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This study evaluated the site-specific applicability and efficacy of the GPFARM decision support system
(DSS) based on underlying simulation model performance for dry mass grain yield, crop residue, total soil
profile water content, and total soil profile residual NO3–N across a landscape catena for dryland no-till
experimental locations in eastern Colorado. Relative error of simulated mean, normalized objective func-
tion (root mean square error divided by the observed mean), and index of agreement evaluation statistics
were calculated to compare modeled results to observed data. A one-way, fixed-effect ANOVA was also
performed to determine differences among experimental locations and summit, sideslope, and toeslope
landscape positions. GPFARM simulations matched observed data trends, with the model correctly distin-
guishing variations between the summit and toeslope landscape positions. In addition, experimental
observations and GPFARM simulations both indicated that the toeslope landscape position was the most
productive for grain yield and also exhibited higher amounts of crop residue, total soil profile water con-
tent, and total soil residual NO3–N. The GPFARM crop model performed adequately but was inconsistent
in simulating winter wheat, corn, and sorghum dry mass grain yield. GPFARM performance in simulating
crop residue was poorer than for crop grain yield. GPFARM predicted mean total soil profile water content
was generally within ±20% of the observed mean across locations and landscape positions, with the
model somewhat biased towards overpredicting total soil profile water content at the summit and sides-
lope landscape positions. Total soil profile residual NO3–N was underpredicted by GPFARM across all
locations and landscape positions by an average of 30%. Although GPFARM appears to have reasonably
simulated long-term output responses across a landscape catena for the eastern Colorado experimental
locations (especially given the simplifying assumptions in many of the GPFARM simulation components
and the inherent variability present at the experimental plot level), different interpretations of GPFARM
performance can be made depending on the evaluation statistic of interest. Furthermore, the model can-
not fully account for water and chemical movement across the landscape catena; simulation results sug-
gest that addition of a spatially-distributed routing component should offer improvements in GPFARM
prediction accuracy across a catena where surface runoff or lateral subsurface flow is occurring.

Published by Elsevier Ltd.
1. Introduction

The ability to quickly modify farm and ranch management prac-
tices to cope with highly variable local weather fluctuations; regio-
nal and global economies; new cropping, pest management, and
tillage systems; and new legislation while protecting soil, air, and
water resources may determine whether or not an agricultural
enterprise system survives. In agricultural regions such as the
Great Plains of the United States, many farms are characterized
Ltd.

: +1 970 492 7310.
ough II).
by considerable differences (e.g., topography, soils) among and
within fields that make it difficult to select alternative and some-
times unproven management techniques that enhance economic
crop yields, yet protect the environment from negative impacts
such as soil erosion and nitrate leaching. Peterson et al. (1993) pro-
posed that a systems approach to the study of soil and crop man-
agement problems is useful for answering practical agricultural
problems and simultaneously identifying gaps in basic research
knowledge. Likewise, there has been a recognized need for system
level decision support tools for agricultural advisors and producers
(Hoag et al., 1999; Ascough et al., 2002). A 1995 survey of nearly
1000 Great Plains producers supported the hypothesis that many
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farmers and ranchers could improve the management of their pro-
duction systems if these obstacles were lessened or removed
through an integrated systems approach, such as a decision sup-
port system (DSS) (Ascough et al., 1999). To meet the above chal-
lenges, the USDA-ARS Agricultural Systems Research Unit (ASRU),
in collaboration with university and other Federal scientists, devel-
oped the Great Plains Framework for Agricultural Resource Man-
agement (GPFARM) DSS (Ascough et al., 2002; McMaster et al.,
2002). The general purpose of GPFARM Version 2.6 is to provide
a field-based DSS that can be scaled to a whole farm/ranch level
to assist in strategic planning for comparing alternative manage-
ment systems in terms of production, economic and environmental
impact analysis and site-specific database generation. GPFARM
specifically targets computer-oriented producers, agricultural con-
sultants, and extension service personnel as primary users. System
user requirements were determined through a series of ASRU cus-
tomer focus group meetings with Great Plains farmers and ranch-
ers; major requirements elicited were that: (1) GPFARM be simple
to understand and easy to use; and (2) have minimum input data
and parameter requirements.

