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Abstract 
 

We measured growth and development variables 
on single soybean [Glycin max (L.) Merr.] plants 
under five management strategies in the upper 
Midwestern USA. Plants grown under different 
management strategies differed significantly in 
their geometric structures, and were classified into 
their proper categories with 75 to 100% correct 
classification, based mainly on differences in their 
fractal dimension (Do), midday differential canopy 
temperature (dT), and canopy light penetration 
[Log(I/Io)]. A conventional system with moldboard 
tillage created the most ideal microenvironment for 
single soybean plants to develop complex 
geometric structures, with significantly larger Do 
(1.477) values and grain yield (11.2 g per plant) as 
compared to plants grown under an organic system 
with strip tillage (Do =1.358, and grain yield = 
2.32 g per plant). Knowledge of how plants 
respond to single and multiple management 
strategies will help agronomists develop better 
predictive models and will help farmers refine 
management practices to optimize yield. 
 
Introduction 
 

Plant size and architecture are important factors 
in determining crop productivity [1]; however, 
researchers are faced with the problem of 
developing reliable models for plant geometric 
structure and its relationship to yield and 
productivity, especially for plants with complex 
structures such as soybean [2, 3]. One approach to 
solving this problem is to use fractal analysis to 
provide new avenues of understanding the 
functional implications of the branching patterns in 
relation to optimum space exploration by plants  
[1]. The fractal dimension (Do) is considered [2] an 
effective tool for quantifying plant structure, 

measuring the structural response to cultural 
practices and modeling plant canopies.  The 
reproductive period, especially growth stages 
RGS1 through RGS5, [4] is most sensitive to 
altered source strength and crop growth rate since 
it is the time during which important yield 
components are formed.  Changes in fractal 
dimension of several crops (e.g., corn and soybean) 
were found to be highly significant over time [2] 
reflecting the level of complexity in skeletal 
structure of single plants as the growth stages 
advanced. Several methods were used to quantify 
the relationships between soybean growth and 
development using growth analyses; however, 
limited information exists on the response of 
soybean’s fractal dimension to management 
strategies. The objectives of this 2-yr study were to 
quantify the impact of management strategies on 
soybean’s geometric distribution in space and time, 
and to predict grain yield (gm-2) as a function of 
fractal dimension. 
 
Materials and methods 
 

Digital imagery [5] and analysis procedures [2, 
6] were used to capture, measure, and statistically 
analyze several morphological traits of individual 
soybean plants grown under five combinations of 
conventional (C) or organic (O) cropping system, 
conventional (C) or strip (S) tillage, recommended 
fertilizer rate (Y) and 2- or 4-yr crop rotation 
(Fig.1); for example, CCY4 is the management 
strategy with conventional cropping system (C), 
conventional tillage (C), with N fertilizer based on 
soil analysis (Y) and 4-yr crop rotation.  Light 
interception by plant canopy [log(I/Io)] and midday 
differential canopy temperature (dT) were 
estimated as described by Jaradat et al. [7]. The 
fractal analysis procedure employed the box count 
concept as outlined by Foroutan-pour et al. [2], 
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where the fractal dimension (Do) is constrained to 
be in the range of 1.0 ≤ Do ≥ 2.0. A value of 1.0 
indicates that the image is completely 
differentiable and that of 2.0 indicates that the 
image is irregular. The principal components (PC) 
option in the Nonlinear Iterative Partial Least 
Squares module and canonical discriminant (CD) 
analyses were used to analyze standardized 
morphometric patterns of individual plants [8]. The 
impact of plant variables on Do and grain yield gm-

2 was studied using artificial neural networks 
(ANNs), then the models were subjected to 
sensitivity analysis to evaluate the relative 
importance of each variable in explaining Do or 
grain yield gm-2. In this analysis, each predictor 
was treated in turn as if it were not available in the 
ANN model and the average value of that predictor 
was used. A sensitivity ratio was calculated by 
dividing the total ANN error when the predictor 
was treated as “not available” by the total ANN 
error when the actual value of the predictor was 
used. If the ratio is >1.0, then the predictor made an 
important contribution to Do or grain yield gm-2. 
The higher the ratio, the more important is the 
predictor [9].  
 
Results 
 
Discriminant analyses and principal 
components regression 
 

Discrimination among plant samples grown 
under five management strategies (Fig. 1) was 
clearly achieved using plant structural dimensions 
and three derived statistics (i.e., dT, Do and 
log(I/Io). Two canonical discriminant roots (CAN) 
accounted for a total of 92% of total variation and 
discriminated among plant samples with 75.0 
(CSY4) to 100.0% (CCY2 and OSY4) correct 
classification. CAN1 was dominated by leaf 
circularity (i.e., ratio of minor to major axes), leaf 
area, log(I/Io), Do and dT, accounted for the 
majority of variation (84%) and totally separated 
samples grown under organic system (i.e., OCY4 
and OSY4, with 95.5 and 100.0% correct 
classification, respectively) from those grown 
under conventional system (CCY2, CCY4 and 
CSY4, with 100.0, 83.3, and 75.0% correct 
classification, respectively).  
 

