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Multivariate statistics in plant breeding

Multivariate analysis is the branch of statistics con-
cerned with analyzing multiple measurements that
have been made on -one or several samples of indi-
viduals. Because these variables are interdependent
among themselves, they are best considered together.
Unfortunately, handling data with multicolinearity can
be unwieldy and hence some meaningful summarization
s needed. ,

~ The multivariate techniques in use may be divided
Nnto two groups:

1 Interdependence models — e.g., principal compon-
ents analysis, factor analysis.

2 Dependence models — e.g., multvariate analysis of
variance, classification functions, discriminant func-
tion analysis, cluster analysis, multiple correlation,
canonical correlation.

. W. Cooley and P. R. Jones further classified multi-
ridte procedures into four categories according to the
yumber of populations and the number of variables as
- follows:

1 ‘One set of variables, one population - e.g., principal
" components analysis; factor analysis.

"2 ‘One set of variables, two or more populations - e.g.,
‘multivariate analysis of variance, discriminant func-
tions, classification functions.

3 Two or more sets of variables, one population — e.g.,
polynomials fit, multiple correlation, canonical corre-
lation, multiple partial correlation.

4 Two or more sets of variables, two or more sets of
populations - e.g., multivariate covariance.

Multivariate analyses are done on computers because
of their complexity. An overview of the common pro-
cedures is discussed next.

Factor analysis

A variable can be explained to the extent that its variance
can be attributed to an identifiable source. Factor ana-
lysis may be used to find ways ofidentifying fundamental
and meaningful dimensions of a2 multivariate domain.
It is a decision-making model for extracting subsets
of covarying variables. To do this, natural or observed
intercorrelated variables are reformulated into a new
set (usually fewer in number) of independent variables,
such that the latter set has certain desired properties
specified by the analyst. Naming factors is -only a
mnemonic convenience. It should be done thoughtfully
so as to convey information to both the analyst and the
audience. For example, a large set of morphological
traits may be reduced to several conceptual factors such
as “architecrural factor” (loaded by variables such as
internode length, number of internodes, etc.), whereas
a “seed size factor”™ may be loaded by traits such as seed
length and seed width. '

A. A Jaradat
USDA-ARS, Monis, 56267 MN, USA
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7 Multivariate analyses procedures:
= applications in plant breeding, genetics, and agronomy

Plant breeders, geneticists, and agronomists are increasingly faced with theoretical and practical questions of multivariate nature.
With increases in germplasm sizes, the number of plant and crop variables, and evaluation and characterization data on molecu-
far, biochemical, morphological, and agronomic traits, multivariate statistical analysis (MVA) methods are receiving increasing
fhterest and assuming considerable significance. Some MVAs (e.g., multivariate analysis of variance, MANOVA, and covariance,
MANCOVA) are extensions of uni- and bivariate statistical methods appropriate for significance tests of statistical hypotheses.
However, most MVAs are used for dataexploration, the extraction of fundamental components of large data sets, the discovery of
latent-structural relationships, and the visualization and description of biological patterns. This review focuses on the salient fea-
tures and applications of MVAs in multivariate data analyses of plant breeding, genetics, and agronomy data. These include
MANOVA, MANCOVA, data reduction methods (factor, principal components, principal coordinates, perceptual mapping, and
‘gnrrespondence analyses), and data classification methods (discriminant analysis, clustering and additive trees).

Crop improvement programs — through breeding, selection, and agronomic evaluation - rely on available genetic diversity for
spuclfic trait(s) in the primary and, if needed, in the secondary gene pool of a particular crop species. Classic univariate analysis
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Table 1 Summary of the significant effect (P < 0.05) for leaf area index (LAI) and dry weight of stems per plant in
MANOVA and determination of the smallest set of variables.