Before applying GPFARM to actual on-farm management situa-
tions, producers and consultants must understand how well the
simulation model simulates key processes such as crop growth
and environmental impacts. In order to help provide this critical
information, different GPFARM simulation modules have under-
gone testing and evaluation. Deer-Ascough et al. (1998) evaluated
the grain yield simulations of the generic crop growth module in
GPFARM for dryland wheat–fallow, wheat–corn–fallow, and
wheat–corn–millet–fallow crop rotations in eastern Colorado.
The average relative grain yield prediction error across the crop-
ping systems was approximately 30%. Shaffer et al. (2004) evalu-
ated GPFARM simulation of continuous corn yields and soil
residual nitrates under irrigated and partially irrigated conditions,
fertilized and non-fertilized applications, and high and low plant-
ing densities. Validation results for a 3-year Colorado field plot
study indicated the model could simulate corn yields and soil
residual NO3–N without bias at the P < 0.05 level; R2 values for pre-
dicted versus observed corn yields and soil residual NO3–N were
0.830 and 0.833, respectively. McMaster et al. (2003) used three
winter wheat plant parameter sets with different calibration levels
to evaluate the GPFARM 2.01 crop growth module against ob-
served yield data for multiple locations in eastern Colorado. The
percentage of simulated yields meeting producer expectations
(within 20% of the observed yield) ranged from 36% to 40% for
the three plant parameter sets. Andales et al. (2003) evaluated
GPFARM 2.01 using rotation-specific summit landscape position
data collected from eastern Colorado dryland experimental loca-
tions. The ranges of relative error (RE) of simulated average mean
at the summit landscape positions for the different locations were
�27% to 84% and 0% to 23% for dry mass grain yield and total soil
profile water content, respectively. Andales et al. (2003) concluded
that GPFARM simulations agreed with observed trends, and veri-
fied that productivity and water-use efficiency increased with
cropping intensification. Ascough et al. (2007) evaluated the regio-
nal applicability and efficacy of GPFARM based on simulation mod-
el performance for three dryland no-till experimental locations in
eastern Colorado. GPFARM simulated versus observed REs ranged
from �3% to 35% for dry mass grain yield, 6% to 8% for total soil
profile water content, �4% to 32% for crop residue, and �25% to
�7% for total soil profile residual NO3–N. GPFARM simulations gen-
erally agreed with observed trends and showed that the model was
able to correctly simulate location differences.

The results of the above evaluations have led to further correc-
tions and enhancements in GPFARM 2.6. However, there is a con-
tinued need to evaluate GPFARM at a landscape process scale to
see how well the modules work together to realistically simulate:
(i) a variety of alternative cropping systems, and (ii) differences
within fields and landscape catenas typically found on farms –
especially for conditions in the immediate application area of east-
ern Colorado, USA. Therefore, the primary objective of this study is
to evaluate the long-term (i.e., multiple years) performance of
GPFARM 2.6 in simulating grain yield dry mass, total soil profile
water content, crop residue dry mass, and total soil profile residual
NO3–N output response variables across a landscape catena (i.e.,
summit, sideslope and toeslope positions) for eastern Colorado,
USA dryland experimental locations across a north to south poten-
tial evapotranspiration (PET) gradient. This objective expands upon
the work of Ascough et al. (2007) who evaluated GPFARM across
locations but not for landscape positions. A secondary objective
was to verify (based on a set of statistical evaluation criteria)
whether the predictive performance of GPFARM is affected by
slope position within the landscape catena.

2. Materials and methods

2.1. GPFARM DSS overview

The GPFARM DSS is unique in that it brings together a group of
decision support tools integrated with a complex whole farm/
ranch simulation model and relational databases. The GPFARM
DSS is primarily composed of five major components designed to
serve as an inclusive decision support tool for farmers and ranch-
ers: (1) a Microsoft� Windows-based graphical user interface
(GUI) designed in close collaboration with producers and consul-
tants in the Great Plains; (2) Microsoft� Access databases contain-
ing soil, crop, weed, climate, chemical, and economic parameters
needed in the simulations and analysis of results; (3) an object-ori-
ented (O-O) modeling framework (Shaffer et al., 2000) that inte-
grates modules for simulating soil water dynamics, N dynamics,
crop growth, weed growth, beef cattle production, pesticide trans-
port, and water/wind erosion; (4) a set of analysis tools including a
multicriteria decision making (MCDM) module, an output visuali-
zation module, and summary report tables and graphs for temporal
and spatial comparison of different agricultural management sce-
narios; and (5) a stand-alone economic analysis tool utilizing pro-
duction data either from the simulation model or from user input
for detailed economic analyses on a management unit or farm/
ranch enterprise basis.

The GPFARM science model is a land unit-by-land unit simula-
tion framework (Shaffer et al., 2000) using C++ O-O programming.
The O-O framework executes appropriate simulation modules,
written in the FORTRAN 77/90 and Visual Basic procedural lan-
guages. The remainder of this section presents a brief overview
of the science simulation modules directly related to the model
output responses presented in this paper. For a more comprehen-
sive description of these modules and the GPFARM DSS see As-
cough et al. (2002), McMaster et al. (2002, 2003), and Shaffer
et al. (2004).