 
 
Fig. 1. Canonical discriminant analysis and percent 
correct classification of soybean plants grow under 
five management strategies and based on plant 
architecture. 
 

Separation between the latter three groups along 
CAN2, with 8% of total variation, ranged from 75 
(CSY4) to 83.3% (CCY4). CAN2 was dominated 
by stem-related variables and there was clear 
overlap between plants grown under CCY4 and 
CSY4, on one hand, and those grown under CCY2. 
The three derived statistics (i.e., Do, dT and 
log(I/Io) were closely associated with leaf 
circularity and leaf area, whereas stem structural 
dimensions were independent. 
 

Slightly more than 50% of total variation in the 
whole data set was explained by the first two 
principal components (PCs; Fig. 2). Distinct 
separation between plants grown under organic and 
conventional systems was achieved on the basis of 
single plant characteristics, most of which were 
positively associated with conventional cropping 
system, conventional tillage and fertilizer 
application. Thousand-seed weight was the only 
variable associated with organic cropping system, 
strip tillage and no fertilizer treatment. Leaf area 
loaded on the third PC and accounted for additional 
10% of total variance (data not presented). Grain 
yield m-2 was positively and closely associated 
with the fractal dimension, pods m-2, and stem 
circularity, and to a lesser extent with the 
remaining plant structural dimensions on PC1 
which explained 33% of total variation. 
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Fig. 2. Joint plot of six components of management 
strategies, ten soybean characteristics and the 
fractal dimension on the first two principal 
components in PC analysis. 
 

Larger Do values, especially when multiplied by 
leaf area index (LAI), were positively associated 
with conventional cropping system and 
conventional tillage; whereas large values of dT 
and log(I/Io) (i.e., less light interception by plant 
canopy) were associated with organic cropping 
system (Fig. 3). The large Do values were loaded 
positively on PC1 along with most stem and leaf 
characteristics; however, stem width, leaf width, 
leaf perimeter, and stem perimeter were more 
closely associated with Do than the remaining stem 
and leaf structural dimensions. A cumulative 
variance of 43% was explained by all independent 
variables in the PC regression (Fig. 3).  

 
A total of 51% of total variation in the dependent 

variables, accounted for by the first two PCs, 
explained 87% of total variation in grain yield per 
plant, which ranged from 2.32 (OSY4) to 11.2 g 
(CCY4) with significant differences among all 
management strategies. There were significant 
differences in grain yield per plant due to the 
tillage component, whether associated with 
conventional or organic systems, and due to crop 
rotation (2- vs. 4-yr) whether associated with 
conventional or strip tillage. Plants grown under 
CCY4 produced the largest grain yield (11.2 g), 
followed by CSY4 (9.82 g); whereas those grown 
under OCY4 and OSY4 produced the least (5.37 
and 2.32 g per plant, respectively).  
 
 
 
 
. 

 
Fig. 3. Mean separation and variance in grain yield 
per plant accounted for by differences among 
management strategies and soybean characteristics 
as predicted by the first two components in 
principal components regression. Means followed 
by the same letter do not differ significantly at the 
5% level of probability. 
 
Neural network analyses 
 

Calibration and validation regression models 
were developed to predict Do as a function of dT 
are presented in Table 1. Correlation coefficients 
(R values) between measured and predicted grain 
yield using Do as a predictor was non-significant 
during the first two growth stages; however, R 
values increased steadily from 0.74 (RGS3) to 0.96 
as the plants approached maturity (RGS6); the 
respective r-values for the validation models were 
smaller (0.65 to 0.94) albeit significant (p<0.05); 
however, the validation models performed very 
poorly during the first two reproductive growth 
stages. The intercept and slope the regression 
models increased steadily as plants approached 
maturity, the intercept approaching zero and the 
slope approaching unity.  
 

The MLPR neural network identified four 
independent variables with significant contribution 
in predicting both Do and grain yield m2 (Table 2). 
Plant dry weight was an important variable in 
predicting Do and grain yield m-2. A much simpler 
multi-layer perception neural network, with 13 
hidden layers, was capable of predicting Do as 
compared to the more complex general regression 
neural network, with 43 hidden layers, needed to 
predict grain yield gm-2. However, almost equal 
variation in Do (0.76) and grain yield gm-2 (0.79) 
was explained by the predictor variables (Table 2). 
Plant weight was the most important variable in 
predicting Do, followed by plant volume, plant 
circularity and plant perimeter; whereas Do was the 
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most important variable, followed by plant dry 
weight, plant volume and plant circularity, in 
predicting grain yield gm-2. The SD-ratios for Do 
(0.646) and for grain yield m-2 (0.632) were 
relatively similar.  
 
  
Table 1. Calibration (C ) and validation (V) partial 
least squares (PLS) regression models predicting 
soybean plant fractal dimension (Do) as a function 
of midday differential canopy temperature (dT) at 
six reproductive growth stages (RGS1 – RGS6, a 
and b are intercept and slope of regression 
models, respectively; *, p<0.05). 
 

