting the 1997 Map of . viridis from 1996
Observations Using Cokriging

Variogram Parameters

Contribution Range (m)
Variogram Type Year Nugget & G a1l 90 alo a290 20
Semivariogram 1996 1.38 1.20 282 0 4947  34.12 400,000
Cross- mean of 1993/1994  0.169 0.587 1.86  0.995 43.0 254

5x10%

semivariogram and 1996/1997

Adapting Geostatistics to Analyze Weeds
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BOX 15.11
COKB3D.PAR file parameterized for cokriging 1997 S. viridis densities from 1996 observations (column 3 of setvi1996.dat

) while
nated),

log (11.32 + 1)), respectively, the
and a mean cross-semivariogram

disregarding 1997 observations (a dummy variable located in column 4 of setvi1996.dat was called instead and then elimi

using the mean densities actually observed in 1996 (i.e., 4.7 = log,(109 + 1)) and 1997 (ie., 2.55

1996 semivariogram for both the main (semivariogram 1 1) and the secondary variable (2 2)

(1 2). See Table 15.5 for variogram models.

Parameters for COKB3D

START OF PARAMETERS:

setviloge.dat

\file with data

\columns for X,Y,Z and variables dummy variable and setvil9o9e

\ number of variables primary+other
\trimming limits:

1 2 0 4 3

lower limit fixed to eliminate all values for

1.0e21

98

dummy variable
\co-located cokriging?

(O=no, 1l=yes)

0

\ file with gridded covariate

\

setvil9oos.dat

setvi 1996 densities

0,1,2,3

column for covariate
\file for debugging output

\debugging level:
\file for output

cokb3d.dbg
set9697.out

3
1

\number of x units,xmin,xsize
\number of y units,ymin,ysize

\nz,zmn,zsiz

54 0.5 1.0

244 0.5 1.0

0.5 1.0

\x, v, and z block discretization

(continued)




362 ST . .
GIS Applications in Agriculture: Invasive Species
E
©
4
o)}
O
-
Y
©
a
0
0
0
ot
O
S —
R 8 5
o) o) o)
N — — £
8 & lie} 0] 0] 0]
y © © ~ ~ ~
o] ] (OS] 0 P [0}
. o] i) S 0 S 0 e
o 1 ~ 0 ~ O ~
e i e
ﬂSH O x s 44
N‘Ug'ﬁ(gl '_ﬁ(l) - O tl_\
E ! z z z
%‘gﬂﬁs‘ g 0 i) Py B i8] D i8]
g EbCday it ¥ HEGH v & bk
g 2% acoadn ¢ O g g
g [e)] S c O (D(U 1 o
ER..axglg n ontg v v “la o
S EAA0 _:HC!mmm s B e Ik o e |
EEECNOERELE LRI L EER L
S o 0 - - ) - g8
:Qgggmmua)“ic“iqugj@d“idn“‘“d%d
=1 Ul 108 -da--d08a--da-dO0iaodo-
mmgggg;msmemsuszmewﬁme%E
- 8970 g 5 P g9 g.q P oa g ag-a g o g .a
N\Mgmmm(%%“’.l“il%”“’l“ 1B @ @ |
Srcc’ogalifdode ido el 0dom
QieeuS"5ib 9 5% B 53D D
AR RS TR FEFELEFEEE -
. [t} ~ ~ @© < < |
SEFEMEEEE RS F LRSS E R
GEEodons > 0d0dl tco0os® ;0504
cREFoEZdas 1o 19 g 15 BB )
O 8 ETR 68 © E r 2H wh o
‘ESS%E%“ wﬁ-ﬁm-ﬂmgﬁ-v—lm-r—lﬂi
0 0
//////////////////ﬂ/////
o (@]
a2
(@] [ R
o
o od
o . )
Y o @ < o O OF;JO?
o C;H (@] DO 4 <t [5a)
- o L0 o~
o o o 5 o () o oo
..O > o N o ¢ I |
sgs © o_gd  e-3dn _Lo0°%
o " o i
oo o i o_o-o_ o o™ 1+ O
S8° % woliad oelus SESQBE
N H@nggmqqdwomwmggg
9090 w HdAHAYaw dAH Y NS H0oe oo
o O o .
— N N N N H N — NN — — N —

