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Summary

The1 weed ¯ora (comprising seven species) of a ®eld continuously grown with soyabean was

simulated for 4 years, using semivariograms established from previous ®eld observations.

Various sampling methods were applied and compared for accurately estimating mean plant

densities, for di�ering weed species and years. The tested methods were based on (a) random

selection wherein samples were chosen either entirely randomly, randomly with at least 10 or

20 m between samples, or randomly after stratifying the ®eld; (b) systematic selection where

samples were placed along diagonals or along zig-zagged lines across the ®eld; (c) predicted

Setaria viridis (L.) P. Beauv seedling maps which were used to divide the ®eld into low- and high-

density areas and to choose the largest sample proportion in the high-density area. For each

method, sampling was performed with 5±40 samples. Systematic methods generally resulted in

the lowest estimation error, followed by the random methods and ®nally by the predicted-map

methods. In case of species over- or under-represented along the diagonals or the zig-zag

sampling line, the systematic methods performed badly, especially with low sample numbers. In

those instances, random methods were best, especially those imposing a minimal distance

between samples. Even for S. viridis, the methods based on predicted S. viridis maps were not

satisfactory, except with low sample numbers. The relationships between sampling error and

species characteristics (mean density, variability, spatial structures) were also studied.

Keywords: semivariogram, Gaussian simulations, kriging, spatial distribution, sampling plans.

Introduction

Decision aid models based on damage thresholds and weed demography models are developed to

assist farm managers to make both short- and long-term choices for weed management. In the

decision aid models based on damage thresholds, weed densities observed in the ®eld are

compared with a density threshold to determine whether weed control measures are needed. This

threshold value is the weed density that causes a crop yield whereby the associated ®nancial loss
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exceeds the cost of control measures (Zadoks, 1985). If the observed weed density is larger than

the threshold value, then herbicides are applied, whereas no action is taken if the weed density is

below the threshold. In weed demography models, weed population characteristics such as

seedling densities or seed production are estimated in ®elds and then used to initialize the model

to simulate long-term weed population growth and to make decisions (Colbach & Debaeke,

1998). These kinds of models require accurate estimates of weed density to make correct

decisions, even if a certain margin of error is acceptable for long-term weed control programmes

(Wallinga et al., 1999).

Most of the techniques used to estimate weed density are based on ®eld surveys. A typical

protocol for sampling weeds for research purposes consists of selecting a given number of

quadrats of a certain size, located on a grid, and counting the number of weeds of each species

within each quadrat. The mean quadrat density for each weed species is then assumed to

represent the ®eld. This approach is appropriate when there is no other information about the

variable to estimate. However, weeds tend to cluster together in patches and they are not

distributed randomly in the ®eld (Marshall, 1988; Van Groenendael, 1988; Thornton et al., 1990;

Wiles et al., 1992; Johnson et al., 1995; 1996). This patchiness decreases the accuracy of yield loss

estimates based on weed density (Auld & Tisdell, 1987; Dent et al., 1989; Brain & Cousens, 1990)

and of the mean density estimation for a given level of scouting e�ort (Gold et al., 1996), as

samples obtained close to one another vary less than samples obtained at greater distances

(Legendre & Fortin, 1989).

Sampling strategies that account for spatial distribution may increase sampling e�ciency

(Cardina et al., 1997). For instance, a sampling protocol may consist of dividing a ®eld into parts

with a separate determination of the mean density within these parts. Such an approach may

reduce variability in weed density estimates compared with a single estimate for an entire ®eld

and a reduction in variability may improve the density estimate.

In recent years, a number of studies have been developed to optimize weed sampling, to gather

enough information on weed densities and distributions and to make correct estimates that are

not excessively expensive or time consuming. The search for optimal strategies that are cost

e�ective in speci®c circumstances has been improved by the optimal use of prior information.

This gave rise to devices like strati®ed, cluster, systematic and sequential sampling, which can be

combined and specialized in many ways (Conn et al., 1982).

The aim of this paper was to compare sampling methods in terms of estimation accuracy of

mean weed seedling densities. The development of an optimal sampling procedure to make weed

management decisions is still underway. The various sampling methods were not applied to the

weed ¯ora of a real ®eld, but to the simulated ¯ora of a ®eld continuously grown with soysbean

conceived from semivariograms.

