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ABSTRACT. The accuracy of nondestructive optical methods for chlorophyll (Chl) assessment based on leaf spectral
characteristics depends on the wavelengths used for Chl assessment. Using spectroscopy, the optimum wavelengths
(OW) for Chl assessment were determined by using 1-year-old almond (Prunus dulcis), poplar (Populus trichocarpa x
P. deltoides), and apple (Malus xdomestica) trees grown at different rates of nitrogen fertilization to produce leaves
with different Chl concentrations. Spectral reflectance of leaf discs was measured using a spectroradiometer (300 to
1100 nm at 1-nm intervals), and total Chl concentration in leaf discs was extracted and determined in 80% acetone.
The OW for nondestructive Chl assessment by reflectance spectroscopy was estimated using 1) the coefficient of
determination (+?) from simple linear regression; 2) reflectance sensitivity analysis (a measure for changes of spectral
reflectance on unit change in leaf Chl concentration); and 3) the first spectral derivative method. Our results indicated
that the first derivative method can be used only to identify OW in the red edge region of the spectrum, whereas r* and
reflectance sensitivity analysis can be used to identify the OW in both the red edge and green regions. Our results
indicate that using simple linear 7 in combination with reflectance sensitivity and/or the first derivative analyses is a
reliable method for determining OW in plant leaves tested. Two optimum wavebands with larger 2, smaller root
mean square error, and higher reflectance sensitivity were found in red edge (700 to 730 nm) and green (550 to 580
nm) regions, respectively, which can be used as common OW for Chl reflectance assessment in poplar, apple, and
almond leaves tested. Single-wavelength indices if developed with OW were even more accurate than those more
wavelength indices that developed without using OW. The accuracy of indices can be further improved if indices
developed by using one OW and one Chl-insensitive wavelength from near infrared (NIR) (750 to 1100 nm) in the

form of Rnir/Row or (Rnir — Row)/(Rnir + Row)-

The chlorophylls, chlorophyll a (Chl a) and chlorophyll b
(Chl b), are essential pigments for the conversion of light
energy to stored chemical energy in plants and their presence
and function is important from both physiological and applied
perspectives (Buschmann et al., 1994; Carter, 1998; Gitelson
et al., 2003; Pinar and Curran, 1996; Richardson et al., 2002).
As much as 75% of the total nitrogen (N) in a plant is required
for normal chloroplast formation (Kutik et al., 1995) and
synthesis of components of the photosynthetic apparatus,
including thylakoid membranes and photosynthetic enzymes
(Evans, 1989); therefore, Chl concentration gives an indirect
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estimation of plant N status and photosynthetic potential
(Filella et al., 1995; Moran et al., 2000). Leaf Chl concentration
is often closely related to plant stress and can be used as an
indicator of plant stress (Carter, 1993, 1994; Carter and Knapp,
2001; Pefiuelas and Filella, 1998).

Traditionally, leaf Chl was extracted with organic solvents
and measured using a spectrophotometer (Lichtenthaler, 1987
Lichtenthaler and Wellburn, 1983). Recently, alternative

Table 1. Effect of nitrogen concentration in fertigation solution on
chlorophyll concentration in apple, poplar, and almond leaves.

Nitrogen Total chlorophyll concn (mol-m2)
concn (mm) Fuji apple UCC-1 poplar Nonpareil almond
0.0 261.52 a* 160.82 a 17333 a
2.5 438.51b 238.74 b 298.41b
5.0 608.53 ¢ 383.64 ¢ 41820 ¢
7.5 772.10d 436.71 d 478.50 d
10.0 947.44 ¢ 529.20 ¢ 584.46 ¢
20.0 1,188.33 f 659.24 £ 710.44 £

“Means of chlorophyll concentration within a column not followed by
the same letter are significantly different based on Tukey pairwise
comparison (n = 12).
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Table 2. Maximum (peak) coefficients of determination (+?) values and corresponding wavelengths (A) for the relationship between chlorophyll
concentration in leaves and reflectance values from 300 to 1100 nm at 1-nm intervals.