� The GPFARM Water Balance and Chemical Transport (WBCT)
module calculates a daily soil water budget and chemical bal-
ance for a layered soil profile using the equation:
SWC ¼ SWCinit þ P � Q � ET � D� S ð1Þ
where SWC is the soil water content in the root zone in any given
day (mm), SWCinit is the initial soil water content in the root zone
(mm), P is the precipitation (mm), Q is the surface runoff (mm), ET
is the evapotranspiration (mm), D is the percolation loss below the
root zone (mm), and S is the snow water content (mm) (+ for snow-
melt and � for snow accumulation). Major processes considered for
water movement are precipitation, snow melt, infiltration, runoff,
soil water redistribution, soil water evaporation, and plant transpi-
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ration. This module is a simplification of the Root Zone Water Qual-
ity Model (RZWQM) water balance routines (Ahuja et al., 2000) and
uses a coarser time step (RZWQM time step ranges from 10�5 h to
1 h; GPFARM time step ranges from 1 h to 6 h) between precipita-
tion events to determine soil water fluxes. A simple disaggregation
scheme is used to convert the daily rainfall inputs to intensities of
an average daily rainstorm to simulate infiltration and runoff. The
Green–Ampt method (Green and Ampt, 1911) is used to simulate
infiltration during a rainstorm at small time intervals, while redistri-
bution of soil water is by Darcian flux calculated at 3-h to daily inter-
vals between adjacent layers. Surface water supply exceeding the
infiltration capacity in any time interval of precipitation becomes
surface runoff. Drainage from the soil profile is estimated by assum-
ing a unit gradient at the bottom layer. The WBCT module allows for
adjustment of soil hydraulic properties due to tillage, residue cover,
soil crust, and soil macropore presence. The module is also capable
of simulating upward flux from a water table and includes the effect
of restrictive soil layers on water and chemical leaching. Chemical
transport is coupled with water movement based on a uniform mix-
ing model and partitioned between aqueous and adsorbed fractions.
Nitrate and pesticides are co-transported with water with possible
retardation from soil adsorption; pesticide degradation is simulated
as a first-order process with a known half-life.

� The GPFARM potential evapotranspiration (PET) module is also
adapted from the RZWQM and calculates daily potential crop
transpiration and soil evaporation using the extended Shuttle-
worth–Wallace model (Farahani and Ahuja, 1996). The PET
module calculates net radiation and partitions the available
energy for potential transpiration, bare soil evaporation, and/
or residue-covered soil evaporation. Soil evaporation is a func-
tion of soil water content of the first 5 cm of the top soil layer
and is limited by the Darcy flux towards the surface and the
potential soil evaporation. Actual transpiration is the sum of root
water uptake from each soil layer (based on root mass distribu-
tion in the profile), available water, and the potential transpira-
tion. The potential transpiration, potential soil evaporation, and
potential residue evaporation values then serve as the upper
limits of actual ET calculated in the water balance module.
� The GPFARM soil properties module estimates the soil water

retention curve (WRC) based on the Brooks and Corey (1964)
parameters from soil texture, bulk density, and organic matter
content (Rawls and Brakensiek, 1985). The saturated hydraulic
conductivity (Ksat) is obtained from effective porosity (Ahuja
et al., 1989), and unsaturated hydraulic conductivity is esti-
mated from the WRC and Ksat using the Campbell (1974)
approach. Hydraulic properties are updated using the regres-
sion equations of Rawls and Brakensiek (1985).
� The GPFARM carbon/nitrogen (C/N) model contains integrated

modules for C/N cycling processes on the soil surface and within
the soil profile. These modules were adapted from the Nitrate
Leaching and Economics Analysis Package (NLEAP) model (Shaf-
fer et al., 1991, 2001) and simulate mineralization/sequestration
of soil organic matter (SOM); decomposition (mineralization/
immobilization) of crop residues, manure, other organics; and
transformations of inorganic nitrogen fertilizers applied to the
soil surface or incorporated into the soil profile. The modules
account for nitrification, denitrification, and gaseous losses of
NH3, and also estimate NH4–N and NO3–N available for surface
runoff, residual NO3–N available for leaching from the crop root
zone, and soil NO3–N and NH4–N available for crop uptake. The
C/N cycle modules interact with GPFARM modules for water and
chemical transport, crop growth and N uptake, surface runoff
and erosion. The GPFARM C/N cycle model has been widely used
and validated within the NLEAP model context in the United
States, Europe, and Canada (Delgado, 1998; Delgado et al., 2000).
� The GPFARM crop growth module is based on the Water Erosion
Prediction Project (WEPP) model crop growth component
(Arnold et al., 1995; Deer-Ascough et al., 1998), which is a mod-
ified version of the Environmental Policy Integrated Climate
(EPIC) crop growth component (Williams et al., 1984, 1989).
The WEPP crop growth component has been further modified
in GPFARM and incorporates some elements from the Agricul-
tural Land Management Alternatives with Numerical Assess-
ment Criteria (ALMANAC) model (Kiniry et al., 1992). A single
model is used for simulating multiple crops by changing input
parameter values. Stress factors for water and N are computed
using inputs from other independent models within GPFARM.
The crop growth component can be characterized as using the
energy- or carbon-driven approach common in plant growth
modeling. Potential daily biomass accumulation is based on
the interception of light by the canopy (as represented by the
LAI and light extinction coefficients) and an energy-to-biomass
conversion factor. Limiting abiotic resources are reflected in
growth constraint factors (temperature, water, and N) reducing
the potential daily biomass accumulation. Currently GPFARM is
parameterized for winter wheat (Triticum aestivum L.), corn (Zea
mays L.), proso millet (Panicum miliaceum L.), sunflower (Helian-
thus annuus L.), sorghum (Sorghum bicolor L.), and foxtail/hay
millet (Setaria italica (L.) Beauv.).