Significant

Variable source of variation Wilk’s lambda F approximation Final set

LAI Year 0.182 40.45*** Fnax
Genotype 0.175 473* Xy
Growth habit 0.479 26.85***

Dry weight of stems Year 0.552 7.30* X
Genotype 0.067 13.99** Xinr
Growth habit 0.480 70.17***
Within winter types 0.105 13.12***

Ymap> Maximum value of the variable; x__, time in growing-degree days from sowing to 3, &, time in growing degree-days from sowing

to reach maximum rate of growth. *, P<0.05; **, P <0.0]; *** P<0.001.

procedures, limited to estimation and hypotheses testing, are not capable of detecting patterns and exploring muitivariate
data structures in genetic resources, breeding lines, or cultivars. Therefore, MVA methods to classify and order large numbers of
breeding material, trait combinations, and genetic variation are gaining considerable importance and assuming considerable
significance.

MANOVA and MANCOVA

MANOVA and MANCOVA perform a multivariate analysis of variance or covariance when multiple dependent variables are
specified. MANOVA tests whether mean differences among groups for a combination of dependent variables are likely to have
occurred by chance. A new dependent variable that maximizes group differences is created from the set of dependent variables.
The new dependent variable is a linear combination of measured dependent variables, combined so as to separate the groups as
much as possible. ANOVA is then performed on the newly created dependent variable. MANCOVA asks if there are statistically
reliable mean differences among groups after adjusting the newly created dependent variable for differences on one or more
covariates. In this case, variance associated with the covariate(s) is removed from error variance; smaller error variance provides
a more powerful test of mean differences among groups.

MANOVA was used in the analysis of growth patterns and biomass partitioning of crop plants as a prerequisite for interpreting
results of field experiments and in developing crop simulation models. Royo and Blanco (1999) utilized MANOVA to compare
non-linear regression growth curves in spring and winter triticale and identified variables responsible for the differences between
these curves. Results of these studies are partially presented in Table 1, along with the smallest set of variables required to charac-
terize the growth curves. Wilk’s lambda is the criteria for statistical inference and is estimated as the pooled ratio of error variance
to effect variance plus error variance. In this example, all Wilk’s lambda and F-approximation estimates are significant. For ex-
ample, the differences within each growth habit (Table 1) were non-significant but differences between growth habits were
significant. Thermal time needed to reach the maximum leaf area index was the variable responsible for these differences.

Variance components analysis (VCA)

Experimentation is sometimes mistakenly thought to involve only the manipulation of levels of the independent variables and the
observation of subsequent responses on the dependent variables. Independent variables whose levels are determined or set by
the experimenter are said to have fixed effects. A second class of effects, random effects, are classification effects where the levels
of the effects are assumed to be randomly selected from an infinite population of possible levels. Many independent variables of
research interest are not fully amenable to experimental manipulation, but nevertheless can be studied by considering them to
have random effects.

Factor analysis (FA) and principal components analysis (PCA)

The primary purpose of FA and PCA is to define the underlying structure in a data matrix. As data reduction or exploratory
methods, these procedures are used to reduce the number of variables and to detect structure in the relationships between these
variables. FA reproduces the correlation matrix among variables with a few orthogonal factors; however, contrary to PCA, most
forms of FA are not unique. PCA is a procedure for finding hypothetical variables (components) that account for as much of the
variance in multidimensional data as possible. PCA is a unique mathematical solution; it performs simple reduction of the data set
to a few components, for plotting and clustering purposes, and can be used to hypothesize that the most important components
are correlated with some other underlying variables.
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In PCA one can obtain a “biplot” in which
12 the objects and the variables are superimposed
- on the same plot so that one can study their
sl interrelationships (Figure 1). In PCA one judges

Tl 332 proximities among the objects using Euclidean
) distances and among the variables using

Base covariance or a correlation matrix. PCA was
alkaloid utilized in determining the phytochemical
relationship of six sesame genotypes and their
----- ! resistance to whitefly (Laurentin et al. 2003).
Foliar acidity and flavonoids dominated PC1
and PC2, respectively. The five sesame geno-
types were separated according to their phyto-
chemical characteristics. A close relationship
Weakly base was found between secondary metabolites and
alkaloid foliar acidity, on the one hand, and incidence
of whitefly on sesame, on the other, thus
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Principal coordinates analysis (PCoA)

. PCoA focuses on samples rather than variables
Figure T A graph based on PCA of five sesame genotypes as and is based on a matrix containing the dis-

operational taxonomic units (dotted lines), and three secondary tances between all data points. A typical usage
metabolites in leaves and foliar acidity as variables (solid lines). of PCoA is the reduction and interpretation of
large multivariate data sets with some underly-
ing linear structure. PCoA was instrumental in
A delineating relationships among tropical maize
populations based on simple sequence repeats
for breeding purposes (Reif et al. 2003). PCoA
revealed very clear association among popula-
0107 Pop22 tions within certain heterotic i
groups (Figure 2).
Pop34 Pool24 Reif et al. (2003) succeeded in identifying
0054 < genetically similar germplasm based on mole-
N cular markers, and concluded that PCoA pro-
0.00 . vides a more economic and solid approach for
making important breeding decisions early in
the breeding program.