Ultraviolet region Green region Red edge region
Species Chlorophyll A (nm) 7 A (nm) ” A (nm) ?
Fuji apple Chl a 412 0.526 aABC*~ 552 0.779 bAB** 720 0.920 cBCD***
Chl b 390 0.476 aAB* 550 0.723 bA** 717 0.847 bABC***
Chla+b 410 0.524 aABC* 552 0.770 bAB** 720 0.907 cBC***
UCC-1 poplar Chl a 422 0.747 aC** 581 0.950 bD*** 715 0.958 bD***
Chl b 423 0.613 aB** 563 0.744 bAB** 730 0.780 bA**
Chla+b 422 0.733 aC** 575 0.917 bCD*** 720 0.935 bCD***
Nonpareil almond Chl a 420 0.263 aA Ns 549 0.874 bBC*** 710 0.868 bABC***
Chl b 420 0.312 aA* 558 0.826 bABC*** 710 0.814 bAB***
Chla+b 420 0.276 aA Ns 550 0.874 bBC*** 710 0.867 bABC***

Ns, *, ** ***¥Nonsignificant or significant at 2 <0.05, 0.01, or 0.001, respectively; 1 followed by the same lower case letter within a row or upper
case letter within a column are not significantly different (P < 0.05, Fisher’s z test, n = 72).
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There are many reasons why reported indices or algorithms
are not applicable for Chl assessment across genotypes or
different studies. However, one of the main reasons is that the
optimum wavelength (OW) for measuring Chl used in one
study differed from it used in other studies. Differences in OW
between studies are a result of variation in leaf properties
among plant genotypes and phenotypes and optical character-
istics of plant leaves. In many studies, the most common
technique used to select the OW for developing Chl-related
indices is the use of the first derivative of reflectance spectra
(Curran et al., 1990; Gitelson et al., 1996a, 2003; Kochubey and
Kazantsev, 2007; Richardson et al., 2002). First derivatives can
be used to resolve or enhance
smaller peaks that are incompletely

Materials and Methods

PLANT MATERIALS. In 1999, 2000, and 2002, 1-year-old trees
of ‘Nonpareil’ almond, UCC-1 poplar (Union Camp, Princeton,
NJ), and ‘Fuji’ apple on M.26 rootstocks were grown in 7.2-L
pots containing 1 peatmoss:2 pumice:1 sandy loam soil (v:v) in
a lath house in Corvallis, OR (lat. 44°30" N, long. 123°17" W)
from March to June. Beginning from budbreak in early May,
trees were fertilized every 2 weeks with 10.7 mm N using 20N—
4.4P-16.6K water-soluble fertilizer with micronutrients (Plan-
tex® 20-10-20; Plantex Corp., Brampton, Ontario, Canada).
When new shoots were ~15 cm long, plants were moved to full
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Fig. 2. Spectra of reflectance (A), reflectance difference (B), and reflectance sensitivity (C—F) of four ‘Fuji’ apple
leaves (S1-S4) with different chlorophyll concentrations (Chl1-Chl4). The reflectance difference (B) was
calculated by subtracting the reflectance of S2, S3, and S4 (R2, R3, and R4) from the reflectance of S1 (R1). The
sensitivity curves based on reflectance (C) were calculated by dividing the reflectance difference by R1 (no unit).
The sensitivity based on Chl a, Chl b, and Chl a + b (D-F) was calculated by dividing the reflectance difference
by the difference in concentrations of Chl a, Chl b, and Chl a + b among leaf samples S2, S3, S4, and S1.
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sunlight and fertilized weekly with Plantex® 20-10-20 for 3
weeks. Beginning in July, plants were fertilized twice weekly
with one of six N concentrations (0, 2.5, 5, 7.5, 10, or 20 mm N
from NH4NO;) by applying 300 mL of a modified Hoagland’s
solution (Hoagland and Arnon, 1950) to each pot until the end
of September.