2.2. Climatic gradient, topographic gradient, and experimental
cropping systems

Experimental data used for GPFARM model evaluation were ob-
tained from an on-going sustainable dryland agroecosystems pro-
ject (DAP) in eastern Colorado, USA. The DAP experiment was
initiated in 1985 to evaluate the effect of cropping intensity on to-
tal biomass production, water-use efficiency, and other selected
soil chemical and physical properties (Peterson et al., 1993) and
has three major variables: (1) climatic gradient (e.g., precipitation,
PET), (2) soil properties (e.g., plant available water) across land-
scape position, and (3) cropping intensity under no-till manage-
ment across landscape position. Climatic variability was
represented by three experimental locations in eastern Colorado,
USA representing different levels of PET from north to south: Ster-
ling (north location/low ET; 40.37�N, 103.13�W), Stratton (central
location/medium ET; 39.18�N, 102.26�W), and Walsh (south loca-
tion/high ET; 37.23�N, 102.17�W). Selected climatic properties for
these locations are given in Table 1.

The DAP topographic variable is represented by summit, sides-
lope, and toeslope landscape positions along a catenary sequence
(Fig. 1a–c). Along with PET differences, the topography across
the locations is quite different. These differences in slope and ele-
vation provide evidence for water relationships that are observed
in the field but are extremely difficult to model. The Sterling loca-
tion has a catenary sequence that has a maximum elevation differ-
ence of 5.9 m with two transition zones between the summit/
sideslope and sideslope/toeslope along a north facing slope
(Fig. 1a). The largest slope (5.8%) found along this 305 m length
is on the west side of the sideslope landscape position. There is
a slight ridge that is found in the transition zone between the
sideslope and toeslope that can act as a water catchment resulting
in lateral surface flow during some rainfall events. The Stratton
location has the most complex topography of the three locations
(Fig. 1b). The catenary sequence starts with the summit position
to the west with a transition zone before the sideslope position
followed by another transitional wedge that has a 14% maximum
slope before the toeslope position for a total slope length of 198 m.
The toeslope then transitions into another sideslope and summit
which are not part of the experimental data collection area
(although strips continue up to the second summit). The sideslope



Table 1
Elevation and selected climatic properties at the Sterling (40.37�N, 103.13�W), Stratton (39.18�N, 102.26�W), and Walsh (37.23�N, 102.17�W) DAP experimental locations in
eastern Coloradoa.

Experimental
location

Elevation
(m)

Mean annual
temperature (�C)

Mean annual precipitation
(1985–2007) (mm)

Days above
32 �C (days)

Growing season open pan
evaporation (mm)

Deficit waterb

(mm)
Relative
PET

Sterling 1341 9.3 425 42 1600 �1175 Low
Stratton 1335 10.8 405 54 1725 �1320 Medium
Walsh 1134 12.2 400 64 1975 �1575 High

a Adapted from Sherrod et al. (2005).
b Deficit water = precipitation � open pan evaporation.

Fig. 1. Catenary sequence as represented by summit, sideslope, and toeslope landscape positions for the Sterling (a), Stratton (b), and Walsh (c) DAP experimental locations in
eastern Colorado.
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is east facing with a steep slope (�13%) bottoming into a narrow
toeslope that is a three-way drainage area from east, south, and
west slopes. The north side of the plot is along the edge of a road
running east and west. This funnel effect delivers run-on water to
the toeslope which has produced the highest crop yields across the
three experimental locations. The high PET location at Walsh has a
moderate elevation change of 1.1 m along the 183 m of the
catenary sequence with a maximum slope of 5.3% on the west
facing sideslope soil (Fig. 1c). This location has transition zones
before the summit and between the sideslope and toeslope
landscape positions with an average slope of 0.6% across the
catena.
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Soil physical and hydraulic properties for the top two soil hori-
zons across landscape positions at the DAP experimental locations
are given in Table 2, along with soil hydraulic properties estimated
by GPFARM. Each landscape position represents a unique soil ser-
ies common to the geographic area (Peterson et al., 1993). At the
summit, the surface (Ap) horizons of the experimental location
soils represent a range of textures that result in differing plant
available water (PAW) holding capacities and saturated hydraulic
conductivity rates (Table 2). Further examination of the horizons
below the surface reveals additional differences between DAP
experimental location soils. The summit soil profile at Sterling
changes from a clay content of 21% at the surface (Ap) to 31% in
the 8–20 cm depth (Bt1). Around the 85 cm depth (2Bk1), there
is a marked increase in lime content (lime data not shown). The
high clay and lime mixture creates a partially cemented zone that
is slowly permeable to water, but relatively impermeable to plant
roots. At Stratton, the summit soil profile is highest in clay at the
surface (34% in the Ap horizon) and then decreases steadily to
14% clay below the 96 cm depth (Bk3). There are few restrictions
to surface water infiltration or to plant root development through-
out the profile as compared to summit soil at Sterling. The Stratton
toeslope soil contains approximately two times the amount of total
organic C and total N found on toeslope soils at the other two DAP
experimental locations (Table 2). The summit and sideslope soils at
Walsh have very sandy textures (>60% sand) in the top two soil
horizons compared to the Sterling and Stratton summit soils, thus
no restrictions to surface water infiltration or root penetration oc-
cur in this profile. There is, however, an abrupt increase in clay
content at 135 cm (from 21% in the Bk4 horizon to 40% in the
Btk horizon, data not shown) that represents a type of ‘‘plug” in
the summit soil profile. That is, water can infiltrate rapidly in
the coarse-textured surface horizons, but does not drain rapidly
Table 2
Soil physical and hydraulic properties for the top two soil horizons across landscape posit