Materials and methods

In previous work (Colbach et al., 2000), the seedling densities of seven weed species [Amaranthus

retro¯exus L.; Asclepias syriaca L.; Chenopodium album L.; Cirsium arvense (L). Scop.; Elytrigia

repens (L.) Nevski; Setaria viridis (L.) P. Beauv.; Sinapis arvensis L.] were counted in a

continuously grown soyabean [Glycine max (L.) Merr.] ®eld (244 m ´ 54 m) at the Swan Lake

Research Farm, Stevens Co., Minnesota, USA. From 1993 to 1997, the densities of the seven

weed species were counted on 0.1-m2 quadrats at 410 permanently marked locations within a

6.1-m (20-foot) grid system. The ®eld received standard weed management practices, which
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resulted in good to excellent control each year. Empirical semivariograms, i.e. a description of

the variance between weed densities as a function of distance between sampling locations, were

established for each species and year. Equations were ®tted to the observations to predict

variances of weed densities at unsampled distances.

In this work, the semivariograms were used to establish seedling maps for each year and

species. Two di�erent methods were used to generate these maps: ordinary kriging and stochastic

simulation. Ordinary kriging based on the semivariograms was used to estimate weed densities at

unsampled locations of the ®eld by interpolation between the sampled points for each year and

species, thus a single map was generated. However, kriging is often deemed unsuitable for

evaluating sampling schemes, as it is known to smooth the actual variation of the mapped

variable (Cressie, 1991; Deutsch & Journel, 1998). Consequently, another way of generating

maps was necessary. Any statistical property depending only on the second-order moments of

the model (semivariogram or covariance function) may be studied numerically on synthetic data

displaying the same second-order moments. A common way to perform this kind of investigation

is to simulate Gaussian random functions which are very easily simulated and can be used with

any semivariogram models. In contrast to the kriged maps, the maps obtained with Gaussian

simulations display the same variance as the data used to establish the semivariograms.

Gaussian-type ®eld maps were generated with the `turning band' method which is known to be

the most numerically e�cient (Lantuejoul, 1994).

For both mapping approaches, the basic unit was 1 m ´ 1 m. Consequently, the ®eld

consisted of 13 176 units. Table 1 shows the means and semivariogram parameters used for the

mapping processes for each species and year. For each year, the generated weed maps were

considered as the `real' weed populations on which various sampling plans (sampling

methods ´ number of samples) were tested. Three general types of sampling methods were

considered in this paper: (a) those selecting the samples randomly, (b) those using systematic

selection, and (c) those using prior knowledge of the weed distribution in the ®eld. The sample

size was 1 m2 and gave the weed densities for the seven above-mentioned weed species.

Methods based on random selection

Four random selection methods were tested. (a) The ®rst of these methods (henceforth, `random

method') consisted of choosing samples entirely randomly from the simulated ®eld and is often

used in weed research. (b) In the second method (`10-m-minimal-distance method' or `distance10

method'), samples were required to be separated by at least 10 m. The sampling process was as

follows: the ith sample was chosen randomly from the simulated ®eld and its distance to each of

the (i)1) ®rst samples was calculated; if any of these distances was smaller than 10 m, then the

sample was discarded and a new one chosen; otherwise, the (i + 1)th sample was selected. (c) The

next method (`20-m-minimal-distance method' or `distance20 method') used the same procedure,

but with a minimal sampling distance of 20 m. These minimal distances between samples were

introduced to limit dependence between samples. The values for the minimum distances were

chosen below or above the range values found for the sampled species (Table 1) while still being

small enough to ensure the possibility of placing large numbers of samples in the ®eld. (d) For the

fourth method (`strati®ed method'), the ®eld was divided into ®ve equal parts and then, a ®fth of

the required samples was selected randomly in each of these parts. This method is commonly

used to divide the ®eld into homogeneous parts with little internal variation for the measured

variable (Scherrer, 1983); if no prior knowledge on the variable distribution exists before
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Table 1 Means and semivariogram parameters for nested spherical models of seven weed species calculated by

Colbach et al. (2000), using the weed densities observed in a continuous soyabean ®eld from 1993 to 1997 in

Morris, Minnesota, USA

Species

Mean density

(plants m)2) c0 (m) s0 (m) c1/s0 c2/s0 a1±0 (m) a1±90 (m)