SPECTRAL REFLECTANCE AND CHLOROPHYLL DETERMINATION.
In August and September, 12 fresh leaves from each species
(genotype) in each N fertigation treatment were removed from
trees and measured with a portable spectroradiometer (LI-1800;
LI-COR, Lincoln, NE) attached by a 1800-10 quartz fiberoptic
probe to an integrating sphere (model LI1800-12S; LI-COR)
like the method described by Mesarch et al. (1999). A leaf disc
was excised from each leaf with a
cork borer (285 mm?) and clamped

and 7* between the spectral reflectance reading from 300 to
1100 nm at 1-nm intervals and Chl concentrations (Chl a, Chl b,
or Chl a + b) in leaf discs. The 7 of the reflectance versus Chl
relationship for Chl a, Chl b, and Chl a + b at each wavelength
was used to generate 7 curves for predicting the actual OW for
estimating Chl concentrations using reflectance. The RMSE of
the reflectance versus Chl relationship for Chl a, Chl b, and Chl
a+ b at each wavelength was used to generate RSME curves to
validate the strength of using 7* curves for predicting the actual
OW for estimating Chl concentrations.

REFLECTANCE SENSITIVITY ANALYSIS. Reflectance sensitivity
measures changes of leaf spectral reflectance based on unit
change in referential reflectance or leaf Chl concentration. The
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ilar measurements were made for
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cut into small pieces, placed in a test 0.6
tube, and extracted in 80% (v/v)
acetone at 4 °C in the dark for 24
h. Absorbance of the extract was
measured with an ultraviolet
(UV)-visible spectrophotometer
(UV-1601; Shimadzu Scientific
Instruments, Columbia, MD) and
total Chl concentration was calcu-
lated according to Lichtenthaler
and Wellburn (1983).
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SPECTRAL REFLECTANCE AND
CHLOROPHYLL DATA. Using Visual
Basic (version 6.0; Microsoft, Red-
mond, WA), a customized software
application was developed to
directly perform simple linear
regression analysis and calculate
root mean square error (RMSE)
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Fig. 3. Spectra of reflectance (A), reflectance difference (B), and reflectance sensitivity (C—F) of four UCC-1
poplar leaves (S1-S4) with different chlorophyll concentrations (Chl1-Chl4). The reflectance difference (B)
was calculated by subtracting the reflectance of S2, S3, and S4 (R2, R3, and R4) from the reflectance of S1 (R1).
The sensitivity curves based on reflectance (C) was calculated by dividing the reflectance difference by R1 (no
unit). The sensitivity based on Chl a, Chl b, and Chl a + b (D-F) was calculated by dividing the reflectance
difference by the difference in concentrations of Chl a, Chl b, and Chl a + b among leaf samples S2, S3, S4, and S1.
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referential reflectance is the reflectance of the leaf with lowest
Chl concentration in the experiment for each species, respec-
tively. Reflectance sensitivity analysis was conducted using
four single leaf samples per species selected from N fertigation
treatment (S1, S2, S3, and S4) with different total Chl
concentrations (i.e., Chl 1, Chl 2, Chl 3, and Chl 4) from low
to high. Within a species, the reflectance values for leaf samples
S2, S3, and S4 were subtracted from the reflectance for leaf
sample S1 (i.e., R1-R2, R1-R3, and R1-R4) to generate
reflectance difference values for each measured wavelength.
Curves of reflectance difference versus wavelength were
developed from 300 to 1100 nm at 1-nm intervals. Sensitivity
curves based on referential reflectance were generated using the
method described by Carter (1993,

1994) and Moran et al. (2000) by

lated with leaf Chl concentration (Penuelas and Filella 1998;
Richardson et al., 2002) and is a standard index used in remote
sensing (Gamon and Qiu, 1999). NDVI is calculated as (Rnjr —
Ricd)/(Rnir + Rieq); here, Ryr is the reflectance in the NIR
region of the spectrum and R,.q4 is the reflectance in the red
region. After indices developed, the best-fit regression (includ-
ing simple linear, quadratic and polynomial regressions), »* and
RMSE were calculated to evaluate the indices developed.