Soil
horizon
name

Soil
horizon
depth (cm)

Bulk density
(BD) (33 kPa)
(g cm�3)

Sand
(%)

Clay
(%)

Total organic
carbon (kg
ha�1)

Total
nitrogen
(kg ha�1

Sterling summit (Weld loam – fine-silty, mixed, mesic Aridic Argiustoll)
Ap 0–8 1.37 45 21 11,674 900
Bt1 8–20 1.35 33 31 14,592 1670

Sterling sideslope (Satanta loam – fine-loamy, mixed, mesic Aridic Argiustoll)
Ap1 0–11 1.47 54 21 15,642 1321
Ap2 11–20 1.34 44 26 11,144 1060

Sterling toeslope (Albinas loam – fine-loamy, mixed, mesic Pachic Argiustoll)
Ap1 0–7 1.31 42 18 15,009 1223
Ap2 7–18 1.49 47 20 12,210 1139

Stratton summit (Norka clay loam – fine-silty, mixed, mesic Aridic Argiustoll)
Ap 0–13 1.35 25 34 20,553 1874
Bt 13–39 1.26 20 36 33,987 3517

Stratton sideslope (Richfield loam – fine, montmorillonitic, mesic Aridic Argiustoll)
Ap1 0–10 1.36 41 20 14,994 1323
Ap2 10–18 1.33 35 28 8928 918

Stratton toeslope (Kuma loam – fine-silty, mixed, mesic Pachic Argiustoll)
Ap 0–15 1.28 25 26 41,040 3866
Ab1 15–30 1.26 23 25 44,838 4738

Walsh summit (undefined loamy sand – fine-loamy, mixed, mesic Aridic Ustochrept)
Ap 0–18 1.48 65 14 9954 1024
Bk1 18–40 1.49 66 18 7944 967

Walsh sideslope (undefined sandy loam – fine, montmorillonitic, mesic Ustollic Haplargid
Ap 0–10 1.55 72 10 6552 588
BAk 10–20 1.50 57 20 6519 731

Walsh toeslope (Nunn sandy clay loam – fine, montmorillonitic, mesic Aridic Argiustoll)
Ap 0–13 1.32 38 24 17,391 1569
Ab 13–24 1.34 32 26 27,090 2752

a Plant available water calculated as [(FC � BD) � (WP � BD)] � soil horizon depth.
b Ksat, saturated hydraulic conductivity (estimated in GPFARM from Brooks–Corey par
beyond the root zone due to the high clay content of the deepest
horizon at 135 cm (data not shown). PAW at the Walsh summit soil
surface horizon is 3.0 cm, which is the highest for all Ap horizons
across experimental locations and landscape positions (Table 2).
The amount of total organic C and total N found at the Walsh
location are substantially lower relative to similar slope positions
at Sterling and Stratton.

With respect to catena landscape positions across the DAP
experimental locations, total C in the Ap horizon, total C in the soil
profile, total N in the Ap horizon, and total PAW in the soil profile
are shown in Fig. 2a–d. Fig. 2 shows that, in general, the toeslope
landscape positions have greater levels of C, N, and PAW than
the summit and sideslope landscape positions. However, as previ-
ously stated this is misleading due to the cemented zone at 85 cm
for the Sterling summit. The Stratton location, with the exception
of PAW at the summit, generally has higher levels of C, N, and
PAW across landscape positions than the other two experimental
locations (Fig 2). The high levels of total N in the Ap horizon and
organic C in both the profile and the Ap horizon at Stratton toes-
lope can largely be explained by sediment deposition coming in
from multiple slopes. In summary, Table 2 and Fig. 2 show that
the experimental locations and landscape positions have unique
characteristics that should be carefully considered when perform-
ing a comprehensive modeling study such as this.

The DAP experiment is a split–split–block design, with location
as the first block and landscape position the sub-block with three
cropping systems evaluated: wheat–fallow [WF], wheat–corn (or
sorghum for the Walsh location)–fallow [WC(S)F], and wheat–corn
(or sorghum for the Walsh location)–millet–fallow [WC(S)MF]. The
cropping systems (all managed with no-till techniques to maxi-
mize water storage potential) were randomly assigned in strips
within each block at the summit landscape position, and represent
ions at the DAP experimental locations in eastern Colorado.