1993

Amaranthus retro¯exus 3.28 1.75 2.09 0.16 0.11 38 1.00

Asclepias syriaca* 0 0 0

Chenopodium album 0.89 0.24 0.74 0.67 0.32 12 19.63

Cirsium arvense 1.28 0.63 1.32 0.52 0.08 19 8.69

Elytrigia repens* 0.30 0.54 0.59 0.08 0.23 33 0.25

Setaria viridis 40.97 0.90 2.41 0.63 1.26 39 30.11

Sinapis arvensis* 3.31 8.67 8.67 0 0.07

1994

Amaranthus retro¯exus 0.38 0.23 0.56 0.59 0.019 12 1.00

Asclepias syriaca 0.08 0.11 0.16 0.31 1.55á10)07 13 1.26

Chenopodium album 0.27 0 0.42 1 0.059 9 0.98

Cirsium arvense 2.40 0.97 2.00 0.51 0.181 26 35.78

Elytrigia repens* 0 0 0

Setaria viridis 14.67 0.93 2.26 0.59 0.793 43 25.00

Sinapis arvensis 0.11 0.24 0.24 »0 0.044 38 13.58

1996

Amaranthus retro¯exus 0.01 1.31 2.94 0.55 0.033 19 6.69

Asclepias syriaca 0.18 0.29 0.38 0.22 0.008 12 0

Chenopodium album 0.30 0 0.53 1.00 0.053 11 »0

Cirsium arvense 0.60 0.42 0.83 0.49 0.018 12 11.22

Elytrigia repens* 0 0 0

Setaria viridis 56.71 0.30 2.30 0.86 1.042 34 10.02

Sinapis arvensis* 0 0 0

1997

Amaranthus retro¯exus 0.07 0.12 0.16 0.26 0.10 12 1.00

Asclepias syriaca 0.31 0.38 0.51 0.25 0.21 12 0.96

Chenopodium album 0.05 0.008 0.08 0.89 »0 10 2.97

Cirsium arvense 0.49 0.36 0.78 0.53 »0 28 »0

Elytrigia repens 0.44 0.25 0.53 0.52 1.18 47 1.00

Setaria viridis 4.40 0.77 2.19 0.64 0.24 30 30.00

Sinapis arvensis* 0 0 0

Semivariance:
c �h� � c0 � c1�h� � c2�h�

if h < a1 c1�h� � c1 � 3

2
� h
a1
ÿ 1

2
� h

a1

� �3
" #

if h � a1 c1�h� � c1

if h < a2 c2�h� � c2 � 3

2
� h
a2
ÿ 1

2
� h

a2

� �3
" #

if h � a2 c2�h� � c2

h, distance between samples; c0, nugget (unexplained variability); s0, sill in the direction of the crop rows (0

direction); c1, contribution of the ®rst spatial structure (s0±c0); c2, contribution of the second spatial structure

[di�erence in sills between the 0 and 90 directions (=direction perpendicular to the crop rows)]; a1±0 and a1±90 are

the ranges of the ®rst spatial structure, for the 0 and the 90 directions, respectively; the ranges of the second spatial

structure, a2±0 and a2±90, are in®nite and nil respectively. The density data of all species (except those marked*) were

transformed with log(z + 1) before geostatistical analysis to decrease dissymmetry of distribution.
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sampling, ®elds are often divided arbitrarily to ensure that samples are more evenly distributed in

the ®eld.

Methods based on systematic selection

The systematic positioning of samples is often used to ensure that samples are placed independently

of the experimenter avoiding or choosing unknowingly certain ®eld areas while increasing the

sampled ®eld area (Scherrer, 1983). Systematic selection was examined by two methods. (a) With

the ®rst of thesemethods (`diagonalmethod'), the samples were selected on the two diagonals of the

®eld. The sampling process for N � 2n samples was as follows (Fig. 1): the ®eld (of length l and

widthw) was divided into n2 rectangles of l/n ´ w/nm2; the ®rst sample was chosen randomly in the

rectangle located on the ®eld edge; if its co-ordinates were (x1, y1), then the co-ordinates of the ith

sample taken on the same diagonal were [x1 + (i)1) ´ w/n; y1 + (i)1) ´ l/n] and the co-ordinates

of the ith sample taken on the second diagonal were [x1 + (i)1) ´ w/n; l)y1)(i)1) ´ l/n). (b) With

the second of the systematic methods (`zig-zag method'), the samples were taken from three lines

assembled vaguely as an `S'. The sampling process forN � 3n)2 samples consisted of dividing the

®eld into n ´ N rectangles of w/n ´ l/N m2. The ®rst sample of co-ordinates (x1, y1) was again

chosen randomly in the rectangle located on the ®eld edge and the subsequent samples were chosen

according to a protocol similar to that for the diagonal method and shown in Fig. 2.

Methods based on predicted distribution maps

In this category, prior knowledge on weed distribution was used to de®ne areas with low internal

variability. To de®ne these areas, we decided to predict S. viridis seedling maps of 1994 and 1997

from the S. viridis data sampled in 1993 and 1996, respectively, and cross-semivariograms

Fig. 1 Example of a systematic

sampling plan (n � 4) selecting eight

samples (N � 2n � 8) and using

diagonals.
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describing the relationships between weed densities and locations of two successive years. These

predicted maps composed of elementary units of 1 m2 each, were calculated with ordinary co-

kriging, using cross-semivariograms, i.e. the variability between samples of years j and j + 1 as a

function of the distance between the samples. The details are given in Colbach et al. (2000). For

each year, the ®eld was divided into two parts: a high-density domain where the predicted