Results and Discussion
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2002). A NDVI is strongly corre-
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Fig. 4. Spectra of reflectance (A), reflectance difference (B), and reflectance sensitivity (C—F) of four ‘Nonpareil’
almond leaves (S1-S4) with different chlorophyll concentrations (Chl1-Chl4). The reflectance difference (B)
was calculated by subtracting the reflectance of S2, S3, and S4 (R2, R3, and R4) from the reflectance of S1 (R1).
The sensitivity curves based on reflectance (C) was calculated by dividing the reflectance difference by R1 (no
unit). The sensitivity based on Chl a, Chl b, and Chl a + b (D-F) was calculated by dividing the reflectance
difference by the difference in concentrations of Chl a, Chl b, and Chl a + b among leaf samples S2, S3, S4, and S1.
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amounts of N application (0, 2.5, 5, 7.5, 10, or 20 mm) in
fertigation solution significantly increased Chl concentration in
the leave of apple, poplar, and almond from treatment to
treatment within the same species, respectively (Table 1).
These wide ranges of Chl concentrations in leaves of different
treatments provided the ideal material used for testing the
methodology of reflectance Chl nondestructive measurement.

REGRESSION ANALYSES OF SPECTRAL REFLECTANCE AND
CHLOROPHYLL DATA. The 72 is a measure of goodness of -fit of
regression and a summary measure of regression accuracy
(Chatterjee et al., 2000). Many studies used regression 7 to
evaluate the accuracy of indices for Chl assessment; only few
studies have used /* for Chl-related waveband identification
(Carter and Spiering, 2002; Gitelson et al., 2003; Read et al.,
2002). The * curves (Fig. 1) showed that maximum (peak)
values fell in three regions: ultraviolet (380 to 440 nm), visible
green (520 to 600 nm), and red edge

(690 to 740 nm) (Table 2). The peak 7o

but tended to be closer to the maximum 72 and the correspond-
ing wavelength of Chl a, respectively (Table 2). These results
indicate that simple linear regression can be used to identify the
proper OW for assessing concentrations of specific Chl types
(Chl a, Chl b, and Chl a + b) in plant species tested. The
wavelengths associated with largest > values for different
genotypes fall in three narrow regions: ultraviolet (380 to 440
nm), green (520 to 600 nm), and red edge (690 to 740 nm) (Fig.
1A—C; Table 2). A common OW from an overlapping region
from either green (550 to 580 nm) or red edge (700 to 730 nm)
could be used to assess Chl across species, although it is not as
accurate as using the peak OW derived for each species.
REFLECTANCE SENSITIVITY ANALYSIS. The original reflectance
spectra for apple (Fig. 2A), poplar (Fig. 3A), and almond
(Fig. 4A) leaves showed only one reflectance peak in the green
region of 520 to 600 nm. Reflectance difference curves derived

r* values in the red edge and green
regions for Chl a, Chl b, and Chl a + 60
b were much larger than the peak 72

values in the ultraviolet region for all 50

genotypes, indicating that OW < 0
selected from these two regions has £
a higher accuracy over the OW § 31
K
4

selected from the ultraviolet region.
Peaks with larger 7* values had the 20
smaller RMSE, validating that sim-
ple linear regression 72 was a reliable
parameter for selecting OW for Chl 0
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generated some nonmeaningful > 8
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peaks * as well as shifted the OW
either to higher or lower wave- 10
lengths than actual OW. This was
different from the result of Carter 0
and Spiering (2002) in which they
used both simple linear and qua- 60
dratic regression 1 to identify OW =
for Chl assessment and found qua- 50 -
dratic regression /? is better.
The largest 7* value from simple g 40 1
linear regression and the corre- §
sponding OW (for Chl a, Chl b, or .§ 30 1
Chl a + b) varied among species <
@ 20