L

Adapting Geostatistics to Analyze Weeds 363

1997 predicted (using 1997 mean)

1997 predicted (using 1996 mean)
244.000

244.000
125.000 125.000
) )
e o
= -~
- 100.000 — 100.000
75.000 75.000
5 -
= 50.000 s 50.000
] Qo
4 4
g £
s 25.000 3 25.000
Z Z
0.0 0.0
0.0} . 0.0
0.0 54.000 0.0 54.000
East—West X label East—West X label

FIGURE 15.8 Maps of S. viridis seedling densities for 1997 based on cokriging from the
weed densities sampled in 1996, using the 1996 mean density (a) or the 1997 mean density (b).

15.13 ERROR ANALYSIS

15.13.1 PrebicTioN OF WEED MEANS

The mean S. viridis density observed in 1997 (i.e., 11.92) can be compared to the mean
density calculated from the cokriged maps to determine the prediction error of the
mean weed density. When cokriging with the 1996 mean, the predicted 1997 mean
was 48.38, which is considerably higher than the actual mean density counted in 1997
(error = +306% = [(48.38 - 11.92)/11.92]¥100). This was due to the higher mean den-
sity in 1996 (i.e., 109). If the actual 1997 mean was used for cokriging, then the pre-
dicted 1997 was reduced to 5.11, with an error of —57% (=[(5.11 -11.92)/11.92]*100).

15.13.2 PrepicTiON OF WEED LOCATIONS

Box 15.13 shows an SAS program for comparing kriged or cokriged weed densities
to observed densities to calculate mean residual error and mean prediction error for
the weed densities. Mean residual error is as follows:

PUCEED
MRE = =~—— (15.9)
n

where
7, are observed values (with mean Z)
2, is the predicted values
n is the number of values
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BOX 15.12

with PIXELPLT.EXE. The content of set9697 was backtransformed
with exp(z) — 1 before dr

awing the graph. Output is shown in Figure 15.8.

Parameters for PIXELPLT

*************************

START OF PARAMETERS:
s5et9697.out

\file with gridded data

1 \  column number for variable
-1.0e21 1.0e21 \ data trimming limitg

set9697.ps \file with PostScript output

1 \realization number

54 0.5 1 \number of x units,xmin,xsize

244 0.5 1 \number of Y units,ymin,ysize

1l 0.0 1.0 \nz,zmn, zsiz

1 \slice orientation: 1=XY, 2=XZ, 3=v7
1 \slice number

1997 predicted (Using real 1997 mean) \Title
East-West \X label

North-South \Y label

0 \O=arithmetic, 1=log scaling
0 \O=gray scale, 1l=color scale
0 \O=continuous, lI=categorical
0.0 125.0 25.9 \continuous: min, max, increm.
7 \categorical: number of categoriesg
1 9 Code one \category(), code(), name()

2 3 Code Two

3 2 Code Three

4 1 Code Four

5 8 Code Five \category(), code(), name()

6 6 Code Six

77 Code_Seven

Codes for Categorical Variable Plotting:

1l=red, 2=orange, 3=yellow, 4=1light green, 5=green,
6=1ight blue,

7=dark blue, 8=violet, 9=white,
10=black, ll=purple, 12=brown, 13=pink, 14=inter-
mediate green, 1l5=gray

firstobs

= 5y

end;
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*---reading cokriging output---;

data prediction;

infile ‘set9697realMean.out”’

input sim var;

exp(sim)-1;
transformed manually;

*gim

*---creating coordinates for cokriging output---;

data coord;

0to 54by 1; output;

data coord;

dox

set coord;
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Mean prediction error is the root-square of the mean-squared error of

Z(Zi—éi)z
n

In the example where cokriging was carried out with the actual 1997 mean (Box
15.13), MRE = —5.62 plants/m? (significantly different from zero with Pr > ltl <.0001)
and Skewness = —2.64, pointing to a tendency of underestimating densities. Mean
error prediction was 25.9 plants/m?, which is approximately double the observed
mean (i.e., 11.92).