Pop2l Pop29

PC3 (15.8%)

-0.05 W

Pevceptual mapping (biplot and GE)

-0.10 +
Success in evaluating germplasm, breeding

lines, and cultivars in multiple environments
and for complex traits to identify superior
genotypes with specific or wide adaptation can
be achieved if the genotypic (G) and environ-
mental (E) effects and their interaction (GE) are

Figure 2 PCoA pl ical mai . precisely estimated (Yan et al. 2000). The GE
g CoA plot of seven tropical maize populations based on biplot procedure has been used by breeders

modified Roger’s distance. PC1, PC2, and PC3 are the first, second, ! . . . .

. 2 . . . and agronomists for dissecting GE interactions
and third principal coordinates, rcspcc.tlvcly. Heterotic group A and is being used to analyze data from geno-
(Pop21, Pop22, and Pool24), heterotic group B (Pop25, Pop32),and  type x trait, genotype x marker, environment x
populations not yet assigned to heterotic groups (Pop29, Pop34) are QTL, and diallel cross data. The biplot aliows a
shown. readily visualized display of similarity and dif-

ferences among environments in their differen-
tiation of the genotypes the similarity and differences among the genotypes in their response to locations, and the nature and
magnitude of the interaction between any genotype and any location.
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Model 1. Scaling 3, PC1 = 59%, PC2 = 19%, Sum = 78%

Figure 3 Biplot showing performance of different wheat cultivars
(in italics) in different environments (in capital letters) as a selection
method to identify superior cultivars for a target environment.

Biplot was used to compare the performance
of wheat cultivars under several environments
in the Ontario wheat performance trials (Fig-
ure 3) and to estimate relative variance com-
ponents and their level of significance. Results
of biplot analysis have several implications for
future breeding and cultivar evaluation. A test
for optimal adaptation can be achieved through
the deployment of different cultivars for mega-
environments, and the unpredictable genotype
x location interaction can be avoided or mini-
mized through cultivar evaluation and selection
focusing on the main effects of genotype.

Multiple corvespondence analysis (MCA)

MCA is a recently developed interdependence
MVA procedure that facilitates both dimen-
sional reduction of object ratings on a set of
attributes and the perceptual mapping of objects
relative to these attributes. MCA helps re-
searchers quantify the qualitative data found
in nominal variables and has the ability to
accommodate both non-metric data and non-
linear relationships. In order to facilitate the use/
of common bean landraces in genetic improve-
ment, Beebe et al. (2000) used MCA to study the
structure of genetic diversity, based on RAPD

(random amplified polymorphic DNA), among common bean landraces of Middle American origin for breeding purposes.
MCA results (Figure 4) indicated that the Middle American bean germplasm is more complex than previously thought with
certain regions holding important genetic diversity that has yet to be properly explored for breeding purposes. The first dimension
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.. (Figure 4a) discriminated between lowland and
0.87 u ¢ GA-5 EF ' highland races. The second dimension discrim-
® GA-5 EI inated among highland races, whereas the third
2 ?Yh_gsltonc dimension (Figure 4b) divided the highland races
according to their growth habit, geographic,
distribution, and seed type. Results of MCA can
4.45 i be used to orient plant breeders in their search
(P<0.01) for distinct genes that can be recombined, thus
contributing to higher genetic gain.

0.6
1.68

0.4 ](P<00D)

1.95

0.2 (P<0.01)
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Canonical discriminant analysis (CDA)

Canonical function II

CDA is used to study the variation among two or

6.98 . .
more groups (samples) of crop cultivars relative

1.29__,__—£—<—0£)—”'—/ © to the average variation found within the groups.