(Table 2). Moreover, the maximum
r*-related OW for measuring differ-
ent Chl (Chl a, Chl b, and Chl a + b) 101
within the leaves of the same species
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were also different. The maximum 2
value and the corresponding wave-
lengths of Chl a + b were between
the maximum 7* and the correspond-
ing wavelengths of Chl a and Chl b
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Fig. 5. The reflectance (A—C) and the first derivative (D-F) spectra of four leaves (S1-S4) with different
chlorophyll concentrations for apple, poplar, and almond, respectively.
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from the original reflectance spectra showed two peaks: one in
the red edge region (700 to 730 nm) and the other in the green
region (530 to 600 nm) (Figs. 2B, 3B, and 4B). The curve of
reflectance sensitivity based on both referential reflectance
(Figs. 2C, 3C, and 4C) and 1 um-mol-m 2 difference in Chl a,
Chl b, or Chl a + b (Figs. 2D-F, 3D-F, and 4D-F) had similar
peak trends as the curve of reflectance difference, indicating
that both reflectance difference and reflectance sensitivity can
be used for selecting the OW for Chl assessment. Reflectance
sensitivity was reported closely associated with Chl concentra-
tion and has been used to identify stress-sensitive wavelength
(Carter 1993, 1994; Moran et al., 2000). When the difference in
reflectance between samples was caused by the difference in
Chl concentration, reflectance sensitivity based on both refer-
ential reflectance and unit difference in leaf Chl concentration
had a similar result in identifying OW for Chl assessment (Figs.
2C-F, 3C-F, and 4C—F). When the difference in reflectance
between samples was caused by other factors (e.g., leaf texture,
and so on), reflectance sensitivity based on referential reflec-
tance may be different from reflectance sensitivity based on
differences in Chl concentration. On either condition, using
reflectance sensitivity based on differences in Chl concentra-
tion is better than using reflectance sensitivity based on
referential reflectance, because it can ensure the difference in
spectral reflectance is caused by differences in Chl concentra-
tion.

FirsT DERIVATIVE METHOD. The first derivative is a useful
tool in characterizing or discriminating one spectral band
overlapped by other bands with different bandwidths (Dixit
and Ram, 1985). The first derivative of leaf reflectance spectra
has been used widely and successfully to assess plant stress and
to identify Chl-related wavelength in the red edge for Chl-
related indices development (Curran et al., 1990; Gitelson et al.,
1996a, 2003; Richardson et al., 2002), but no reports have
described how peak shifts caused by first derivative trans-
formation influence the accuracy of OW identification and Chl
assessment. We found that the first derivative transformation of
reflectance spectra (Fig. 5SA—C) changed the original peak form
by either generating some nonmeaningful peaks or eliminating
some important peaks that might be Chl-related (Figs. SD-F
and 6A—C). After the first derivative transformation, the trans-
formed reflectance spectra contained five peaks (Fig. SD-F).
Only one of these five peaks on the first derivative curves, in the
red edge region, was sensitive to Chl concentrations in leaves
and this peak was in a similar region as a peak found in the
and reflectance sensitivity curves. Within the same species, the
OW selected by using the first derivatives for leaves with
different Chl concentrations were slightly different. For exam-
ple, the variation of OW selected for leaves with different Chl
concentration in the region of red edge using the first derivative
method was 23 nm (703 to 726 nm) in ‘Fuji’ apple leaves with
Chl concentration 355 to 1093 wmol-m~=, 20 nm (695 to 715
nm) in poplar leaves with Chl concentration 185 to 659
umol-m=, and 16 nm (697 to 713 nm) in almond leaves with
Chl concentration173 to 660 pwmol-m= (Fig. 5D-F). This
variation is big enough to impair the ability of the first
derivative method to accurately identify OW.

COMPARISONS OF R?, REFLECTANCE SENSITIVITY, AND FIRST
DERIVATIVE METHODS. There were two Chl-sensitive peaks (one
in the visible green region and the other in the red edge region)
identified in the curves of both reflectance sensitivity and 2, but
only one (the red edge region) in the first derivative curve found
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in all three plant species tested (Fig. 6A—C). Within the same
species, the corresponding OW for the apexes of the curves
obtained by different methods was also different. The OW in
the red edge region identified by the 7> method for ‘Fuji’ apple,
poplar, and almond were 720, 720, and 710 nm, respectively;
the OW identified by the method of reflectance sensitivity for
the same samples were 717, 708, and 705 nm, respectively; and
the OW identified by the first derivative method for the same
samples were at 726, 713, and 702 nm, respectively.

