In year 1, watermelon was dominant and did not undergo intense competition for light as seen visually in Fig. 2a and support...canopy in an architecturally complex system in year 1 (a) and year 2 (b).

Hypothesis

We hypothesized that as light competition intensity increased, watermelon would respond by increasing SLA, leaf N concentration, and PNUE.

Methods

- Two-year field study using 5 crop species (Table 1) and 3 replicates (field site and plot layout information can be found in Franco et al., 2015).
- In 2011, peanut was direct seeded on August 1st followed by watermelon on August 7th, okra and cowpea on August 14th and 15th and 3-inch tall pepper transplants on August 18th (plants spaced 30.5 cm apart).
- Due to overcrowding by watermelon in year 1, planting dates were altered and plants were directly seeded earlier in the season in year 2 (Peanut and okra on June 21st and 22nd, cowpea on June 27th; pepper transplants on July 3rd and watermelon on July 12th).
- Five controls of each species in monocrop were used. Six treatments used were: within-row intercropping systems consisting of: peanut and watermelon (Wpw), peanut, watermelon, and okra (Wpwo), peanut, watermelon, okra, cowpea, and pepper (Wpwoc), and a strip intercropping system consisting of peanut and watermelon in alternating single rows (Swp).
- Gas exchange was measured on the youngest fully expanded watermelon leaves between 1200 and 1400 at full canopy (69 and 94 days after planting in year 1 and year 2, respectively).
- Leaves were collected and scanned with a flatbed scanner to derive total leaf area, oven dried at 24°C for 48 hours, ground, and analyzed for C and N content.
- SLA was calculated as the ratio of leaf area (m²) to leaf dry mass (kg).
- PNUE was calculated as photosynthetic rate per unit leaf area (μmol CO₂ s⁻¹ m⁻²) / gram of N per unit leaf area (g N * SLA) to give μmol CO₂ [mol N]⁻¹ s⁻¹.
- Data were analyzed using ANOVA and regression analyses in JMP 10.0.2 software.

Introduction

- Intercropping with functionally diverse species is a way of mimicking nature, creating an architecturally complex and dense multi-layered canopy.
- Plants that form part of a more dense canopy undergo intense competition for light and respond by changing leaf morphology and altering resource allocation patterns.
- Specific leaf area (SLA), leaf area per unit dry mass, maximizes light interception by increasing relative growth rate, leaf N content, and, thus, optimizing photosynthetic capacity per unit leaf area.
- There is a strong relationship between SLA and leaf N, and SLA and photosynthetic N-use efficiency (PNUE; photosynthetic capacity per unit leaf N) as PNUE is associated with higher relative growth rate, thereby increasing plant fitness and the ability to compete with neighbors.

Objective

- To evaluate leaf-level acclimation and photosynthetic nitrogen-use efficiency in watermelon in a functionally diverse intercropping system.

Results

- In year 1, watermelon was dominant and did not undergo intense competition for light as seen visually in Fig. 2a and supported by the data (Fig. S3a, b, c).
- In year 2 when light competition was greatest due to okra dominance (Fig. 2b), watermelon acclimated by increasing SLA (e.g. larger but thinner leaves) and investing more N for rapid growth (higher leaf N concentration, lower CN) in treatments containing okra (Fig. S3a, b, c).
- No differences were found in watermelon PNUE between monocrop and intercropping treatments as was hypothesized (Fig. 3d).
- SLA was positively linearly correlated with leaf N concentration (Fig. 4a); however, no relationship was found between SLA and PNUE (Fig. 4b).
- Changes in PNUE within a species may be too small to detect and may be more pronounced when comparing species with different life strategies.
- Morphological plasticity demonstrated by watermelon in year 2 may play an important role in optimizing net CO₂ assimilation rates over the entire leaf, thus maximizing canopy-level photosynthesis and enhancing competitive ability.
- Enhancing competitive ability may, however, come at a cost as energy is reallocated from fruit production to growth as evident in lower watermelon yields in year 2 (Franco et al., 2015).
- With increasing interest in multifunctional intercrop and cover crop mixtures, these findings may inform selection of species and relative planting dates given how interspecific species interactions may alter leaf N allocation and C:N ratios and, subsequently, above-ground nutrient inputs.

Table 1. Component crop characteristics

<table>
<thead>
<tr>
<th>Crop</th>
<th>Variety</th>
<th>Family</th>
<th>Function</th>
<th>Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peanut</td>
<td>Limaspan 90</td>
<td>Fabaceae</td>
<td>nitrogen fixation, stoller crop</td>
<td>low/ mid growth form</td>
</tr>
<tr>
<td>Watermelon</td>
<td>TAMU mini</td>
<td>Lecithinacea</td>
<td>another crop, shading</td>
<td>low growth form</td>
</tr>
<tr>
<td>Okra</td>
<td>Clemson spineless</td>
<td>Malvaceae</td>
<td>pollinator attractant, structural support</td>
<td>tall growth form</td>
</tr>
<tr>
<td>Cowpea</td>
<td>Texas pinkeye</td>
<td>Fabaceae</td>
<td>nitrogen fixation, pollinator attractant</td>
<td>mid growth form</td>
</tr>
<tr>
<td>Pepper</td>
<td>jalapeño/Serrano</td>
<td>Solanaceae</td>
<td>pest barrier</td>
<td>mid growth form</td>
</tr>
</tbody>
</table>

Acknowledgements

The authors would like to thank Southern SARE and TWRI for funding this research. They would also like to thank Brady Greene, TAMU Haysville Farm, Romeo Mondini, Dominic Connell, and Kyle Harrison for their assistance in the field.

Literature Cited