)

Field capacity (FC)
water content
(33 kPa) (%)

Wilting point (WP)
water content
(1500 kPa) (%)

Plant
available
watera (cm)

Ksat
b

(cm h�1)

0.21 0.10 1.2 3.3
0.28 0.13 2.3 1.2

0.22 0.09 2.0 2.6
0.25 0.12 1.5 2.5

0.22 0.10 1.2 4.7
0.20 0.09 1.7 5.0

0.27 0.17 1.8 0.23
0.31 0.22 2.7 0.27

0.26 0.10 2.2 3.2
0.28 0.14 1.5 1.9

0.28 0.14 2.8 1.3
0.30 0.13 3.3 1.4

0.17 0.05 3.0 5.2
0.14 0.07 2.5 4.3

)
0.15 0.05 1.6 5.5
0.15 0.08 1.0 2.7

0.28 0.11 2.9 2.7
0.27 0.12 2.2 1.6

ameters).



Fig. 2. Soil organic carbon (C) in the Ap horizon (a), soil organic C in the profile (b), total nitrogen (N) in the Ap horizon (c), and plant available water (PAW) in the profile (d)
across landscape positions for the DAP experimental locations in eastern Colorado.
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a continuum with increasing cropping intensity resulting in less
summer fallow frequency. Although landscape positions were not
randomized, a split block analysis of each location was used as if
they had been (Steel and Torrie, 1997). For each year and landscape
position, all rotation phases were present in experimental units
within two replications. An experimental unit is a particular phase
of a cropping system at a particular landscape position at a location
with varying size, i.e., all units are 6.1 m wide but vary in length
with the particular location (ranging from 183 to 305 m long). Fer-
tilizer N was applied to each experimental unit according to soil
tests obtained from each soil within each rotation and targeted
for the crop present in a given year. The N fertilizer source, urea–
NH4NO3 solution (32-0-0), was applied at planting with a dribble
method directly behind the planter (Peterson et al., 1993). Phos-
phorus (10-34-0) was band-applied at planting of all crops near
the seed (Peterson et al., 2000). Phosphorus (P) was applied on
one-half of each wheat (until 1992), corn and proso millet plot over
all soils, but applied to the entire wheat plot since the 1993 crop
year. The P application rate was 9.5 kg/ha each year. Grain yield re-
sponse to P is not currently simulated in GPFARM but it was found
to be small to negligible in experimental data.

2.3. Evaluation data set

Measurements relevant to the evaluation of GPFARM included
daily weather data, dry matter biomass and grain yields, crop res-
idue dry mass, soil water content, and soil residual NO3–N. Addi-
tional variables were measured, as described by Peterson et al.
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(1993), but were not considered in this evaluation study. An auto-
mated weather station at each location measured daily maximum
and minimum air temperature, mean relative humidity, precipita-
tion, total solar radiation, wind direction, and mean wind speed.
Soil water content at planting and harvest was measured in each
cropping system by use of a neutron attenuation probe. Soil resid-
ual NO3–N (at varying increments down to a depth of 150 cm) was
measured (using site-specific probe calibrations) prior to planting
for making fertilizer N calculations. Dry mass grain yields were
measured with a plot combine (approximately 30 m � 1.2 m in
the middle of each experimental unit) while total above-ground
biomass was measured at harvest by hand sampling a small area
in each experimental unit. Harvest indices (dry mass grain yield/
total biomass) were determined from the hand samples. Surface
crop residue dry mass was measured at planting and just before
harvest for each crop in each cropping system. With the exception
of climate variables, all measurements from a particular cropping
system were obtained from two field replicates. The replicates
were then averaged for comparison with simulation results from
GPFARM.
2.4. GPFARM parameterization

The GPFARM simulation model was initialized using observed
data for crop residue, soil profile water content, and soil profile
residual NO3–N corresponding to the simulation start dates. Ob-
served bulk density, texture, and organic matter content of the soil
layers (Table 2) were also input into GPFARM. From these properties,
GPFARM estimated the soil water retention curve, soil porosity (or
saturated water content), soil water content (WC) at field capacity
[WC(33 kPa)], soil water content at wilting point [WC(1500 kPa)],
and saturated/unsaturated hydraulic conductivity (Rawls and Bra-
kensiek, 1985; Ahuja et al., 1989, 1999). Actual soil horizons (Table 2)
and N application rates (data not shown) were used in the simula-
tions. Weather inputs into GPFARM included observed daily precip-
itation (mm), maximum and minimum air temperatures (�C), solar
radiation (Langleys d�1), wind speed (m s�1), and relative humidity
(%). All weather inputs were measured on-site except for daily
precipitation data for Sterling, which were downloaded from the
ColoradoClimate Center (CCC) website (http://ccc.atmos.colostate.edu).
Table 3
Critical crop parameter values used in GPFARM DAP simulations.