OW obtained by using reflectance sensitivity or first deriv-
ative were shifted either at higher or lower wavelengths than the
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Fig. 6. Comparison of optimum wavelengths (peaks) obtained by reflectance
sensitivity, /, and first derivative used for assessing chlorophyll (Chl)
concentrations in leaves of apple, poplar, and almond. (A) Reflectance
sensitivity curves developed by dividing reflectance difference by the
difference in total Chl concentration between two leaves (apple = 335 and
1093 pmol-m=, poplar = 185 and 659 pwm-m2, almond = 173 and 660
pumol-m~). (B) 1 for the relationship between total Chl concentration and
reflectance values (n = 72 leaves per species).
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Table 3. Best-fit coefficient of determination (%) and root mean square error (RMSE) of indices developed using optimum wavelengths and the
indices published in accessing total chlorophyll in poplar and apple leaves.

Species

Indices

72

RMSE(ug-m2)

References

UCC-1 poplar

‘Fuji’ apple

Rss50-5857(575)”
R700-740(720)
R750-1100/Rs50-585
R750-1100/R700-740
(R750-1100-Rs50-585)/

(R750-1100 + Rs50-585)
(R750-1100-R700-740)/

(R750-1100 + R700-740)
R750/R700

R750/Rs50

R710/R760

Rgos/R760

Rg0s/R760

Rgoo/Re7s

Rg00/Rés0

R709/Rgs0

(Rgo0-R700)/(Rgoo +
R700)

(Rgoo-Res0)/(Rgoo +
Resgo)

(R750-Rg75)/(R7s50 +
Rg7s)

(R750-Re80)/(R7s50 +
Rego)

Rs40-580 (552)

R700-740(720)

R750-1100/Rs40-580

R750-1100/R700-730

(R750-1100-Rs540-580)/
(R 750-1100 + Rs40-580)

(R750-1100-R700-730)/
(R 750-1100 T R700-730)

R750/R700

R750/Rs50

R710/R760

Rgos/R760

Reos/R760

Rgoo/Re7s

Rg00/Res0

R709/Rgs0

(Rgo0-R700)/(Rgoo +
R700)

(Rgoo-Res0)/(Rgoo +
Rego)

(R750-Rg75)/(R750 +
Rg7s)

(R750-Res80)/(R7s50 +
Res0)

0.855 b**-0.927 c***x
0.856 b**-0.945 c***
0.931 c***—-0.952 c***
0.941 c**-0.961 c***
0.925 ¢***(.953 c***

0.924 c*#*-0.959 c***

0.923 cH**

0.862 b**
0.940 c***
0.832 b**
0.868 b**
0.609 b*
0.807 b**
0.939 c***
0.904 c***

0.640 b*

0.486 a Ns

0.481 ans

0.775 c**-0.799 c**
0.863 c**-0.937 d***
0.883 c**-0.948 d***
0.913 d***-0.965 d***
0.827 c**-0.941 d***

0.912 d***-0.950 d***

0.861 c**
0.852 c**
0.935 d**
0.734 b*
0.503 ans
0.484 a Ns
0.495 ans
0.929 d***
0.842 c**

0.673 ab*

0.667 ab*

0.654 ab*

36.30-54.77
33.48-54.89
30.16-40.56
29.88-37.22
30.24-42.88

28.76-42.02

36.88

54.89
33.29
54.89
41.20
76.45
76.67
34.40
38.20

75.10

78.24

78.88

128.45-145.88
65.80-90.32
60.60-95.43
57.11-72.39
60.60-110.91

59.01-72.88

90.87
92.10
64.85
148.88
195.45
207.71
200.32
70.61
108.43

162.34

168.98

177.64

Gitelson et al., 1996a,
1996b

Gitelson et al., 1996b

Carter, 1993, 1994

Carter, 1993, 1994

Carter, 1993, 1994

Blackburn, 1998

Blackburn, 1998

Carter and Spiering, 2002

Gietelson and Merzlyak,
1994

Blackburn, 1998

Gamon and Qiu, 1999

Richardson et al., 2002

Gitelson et al., 1996a
Gitelson et al., 1996a
Carter, 1993, 1994
Carter, 1993, 1994
Carter, 1993, 1994
Blackburn, 1998
Blackburn, 1998
Carter and Spiering, 2002
Gietelson and Merzlyak,
1994
Blackburn, 1998

Gamon and Qiu, 1999

Richardson et al., 2002

“Wavelength or range of wavelengths used in the indices.