® (s O.M/ Linear combinations of the original variables
. (P<0.01) that account for as much as possible of total vari-
04— ation in the data set are constructed using PCA,
-1 05 0 0.5 ! 15 2 then canonical correlation is used to determine

a linear association between predictor variables
identified in PCA and criterion measures. In

. . ) CDA more distinct differentiation of cultivars is
Figure 5 Scatterplot of centroid values of four tall fescue cultivarson  ;chieved as compared with univariate analysis,
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Canonical function I

two canonical discriminant functions. Mahalanobis distances and since all independent variables (e.g., traits) are
their proWability values, in parentheses, measure the extent of genetic  considered simultaneously in the process. CDA
diversity between the four cultivars. can separate “among population” effects from

“within population” effects thus maximizing the

overall heritability estimates of canonical vari-

ates by placing very large weight on traits with

_ low levels of environmental variability. CDA

uses Mahalanobis distance to differentiate between cultivars or populations. The higher the canonical loadings (measures of the

simple linear correlation between an original independent variable and the canonical variate) of traits of particular significance,

the higher the genetic variation as.compared with traits having low canonical loadings. Plant breeders can use this information to

focus on particular trait(s) for genetic improvement of a particular crop. Vaylay and van Santen (2002) employed CDA in the

assessment of genetic variation in tall fescue (Figure 5). They found that the genetic composition of four tall fescue cultivars differ

mainly, in decreasing order, in maturity, cell wall content, flag leaf length, tiller number, and dry matter yield. Therefore, tall fes-

cue breeders can concentrate on the most important traits of this perennial pasture crop knowing that the genetic composition of
its cultivars changes with time.

Cluster analysis (CA)

CA is an analytical MVA procedure for developing meaningful subgroups of objects. It classifies a sample of objects into a small
number of mutually exclusive groups based on the similarities among the objects. Stepwise clustering involves a combination or
division of objects into clusters, Hierarchical CA starts with each case in a separate cluster and then combines the clusters sequen-
tially, reducing the number of clusters at each step until only one cluster is left. The divisive clustering method begins with all the
objects in a single cluster, which is then divided at each step into two clusters that contain the most dissimilar objects. Additive
trees, as an extension of clustering, are based on a dissimilarity distance matrix among all possible pairs of objects in order to
retain the original distances among all pairs of these objects. Unlike other clustering algorithms that are based on the rigorous
ultrametric relationships between objects, the additive tree precisely reflects distances among the objects.

Cluster analysis was used as a tool to optimize and accelerate barley breeding. Karsai et al. (2000) evaluated barley cultivars for
five physiological and agronomic traits that have significant effects on heading date and winter hardiness. CA helped identify
groups of cultivars representing different adaptational types. The wide level of diversity identified in the germplasm set was
valuable in studying the genetics of adaptation to certain environments. It was possible to identify (numbered 1 through 7 in
Figure 6) winter and spring groups, groups of cultivars with no vernalization response that had the lowest earliness per se, and
other group of cultivars least sensitive to changes in photoperiod but with a strong vernalization response. A breeding scheme
was designed on the basis of the clustering results (Figure 6) and was aimed at developing new cultivars better adapted to a given
environment.
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Figure 6 Cluster analysis of 39 barley cultivars based
on a matrix of vernalization response, photoperiod
sensitivity, earliness per se, frost tolerance at =10 and
—-13°C, and heading dates under different
photoperiod regimes. The dendrogram was created
using the Ward minimum vartance method. Groups
(1-7) were characterized by having specific levels of
one or more traits,

Principal components analysis

Principal components analysis (PCA) reduces the
dimensions of multivariate data by removing inter-
correlations among the traits being studied and thereby
enabling multidimentional relationships to be plotted
on two or three principal axes. PCA reduces the number
of variables to be used for prediction and description.

By examining a set of 15 quality traits, researchers at
Michigan State University Bean Breeding Program were
able to ascertain that certain quality traits (dry character-
istics, soaking characteristics, cooking characteristics)
of dry beans were independent. This prompted the
researchers to suggest a tandem selection procedure to
be followed by the construction of selection indices for
their breeding program.