(c-okriged) S. viridis density exceeded a threshold of d plants m)2 and a low-density domain with

less than d plants m)2. From both domains, those units of which any of the immediate eight

neighbouring units did not belong to the same domain, were eliminated. Instead of choosing an

identical number of samples in each area as in the `strati®ed' method, a large percentage q of the

samples were placed randomly in the high-density area and only a few samples were taken from

the low-density ®eld area. Four combinations of percentage q and threshold density d were tested

for 1994 and 1997: (a) In the ®rst method (`co1080 method'), a threshold value of d � 10 plants

m)2 was chosen to separate the low- and high-density areas; q � 80% of samples were chosen in

the high-density part of the `real' ®eld and 20% of the samples were taken from the low-density

part; (b) with the `co1090 method, as many as q � 90% of the samples were placed in the high-

density area; (c) for the `co2080 method', a d � 20 plant density was used for the distinction

between high- and low-density domains and q � 80% of the samples came from the high-density

area; and ®nally (d) the `co2090 method' using a d � 20 plant threshold and a q � 90%

proportion of high-density samples.

These methods were only tested on the kriged maps. They cannot be evaluated on the

Gaussian maps which in this study were not conditional simulations. Consequently, the patch

location did not depend on the raw weed data actually sampled in the real ®eld but only on the

inferred semivariograms.

Fig. 2 Example of a systematic

sampling plan (n � 3) selecting seven

samples (N � 3n)2 � 7) and using

lines assembled as a zigzag.
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Number of samples

For each method, sampling was simulated, using 5±40 samples. For some methods, not all

sample numbers were possible; for the `strati®ed method' for instance, sampling was done with 5,

10,¼, 40 samples because of the division of the ®eld into ®ve parts.

Repetition of sampling plans

If the maps were generated with kriging, each sampling plan was carried out 200 times for each

year to determine the estimation error with con®dence, as this error is subject to considerable

¯uctuations from one realization to another. Similarly, the sampling plans were tested on 100

repetitions of the weed maps obtained for each year with the Gaussian simulations.

Calculation of mean plant densities

For each sampling method, number of samples, year and repetition, the means of each species

density were calculated. For the methods based on predicted distribution maps, the following

equation was used:

mean � wlow � meanlow � whigh � meanhigh; �1�

with:

wlow � weight of low-density area � alow/(alow + ahigh)

alow � area of low-density area

meanlow � mean density of low-density area

whigh � weight of high-density area � ahigh/(alow + ahigh)

ahigh � area of high-density area

meanhigh � mean density of high-density area.

Quality indicators and their analysis

In the case of Gaussian maps, the variance of error was used as a quality indicator for each

sampling plan (except the methods based on predicted distribution maps) and year and for every

species, using the following equation:

Error � R��y ÿ �ye�2
R

�2�

with R � number of maps generated for each year and species

�y � real mean weed density

�ye � mean weed density estimated with sampling method.

In the case of kriged maps, the variance of error was transformed to obtain the relative

prediction error:

Error � 1

�y

���������������������
R��y ÿ �ye�2

R

s
�3�

with R � number of times a sampling plan was carried out for each year and species.
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For each species, sampling method and year, a three-parameter non-linear equation was ®tted

to the error rates:

z � a � eÿb��xÿ5�c �4�

with z � predicted variance of error (for Gaussian maps) or relative prediction error (for kriged

maps)

x � number of samples

a, b and c � parameters.

To improve the level of ®t and decrease parameter correlations, parameter b was replaced by

10)c ln(a/d). The parameters a, c and d were estimated using a non-linear ®tting procedure.

Equation 4 was then used to calculate the estimated values of zx � 5 ( � a), zx � 15 ( � d) and

zx � 20 corresponding to x � 5, 15 and 20 samples. In the case of kriged maps, where the use of a

relative error made the simultaneous analysis of all species interesting, these variables then were

analysed with a linear model, using the year, the species and the sampling methods as input

variables in order to rank the various methods. Whatever the mapping process, a simpli®ed

linear model, with only year and method as input variables, was used to rank the methods

independently for each species. In this procedure, mean errors of the various methods were

compared (least signi®cant di�erence test, LSD, with a � 10%) separately for each species,

assigned a LSD letter value (a, b, etc.), and methods followed by the same series of letters were

given the same rank, ranging from 1 (lowest error) to 10 (highest error). Similarly, a linear model

using species and method as input variables was used to rank the methods independently for each

year. The ®t of the non-linear equations was performed with the NLIN procedure and the

analysis of the linear model with the GLM procedure of the SAS software (Statistical Analysis

System, SAS Institute, Cary NC, USA).