If cokriging was done with the 1996 mean, MRE increased to 40.3 (significantly
different from zero with Pr > l#l < .0001) and Skewness to 2.79, showing that weed
densities were systematically overestimated. fMSEP was multiplied by nearly four

(98.8 plants/m?).

prediction.?2*

rMSEP = (15.10)

Maximum
1.0000000
1.0000000

0
0

Minimum

25.67898
659.40984
265.57028
12.76573

=0

15.14 SUMMARY: USING GEOSTATISTICAL INFORMATION
FOR DECISION MAKING

The program of Box 15.13 also calculates the error frequency if herbicide spraying
in precision agriculture was based on cokriged maps. In this example where the
1997 weed map was cokriged from 1996 observations and the 1997 means, 11% of
the field was not sprayed though its weed density exceeded the maximum accept-
able threshold of 27 plants/m?, whereas 4% was sprayed even though its density
was sufficiently low; the remaining 85% was managed correctly, i.e., areas were
treated when densities exceeded the threshold and left untreated when densities

Variability
<.0001
0.0016
0.0006

Std Deviation

Variance
Range

Interquartile Range
-----p Value-----
Std Dev
0.3163763
0.2182179

Pr > |t
Pr >= |M|
br >= Is|

Tests for Location: MuO
-32
Mean

BOX 15.13 (continued)
-7870

The MEANS Procedure

0.1125000
0.0500000

were low enough.

When the 1997 map was cokriged using the
was different: 7% was erroneously left untreated,
sprayed, and only 63% was managed correctly. The comparison b
two methods indicates that data used for making maps can significantly impact

final outcomes.

racMSEP
26.2568

1996 density, the decision error
30% was unnecessarily
etween these

-5.62670
—-Statistic-
t -4.38234
M
S

-0.33846

Basgic Statistical Measures
-0.81350

Location

Mean
Obs
N

Median

Mode
400
400

GLOSSARY

Anisotropy: It is present when spatial autocorrelation of a process changes with

Test
Signed Rank

Student’s t
Sign

direction.

Anisotropy (geometric): It occurs when the rang
with direction while the sill remains constant.

Anisotropy (zonal): It occurs when the sill of the semivariogram changes with

direction while the range remains constant.

" 1- . . : .
Autocorrelation: p, = E%}f, where v, is the autocorrelation and v, 18 the empirical

e of the semivariogram changes

NOTE: The mode displayed is the smallest of 2 modes with a count of 2

Variable

tminus
tplus

semivariance for distance A, 6, and o}, the standard deviations of variables

’ .
z;and z;, respectively.

[.]
[..]
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Cokriging: It estimates a sparsely sampled variable, 7/, using the sampled data of
this same variable and that of an extensively sampled variable, 7, as well as
the semivariograms of the variables z and 7" and their cross-semivariogram

Contribution: Difference between sill and nugget (if any). ‘

Cross-semivariogram (empirical): vy, = ﬁz (Zien = 2 )(Zlen — 20), Where v, is
h

the empirical cross-semivariance for the distance A, N, » the number of points
separated by the distance 4, and z; and z/ the data values of two variables
measured at location i.

Kriging: Linear interpolation method that allows estimation of variable Z; at unsam-

pled locations, using a weighted linear combination of available samples
and a modeled semivariogram.

Nugget: It represents microscale variation that cannot be described with sampling
plan used or measurement error.

Range: The distance (in any) at which data are no longer autocorrelated.

N - 1
Semivariance (empirical): v, = WZ(ZM —-2)%, where Y, is the empirical
AV

semiYariance for the distance h, N, the number of points separated by
the distance £, and z; a data value measured at location i. The semivario-

gram provides a description of how the data are related (correlated) with
distance.

Sill: Value of semivariance v, for distance larger than range.
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