Single optimum wavelength in green or red edge.
*Ns, *, #* ##*Nonsignificant or significant at P < 0.05, 0.01, or 0.001, respectively; 7 followed by the same letter within a column of the same
species are not significantly different (P < 0.05, Fisher’s z test, n = 72).

actual OW obtained using the 7* method. For example, the OW
identified for poplar by regression 7* and the first derivative and
reflectance sensitivity are 720, 708, and 713 nm, respectively.
There was no consistent trend that could be used for predicting

J. AMER. Soc. Horrt. Sc1. 134(1):48-57. 2009.

which method would obtain higher or lower values. The high or
low OW specified by reflectance sensitivity or first derivative
curves could reduce the accuracy in determining the OW for Chl
assessment. However, based on differences in Chl concentration,
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the OW selected by using reflectance sensitivity can ensure
reflectance differences were caused by differences in Chl
concentration, which was more accurate and meaningful than
selected by using the first derivative. Furthermore, we found
that the OW determined by reflectance sensitivity does not vary
within the same plant genotype, whereas the OW selected using
the first derivative varied both within and between genotypes
(Figs. 2D-F, 3D-F, 4D-F, and 5D-F).

INpICES compARIsON. Published indices have been developed
based on one or two Chl-sensitive wavelengths and one Chl-
insensitive wavelength (750 to 1100 nm) to increase indices
accuracy (Gitelson et al., 1996a, 1996b; Richardson et al.,
2002). Our result showed that even just single wavelength
indices if developed with OW from red edge (700 to 730 nm) or
green (550 to 580 nm) have larger 7* and smaller RMSE than
those published indices developed without OW (Table 3). The
accuracy (7> and RMSE) can be further improved if the indices
are developed by using one OW and one Chl-insensitive NIR
wavelength (750 to 1100 nm) in the form of Ryjr/Row or
(Rnir — Row)/(Rnir + Row) (Table 3). In earlier published
investigations, reflectance wavelengths from 670 to 680 nm
were used for Chl assessment (Merzlyak et al., 2003). Although
the indices developed with wavelengths 670 to 680 nm showed
good sensitivity and linearity at low Chl concentrations, they
became rapidly saturated and less accurate with an increase in
Chl concentration over 100 to 150 pg-m? (Buschmann and
Nagel, 1993; Gitelson and Merzlyak, 1994. Gitelson et al.,
2003). Our results showed that indices developed using OW in
either the green (540 to 580 nm) or red edge (700 to 730 nm)
region had higher reflectance sensitivity and can be used across
a wider range of Chl concentrations (160 to 1188 pmol-m2)
than those indices developed using wavelength from 670 to 680
nm (Figs. 2, 3, and 4). Indices developed with the OW from the
red edge region (700 to 730 nm) are more robust to a wide range
of carotenoid and anthocyanin and can be used to assess Chl in
both anthocyanin-containing and anthocyanin-free species,
whereas indices developed with the OW in the green region
(550 to 580 nm) are influenced by the existence of anthocyanins
and are better used for anthocyanin-free species (Gitelson et al.,
2001; Merzlyak et al., 2003).

Conclusions

Simple linear regression 7* combined with reflectance
sensitivity and/or first derivative analysis was proven to be a
reliable method for identifying OW for Chl measurement.
Based on this method, two optimum wavebands that had larger
7%, smaller RMSE, and higher reflectance sensitivity were found
in red edge (700 to 730 nm) and green (550 to 580 nm) regions,
which can be used as common OW for Chl reflectance
assessment in poplar, apple, and almond leaves tested. Single
wavelength indices if developed with OW from either red edge
or green were even more accurate than those more wavelength
indices that developed without using OW. The accuracy of
indices can be further improved if developed by using one OW
and one Chl-insensitive wavelength from 750 to 1100 nm in the
form of Rnir/Row or (Rnir — Row)/(Rnir + Row)-
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