Results

Fitting of the non-linear equation

Generally, the level of ®t of eqn 4 was high. However, slight di�erences were observed between

the sampling methods and mapping process. In the case of kriged maps, r2 was slightly lower for

those based on systematic sampling (mean r2 of 0.98 and 0.96 for the `diagonal' and the `zig-zag'

methods respectively) and among the methods based on predicted maps, the `co2090' method,

i.e. the one selecting 90% of the samples in the area with high S. viridis seedling densities (>20

seedlings m)2), also presented slightly lower r2 values (with a mean value of 0.98). The lower r2 of

the systematic and predicted map methods was due to a higher variability of observed relative

prediction error as illustrated by Fig. 3 for the `zig-zag' method; for the latter, the error

predictors observed for the various sample numbers varied considerably compared with the

`random' method. This was, however, not the case if the maps were obtained by Gaussian

simulation (Fig. 4).

Sampling with Gaussian maps

The methods based on systematic selection usually performed better than those based on random

selection (Table 2), except with low sample numbers where was little di�erence between the
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methods. There was less di�erence between the various methods of a given type than among

types. However, slight di�erences emerged among the random methods, especially when

analysing the ranking established for each species: the use of a minimum distance of 10 m or,

even better, 20 m between samples; or, to a lesser degree, strati®cation decreased estimation error

compared with the completely randomized method. This general ranking was not greatly a�ected

by species. The analysis by species only shows that the systematic methods sometimes performed

badly with low sample numbers as in the case of A. syriaca.

Sampling with kriged maps

The use of the relative error on the kriged maps and the evaluation of a third set of sampling

methods, i.e. those based on the predicted S. viridis maps, con®rmed and complemented the

Fig. 3 Examples of ®tting the non-linear eqn E4 to the relative prediction error for S. viridis and two sampling

methods tested on kriged maps for 1997.

Fig. 4 Examples of ®tting the non-

linear eqn E4 to the relative

prediction error and the variance of

error, respectively, obtained with the

`zig-zag' method tested on kriged

and Gaussian maps for S. viridis in

1997.
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results obtained with the Gaussian maps. The analysis of variance of the relative error permitted

evaluation of the signi®cance of e�ects and their interactions. It showed that in the case of

sampling performed on kriged maps, all three primary factors, i.e. sampling method, species and

year, had a signi®cant e�ect on estimation error (Table 3). Only the interaction between species

and year was signi®cant; neither the method by species nor the method by year interactions were

ever signi®cant.

Those methods already evaluated with the Gaussian maps were similarly ranked when tested

on the kriged maps (Tables 4 and 52 ). The other methods, i.e. the predicted-map methods,

performed worst; among these, the use of the 10-plant instead of the 20-plant limit to distinguish

high and low S. viridis density areas as well as the selection of only 80% (instead of 90%) of the

samples in the high-density area decreased estimation error. In contrast to the Gaussian maps,

the ranking of methods observed on the kriged maps varied more depending upon species

(Table 5) and the systematic methods often performed poorly, especially for low sample

numbers, even if the di�erence with the other methods was not always signi®cant enough to

appear in the synthetic ranking of Table 4. For instance, the `diagonal' method was not adapted

to C. arvense and S. arvensis at low sample numbers or, generally, for C. album, whereas the `zig-

zag' method performed badly with A. syriaca even for high sample numbers. In the case of two

other species (S. viridis, S. arvensis), its ranking deteriorated when the sample number increased

from 15 to 20 samples. In many cases, the `distance 20' and, to a lesser degree, the `distance 10'

method, were as good or even better than the systematic method (C. arvensis, E. repens,

S. arvensis). Moreover, for S. viridis, two of the predicted-map methods, `co2080' and `co2090'

performed better than the `random' or the `strati®ed' methods. At low sample numbers, the

predicted-map methods were better than even the systematic methods (Fig. 5) which resulted in

particularly high error.

The methods tended to be similarly ranked, regardless of the year (Table 6). However, the

performance of the systematic methods varied considerably among years, especially with low

sample numbers (z5). The other exceptions were the minimum-distance methods, which

performed worse than the `random' or the `strati®ed' methods in 1996.