PLS regression model Growth 
stage C r V r 
RGS1     a 1.34 0.21 1.52 -0.26 
 b  0.04  -0.07  
RGS2 a  1.37 0.20 1.52 -0.26 
 b  0.04  -0.06  
RGS3 a  0.68 0.74* 0.78 0.65* 
 b  0.52  0.46  
RGS4 a  0.53 0.79* 0.58 0.74* 
 b  0.63  0.60  
RGS5 a  0.29 0.89* 0.34 0.86* 
 b  0.79  0.76  
RGS6 a  0.11 0.96* 0.14 0.94* 
 b  0.92  0.89  
 
 
Sensitivity analyses 
 

 The relationship between four predictors (Table 
2) and Do was quantified and a regression equation 
was developed to predict Do as a function of each 
predictor while holding each of the remaining 
predictors at its mean value. Plant dry weight, stem 
volume, stem circularity and stem perimeter (Fig. 
4) displayed different, albeit large and significant, 
effects on Do. The quadratic effect of stem volume 
was not significant. A plant dry weight of 6-7 g is 
capable of producing a maximum Do of 1.45-1.46; 
however, Do did not respond positively to any 
further increases in the plant dry weight beyond 
this level. 

 
 
. 

 
 

 

 

 
Fig. 4. Sensitivity analyses of plant dry weight, stem 
volume, stem circularity and stem perimeter as 
predictors of fractal dimension (Do) of soybean 
plants. 
 
 
 
. 
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Table 2. Statistics of the Multi-Layer Perception 
Neural Network (MLPR-NN) with 9:9-13-7-1:1 
layers predicting soybean fractal dimension (Do), 
and of the General Regression Neural Network 
(GR-NN) with 13:13-43-2-1:1 neurons predicting 
soybean grain yield gm-2 as a function of three 
plant traits and the fractal dimension (Do). 
 

Ratio and  
(rank) 

Test statistics Variable 

Do Grain 
yield,  
gm-2 

Do Grain 
yield, 
 gm-2 

Plant dry 
weight, g 

1.572 
(1) 

1.599 
(2) 

  

Plants 
volume 

1.488 
(2) 

1.352 
(3) 

  

Plant 
circularity 

1.347 
(3) 

1.351 
(4) 

  

Plant 
perimeter 

1.141 
(4) 

   

Do  1.732 
(1) 

  

     
Mean   1.425 172.1 
S.D.   0.059 56.0 
S.D. 
Ratio 

  0.646 0.632 

R2   0.76 0.79 
 
On the other hand, Do responded linearly to plant 
volume and, in a piecewise fashion, to stem 
circularity (i.e., ratio of minor to major axes, with a 
breakpoint at Do=1.424331) and stem perimeter 
(with a breakpoint at Do=1.4164. Similarly, a 
nonlinear regression equation was developed to 
predict grain yield (gm-2) as a function of each 
predictor (i.e., Do, plant dry weight, plant volume, 
and stem circularity, Table 2) while holding each 
of the remaining predictors at its mean value (Fig. 
5). Positive and significant relationships were 
found among grain yield and each predictor, and 
the nonlinear portion of the regression equations 
was significant except for Do.  
 
Discussion 
 

Short growing seasons in the upper Midwestern 
USA present serious time limitations on crop 
growth, in which soybean crop needs to establish 
and maximize canopy coverage rapidly to exploit 
available light [3]. Crop plants have been shown to 
adjust their architectural traits (Table 2) in response 
to management practices [2] and plant architecture, 

as characterized by Do, has been shown to impact 
grain yield in many crops [1].  
 

 

 

 
 
 
Fig. 5. Sensitivity analyses of fractal dimension (Do), 
plant dry weight, plant volume, and stem 
circularity as predictors of grain yield gm-2 of 
soybean. 
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Different management practices created a range of 
microenvironments in which soybean plants 
developed different architectures, as reflected by 
their Do, dT and log(I/Io) values and on the large 
percentage of correct classification (75.0-100.0%). 
Further evidence on how grain yield responded to 
adjustments in plant architecture, which in turn 
responded to components of different management 
practices, is quantified in Fig. 1. The largest grain 
yield per plant (11.2 g) was positively associated 
with Do, conventional system, and conventional 
tillage, and was a result of maximum plant growth 
and development under the favorable conditions 
created by the CCY4 management strategy (Fig. 3). 
  
The PLS regression models, especially during 
RGS3 to RGS6 (Table 1), succeeded in  predicting 
Do as a function of midday differential canopy 
temperature (dT), the value of which  depends on 
air temperature, but will differ from it due to 
canopy characteristics, thermal characteristics and 
thermal conditions near the soil surface [10]. 
Reliability of the predictive equations (expressed 
as r-values) increased as the plants grew and 
changed the microenvironment within the canopy, 
and with time. 
 
The response curves generated by the ANN models 
provided valuable information about the 
relationships among grain yield m-2 and a set of 
predictors beyond the information provided by 
simple correlation and regression models [9]. We 
identified important Do and seed yield predictors 
using ANN models in an attempt to develop timely 
management practices that may help create 
optimum plant geometric structures (expressed as 
Do) capable of maximizing light interception and 
midday differential canopy temperature, and thus 
producing the largest grain yield. 
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