In general, species ranking according to estimation error was almost similar irrespective of the

number of samples (Table 7). For instance, errors were always highest when estimating densities

of species such as C. album or A. retro¯exus, whereas estimation of other species like S. viridis or

Table 3 Level of signi®cance (P) of

factors sampling method, species,

year and their interactions for their

impact on sampling estimation error

zi in the case of sampling performed

on kriged maps. Factors with

probability values > 0.05 were not

considered signi®cant

Sampling estimation error zI

Factors z5 z15 z20

Sampling method 0.0001 0.0001 0.0001

Species 0.0001 0.0001 0.0001

Year 0.0001 0.0001 0.0001

Sampling method*species 0.5144 0.7145 0.8148

Sampling method*year 0.5999 0.3230 0.2749

Species*year 0.0001 0.0001 0.0001

r2 0.94 0.91 0.89

The tested linear model was: mean relative prediction error zI=constant

+ method e�ect + species e�ect + year e�ect + method*species

interaction + method*year interaction + species*year interaction +

error. In the case of z5, mean squares were weighted by the inverse of

(1 + variance of z5) to take into account heterogeneity of variance.
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A. syriaca resulted low errors. To study this species e�ect further, the relationship was analysed

between the relative prediction error and the weed distribution characteristics presented in

Table 1:

· the mean annual species density mean,

· the relative variance, s0=mean,
· the relative contributions of the ®rst (c1=s0) and second spatial structures (c2=s0) to the

variability (see Colbach et al., 2000),

A. For ®ve samples

Methods Means of z5

Zigzag 0.571 a

Diagonal 0.836 b

Random 0.943 b

Strati®ed 1.011 b

Distance10 1.029 b

Distance20 1.047 b c

Co1080 1.087 b c

Co1090 1.289 c d

Co2080 1.411 d

Co2090 1.497 d

B. For 15 samples

Methods Means of z15

Zigzag 0.463 a

Diagonal 0.464 a

Distance20 0.590 a b

Strati®ed 0.593 a b

Distance10 0.596 a b c

Random 0.623 a b c d

Co1080 0.687 b c d

Co2080 0.774 c d

Co1090 0.800 d e

Co2090 0.959 e

C. For 20 samples

Methods Means of z20

Zigzag 0.484 a

Diagonal 0.486 a

Distance20 0.608 a b

Distance10 0.616 a b

Strati®ed 0.636 a b c

Random 0.661 a b c

Co1080 0.703 b c

Co2080 0.808 b c

Co1090 0.835 c d

Co2090 1.027 d

Comparison of means of the variables z5, z15 and z20 representing the

relative prediction error estimated for 5, 15 and 20 samples, respectively,

performed after the linear model mean relative prediction error

zI=constant + method e�ect + species e�ect + year e�ect +

method*species interaction + method*year interaction + species*year

interaction + error (see Table 3). Means followed by the same letter are

not signi®cantly di�erent at P=0.05 (least signi®cant di�erence test).

Table 4 General ranking of

sampling methods according to their

mean relative prediction error made

when estimating weed densities

with three sample numbers in the

case of sampling performed on

kriged maps
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· the ranges along (a1±0) and across the crop rows (a1±90) of the ®rst spatial structure (see

Colbach et al., 2000).

These characteristics were used as input variables for a linear model, with the variables z5, z15
and z20 as output variables. The ®nal models containing only e�ects and covariables signi®cant at

P � 0.05, were similar for the three tested output variables, but correlations were strongest for

z15. In the latter case, the ®nal model was:

z15 � constant�method effect� year effect

ÿ 0:00802 � mean� 0:0100 � s0
mean

� 0:373 � c1
s0
� 0:247 � c2

s0
ÿ 0:00791 � a1±90 � error

with r2 � 0:67

�5�

This model shows that the relative prediction error increased with the relative variance s0=mean
(or s0=�log�1� mean�� if such a data transformation was necessary before the geostatistical

analysis performed by Colbach et al., 2000). The contributions c1=s0 and c2=s0 of the ®rst and

second spatial structures, respectively, were positively correlated with estimation error. Average

annual mean density of species and the geostatistical range across the crop rows, a1±90, of the ®rst

spatial structure were correlated negatively with estimation error.

Discussion

Despite small variations in the ranking of the sampling methods for some species, a general

ranking of methods according to their estimation error can be established, independently of the

species and the years. Indeed, with the Gaussian maps, the method ranking was nearly the same

whatever the species; and with the kriged maps, the interaction between the `species' and the

`method' factors was not signi®cant. Therefore, choosing from this ranking one or more methods

that adequately estimate the densities of all weed populations is possible, with one or two

exceptions observed on the kriged maps, which will be discussed below. The interaction between

Fig. 5 Relative prediction error described by eqn E3 for S. viridis and three sampling methods in 1997.
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the `method' and `year' was not signi®cant, and the detailed ranking of methods for each year

was relatively similar. The slight variations in the methods' ranking could be due to the

di�erences in densities and patch locations for the di�erent years. As a consequence, the ranking

of methods does not depend on the year, and one method is better or worse than another,

regardless of the year.

The systematic methods, i.e. the `diagonal' and the `zig-zag' methods performed best globally.

However, irrespective of the mapping process, their performance was not always satisfactory

with low sample numbers. This result is consistent with former weed seedling sampling studies

performed in set-aside ®elds with di�erent species (Chauvel et al., 1998). The reason for poor

performance does not depend on the actual nature of the sampled species, but rather on the

distribution of the weed patches in a ®eld. With a low sample number, the systematic methods

could oversample the ®eld edges and undersample the ®eld interior and, thus, poorly estimate

A. For ®ve samples

Species Means of z5

S. arvensis 0.519 a

A. syriaca 0.754 b

S. viridis 0.783 b

E. repens 0.834 b

C. arvense 1.141 c

C. album 1.574 d

A. retro¯exus 1.873 e

B. For 15 samples

Species Means of z15

S. arvensis 0.324 a

S. viridis 0.385 a

A. syriaca 0.425 a b

E. repens 0.548 b c

C. arvense 0.615 c

C. album 0.947 d

A. retro¯exus 1.081 d

C. For 20 samples

Species Means of z20

S. viridis 0.333 a

A. syriaca 0.451 a b

C. arvense 0.533 b

S. arvensis 0.562 b

C. album 0.848 c

A. retro¯exus 0.935 c

E. repens 0.959 c

Comparison of means of the variables z5, z15 and z20 representing the

relative prediction error estimated for 5, 15 and 20 samples, respectively,

performed after the linear model mean relative prediction error

zI=constant + method e�ect + species e�ect + year e�ect + method*

species interaction + method*year interaction + species*year

interaction + error (see Table 3). Means followed by the same letter are

not signi®cantly di�erent at P=0.05 (Least signi®cant di�erence test).

Table 7 E�ect of species on the

relative prediction error made when

estimating weed densities with

various sample numbers in the case

of sampling performed on kriged

maps
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densities for species over- or under-represented along the ®eld edges. This bias disappears when

the sample number increases. Furthermore, the systematic location of these samples ensures that

a large part of the ®eld is covered, comprising both ®eld edges and interior, thereby explaining

why the systematic methods are usually the best methods with 15 or 20 samples. Nevertheless,

the unsampled proportion of the ®eld is still considerable and even with a large sample number,

estimation can be poor if most weed patches are concentrated in the unsampled part of the ®eld

or, inversely, in the sampled part of the ®eld. This phenomenon was not visible on the Gaussian

maps based solely on the semivariograms, independent of actual patch location, where each of

the 100 maps generated for a given year showed a di�erent patch distribution. However, the

kriging process also uses the actual raw weed data for generating the maps and, thus, only

produced one map for each year on which each sample plan was repeated 200 times. This

permitted the study of the impact of a particular patch location, for instance, as in the case of

A. syriaca in 1994 (Fig. 6). In this situation, about half of the 16 samples had a high probability of

hitting a patch whereas less than 20% of the ®eld was infested. This explains the high estimation

error of the `zig-zag' method in this particular con®guration. If the sample number was

increased, still another de®ciency of the systematic methods appeared for some species. Indeed,

the distance between two successive samples would fall below the semivariogram ranges and the

samples would become dependent, thereby leading to a systematic estimation bias. For instance,

with 30 samples used in a `diagonal' system, the distance between samples is only 18 m, which is

lower than many geostatistical ranges of the species sampled in this study (Table 1). With the

`zig-zag' method where samples are even closer together, this problem would appear with even

lower sample numbers; already with 20 samples, the intersample distance would only be 16 m.

This might explain why for species with high geostatistical ranges such as S. viridis or S. arvensis,

the performance of the `zig-zag' method decreased with 20 samples compared with 15 samples.

Fig. 6 Example of a `zig-zag'

sampling plan with 16 samples on

the simulated ®eld, showing the A.

syriaca seedling density (plants m)2)

for 1994.
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However, this decrease in performance was not observed with the Gaussian maps and might

therefore not be a general phenomenon.

For low sample numbers, methods based on random selection are best; their performance is

independent of species, they do not present any systematic risk of over- or under-sampling

speci®c ®eld regions and the probability of the samples being located farther than the

semivariogram ranges is high. This last point explains why the use of a minimum distance

between samples, or use of strati®cation, does not have much e�ect with ®ve samples. However,

with 15 or 20 samples, the situation changes. Imposing a distance constraint increases the

probability of independent samples and thus decreases estimation bias. Logically therefore the

`distance 20' methods give better results than the `distance 10' methods because in the former

case the distance between samples exceeds the ranges of a larger number of species than in the

latter case (Table 1). Species with the highest ranges, i.e. S. viridis and S. arvensis, are those

where the `distance 20' method performs as well (when sampling on the Gaussian maps) or better

(sampling on the kriged maps) than the systematic methods. The distance constraint also leads to

a larger sampling coverage of the ®eld than with the `random' method where the area covered by

the samples can vary considerably. The strati®cation of the ®eld also ensures that the whole ®eld

is more or less sampled, but imposes no minimum distance between samples; samples are

therefore not necessarily independent. This explains why the `strati®ed' method performs slightly

worse than the `distance 10' or `distance 20' methods, especially as the strati®cation criterion is

not based on any knowledge of spatial structure but consists simply of a division of the ®eld into

®ve equal parts.

Compared with the systematic methods, the randomized methods have another

disadvantage that was not considered in this paper. Even if the chosen method is

supposed to be a randomized selection of samples, this is actually rarely the case. Few

researchers randomly select ®eld co-ordinates before travelling to the ®eld and then take their

samples exactly at the prechosen co-ordinates. In practice, when sampling randomly, an

experimenter is more likely to wander through a ®eld, taking samples, here and there, which

often leads to a subconscious selection or avoidance of certain types of situations. This risk is

considerably reduced with the systematic methods where the samples are taken at de®ned

intervals, even if this still leaves a certain margin of error in practice. Furthermore, the prior

random selection of ®eld co-ordinates adds time and cost to the methods based on random

selection. Hence, more counts can be made with systematic methods in the same time,

therefore leading to a greater accuracy per sampling hour.

The methods based on predicted seedling maps of one species (e.g. S. viridis) should be

avoided for estimation of general weed populations. This is in fact not very surprising if various

species with di�erent distribution characteristics are present in a ®eld, but are sampled using

information relevant to only one of them. However, for some species, the predicted-map

methods perform better than the systematic methods, probably because the former ensure a

larger coverage of the ®eld and do not oversample ®eld edges like the latter. This would also

explain why the `co1080' method performs best among the four predicted-map methods; this

method is indeed the one that selects the lowest proportion of samples in the high S. viridis

density areas, thus ensuring a better sample distribution over the ®eld than the other three

methods of the same group. More generally, the same explanation would apply for the better

performance of the methods using the 10-plant instead of the 20-plant limit to distinguish high

and low S. viridis densities or of those choosing only 80% instead of 90% of the samples in the

high-density area.
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This reasoning, however, is not true for the species for which we originally designed these

methods, i.e. S. viridis. In this case, the methods using the 20-plant boundary performed best

because they limited the highly sampled portion of the ®eld to those areas where the species is

most abundant and sampling is most productive. However, even for S. viridis the predicted-map

methods are really not satisfactory, especially considering the amount of work needed to prepare

the sampling protocol, i.e. information on spatial distribution of the previous year and on

interannual cross-semivariograms needed to predict the seedling maps (Colbach et al., 2000).

This is surprising in the sense that sampling plans taking into account information on spatial

variability and structure are supposed to decrease estimation error (Scherrer, 1983; Cardina

et al., 1995). Therefore, either the prediction of the seedling distribution in the ®eld was not

su�ciently accurate for sampling purposes (which was not the objective of the map prediction

conducted by Colbach et al., 2000) or the delimitation of the high-density area and/or the

proportion of samples chosen in this area were not adequate. Another possibility is that the

methods were not evaluated correctly, as they were only tested on the kriged maps which tend to

smooth variations.

Despite the general method ranking being valid for every species, more or less, the relative

estimation error varied considerably for each species, depending on their distribution

characteristics. As a consequence, for high-error species such as A. retro¯exus, a high sample

number would be necessary to limit the estimation error to the same level as that obtained for

low-error species, such as S. viridis. Low-density species (as indicated in eqn 5 by the negative

correlation between estimation error and mean plant density) and/or highly variable species

(illustrated by the positive correlation between error and relative variance), of course, are di�cult

to sample correctly, irrespective of the method chosen for sampling (Dessaint et al., 1992; Jones,

1998). Moreover, if the population is spatially structured (positive correlation between error and

contributions of spatial structures to variability), the risk of spatially dependent samples

increases, as does estimation error.

In conclusion, the use of two map generating processes, i.e. ordinary kriging and Gaussian

simulations, resulted in a common ranking of sampling methods. This occurred despite the fact

that kriging tends to smooth variations. The observed di�erences seemed to depend on whether

the mapping was based solely on the semivariograms (Gaussian simulations) or also used the raw

weed data actually sampled in the real ®eld (kriging) and thus delineated certain risks related to

the systematic sampling methods. Nevertheless, for a given number of samples, ranking the

sampling methods was possible according to their performance, regardless of species and year.

Depending on the time and e�ort the investigator can devote to the sampling process, this

ranking allows identi®cation of the optimal method, which leads to the lowest estimation error.

This study does not consider other aspects of sampling design, such as sample area, which also

are of critical importance. Moreover, determination of optimal sampling procedures for making

the best weed management decisions as opposed to mere characterization of weed densities,

awaits further analyses.
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