Parameter Definition

GDDMAX Growing degree days (GDD) from planting to maturity/harvest
HI Harvest index
HMAX Maximum canopy height
LAImax Maximum potential leaf area index (LAI)
BEINP Biomass to energy conversion ratio for a crop
BN1 Normal fraction of nitrogen in crop biomass at emergence
BN2 Normal fraction of nitrogen in crop biomass at mid-season
BN3 Normal fraction of nitrogen in crop biomass at maturity
BTEMP Base air temperature used in calculating crop GDD
CRIT Growing degree days from planting to emergence
DLAI Heat unit index when LAI starts to decline (fraction of GDDMAX)
EXTNCT Radiation extinction coefficient
OTEMP Optimal temperature for plant growth
RDMAX Maximum rooting depth
RSR Root biomass to shoot biomass ratio
SPRIOD Period over which senescence occurs
RLAD Rate of LAI decline
PPOP1 Plant density at FMLAI1
FMLAI1 Fraction of XMXLAI corresponding to PPOP1
PPOP2 Plant density at FMLAI2
FMLAI2 Fraction of XMXLAI corresponding to PPOP2
The CCC precipitation station near Sterling was approximately
20 km northwest of the experimental location. The complete
precipitation data set (1987–1999 for Sterling) from the CCC was
used in lieu of the on-site precipitation data set that had numerous
gaps, especially during the winter months. For plant growth
parameters of the crops involved in the study (i.e., winter wheat,
corn, proso millet, and sorghum), best parameter estimates from
the literature were used (Table 3) and verified to be within the
ranges recommended by Arnold et al. (1995) and Kiniry et al. (1995).
In addition, no calibrations were performed for the soil water, soil
residual NO3–N, and crop residue decomposition processes.
2.5. GPFARM evaluation procedure

The simulation periods for GPFARM evaluation began in 1988
and ended in 1997, 1999, and 1993 for the WF, WC(S)F, and
WC(S)MF rotations, respectively. The WF simulations ended in
1997 because this system was subsequently converted to wheat–
corn–proso millet rotation (Peterson et al., 2000). For WC(S)MF,
sunflower was planted in place of proso millet after 1993 (Peterson
et al., 2000) but the sunflower crops produced little or no yields,
which limited efforts to calibrate the crop growth model for sun-
flower grain yield. Thus, the WC(S)MF simulations were ended in
1993. Average (i.e., from the two replicates) dry mass grain yield,
crop residue, total soil profile water content, and total residual soil
profile NO3–N observed during the above periods were pooled by
landscape position across all rotation phases at each experimental
location and compared with corresponding GPFARM simulation
outputs. The following model evaluation statistics were calculated
to quantify the accuracy of the GPFARM simulations: (1) relative
error (RE) which shows bias of the predicted mean relative to the
observed mean; (2) a normalized objective function (NOF), based
on the root mean square error (RMSE) which shows the average
deviation between predicted and observed values, regardless of
sign; and (3) index of agreement (d) which indicates how well
model predictions agree with observations, relative to the one-
to-one line. The simulated and observed coefficient of variation,
CV, which shows whether or not simulated and observed variabil-
ity are similar, was also calculated. Relative error (RE, %) was ex-
pressed as:
Units Parameter value

Winter wheat Corn Proso millet Sorghum

�C days 1700 1500 1300 1800
0–1 ratio 0.45 0.56 0.45 0.50
m 0.91 2.60 1.20 1.01
m2 m�2 3.0 3.5 2.4 3.5
kg MJ�1 35.0 30.0 35.0 25.0
0–1 ratio 0.060 0.040 0.044 0.044
0–1 ratio 0.023 0.016 0.016 0.016
0–1 ratio 0.013 0.013 0.013 0.013
�C 4.0 10.0 5.0 10.0
�C days 140.0 60.0 65.0 60.0
0–1 ratio 0.65 0.80 0.80 0.85
Unitless 0.65 0.65 0.65 0.60
�C 20.0 25.0 20.0 27.5
m 1.5 1.5 1.0 1.5
0–1 ratio 0.25 0.25 0.25 0.25
Days 14 30 30 40
Unitless 1.0 1.0 1.0 1.0
Plants m�2 125 4 125 5
0–1 ratio 0.60 0.47 0.60 0.43
Plants m�2 250 7 250 15
0–1 ratio 0.95 0.80 0.80 0.79

http://www.ccc.atmos.colostate.edu
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where P is the predicted mean and O is the observed mean. The
RMSE was calculated by:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðPi � OiÞ2

n

s
ð3Þ

where Pi is the ith predicted value, Oi is the ith observed value, and n
is the number of data pairs. The NOF (unitless), which is similar to
the coefficient of variation (Pennell et al., 1990; Costa et al., 1994)
was calculated as:

NOF ¼ RMSE
O

ð4Þ

where RMSE and O are as previously defined. The NOF should be
interpreted as a relative value to compare model performance of
simulating different data sets. NOF = 0 indicates a perfect fit be-
tween experimental data and simulated results; NOF < 1 may be
interpreted as simulation error of less than 1 standard deviation
around the experimental mean. The index of agreement (d, unitless)
was calculated as proposed by Willmott (1981) and Willmott and
Wicks (1980):

d ¼ 1�
Pn

i¼1ðPi � OiÞ2Pn
i¼1ðjP

0
ij þ jO

0
ijÞ

2

" #
; 0 6 d 6 1 ð5Þ

where Pi,, Oi, and n are as previously defined, P0i ¼ Pi � O and
O0i ¼ Oi � O where O is as previously defined, and the enclosing bars
(| |) indicate absolute values. A d value of one indicates complete
agreement between model predictions and observations. The NOF
and d values indicate the average event-by-event (short-term) pre-
diction errors, as opposed to the RE which is an arithmetic average
over the duration of data (i.e., shows long-term bias). Additional
statistical analysis using a one-way, fixed-effects ANOVA was per-
formed to assess the influence of landscape position on observed
data and GPFARM simulation model output responses. Mean values
were separated using Tukey’s least significant difference (LSD) with
P 6 0.05 considered significant. The ANOVA and Tukey’s analysis
were conducted using SigmaStat 3.11 (Systat, 2006).

As a final note, the evaluations of soil water and soil residual
NO3–N simulations in this study were limited to total soil profile
amounts, and observed grain yields affected by severe weed infes-
tation, poor or erratic emergence due to hard surface soil condi-
tions, hail damage, or killing frost were excluded from
comparisons with simulated grain yields since the model was not
designed to account for these extreme events. Steiner et al.
(1987) and Cabelguenne et al. (1999) used similar approaches of
data screening to limit evaluations to the validity domain of the
models. GPFARM does include a weed module (Canner et al.,
2002, 2009), but there were insufficient quantitative observations
of infestation to allow for weed module calibration.

3. Results and discussion

3.1. Trend analysis – crop grain yield and residue

For all crops and experimental locations, observed grain yield
data showed statistically significant differences (P 6 0.05) between
either the summit and sideslope or the sideslope and toeslope
landscape positions (Table 4). However, statistically significant dif-
ference tendencies between the two landscape position combina-
tions were somewhat varied. Except for proso millet at Walsh,
observed grain yield was always statistically different between
the summit and toeslope landscape positions across all crops and
locations (Table 4). This was not the case comparing summit and
sideslope landscape positions at most experimental locations
where observed grain yields and crop residue amounts were usu-
ally statistically the same. For all experimental locations, observed
grain yields and crop residue amounts at the toeslope landscape
position were significantly greater than at the summit or sideslope
landscape positions, except for proso millet grain yields at Sterling
and Walsh (Table 4). This was expected given the greater inherent
fertility at this depositional slope as evidenced by the higher
amounts of organic C and total N (Fig. 2b and c). In addition to dif-
ferences within and across locations in organic matter levels (C and
N), there are dynamic differences in PAW within locations and
across landscape positions with the toeslope having the highest
PAW levels (Fig. 2d). It is of interest that the sideslope landscape
position grain yields and crop residue amounts were usually great-
er than at the summit landscape position, with Stratton as an
exception where mean winter wheat/corn grain yields and crop
residue amounts at the summit were greater (but not significantly
different) than corresponding grain yields and crop residue
amounts at the sideslope (Table 4). This may be explained by the
degree of slope and slope length between the summit and sides-
lope positions. For example, the sideslope at Sterling has a bowl
formation with an outcrop feature in the transition zone between
sideslope and toeslope that tends to backup runoff water.

GPFARM simulation results were mixed in accurately distin-
guishing statistically significant differences between landscape
positions across locations. For example, GPFARM correctly pre-
dicted statistically significant differences between the summit
and toeslope landscape positions for winter wheat and sorghum
grain yield across locations with the only discrepancy being winter
wheat grain yield at Stratton (Table 4). However, GPFARM simula-
tions showed no statistically significant difference in productivity
across landscape positions for corn grain yield at Stratton and pro-
so millet grain yield at all locations. For proso millet, the compar-
atively low number of observations (a maximum of five at any
landscape position) contributed to the inability of GPFARM to sim-
ulate productivity differences between landscape positions. In gen-
eral, GPFARM simulated grain yields and crop residues were not
usually significantly different at the summit and sideslope land-
scape positions across locations which correlated with observed
trends (Table 4). Also in agreement with observed trends, GPFARM
predicted significantly lower amounts of crop residue at the sum-
mit landscape position and simulated mean grain yields (and crop
residue amounts) were greatest at the toeslope landscape position.

Examination of observed trends for the ‘‘All Locations” data set
(i.e., data pooled across all experimental locations for each land-
scape position) showed that mean crop grain yields and residue
amounts at the toeslope landscape position were significantly
greater than at the summit or sideslope landscape positions (Ta-
ble 4). Observed mean grain yields and crop residue amounts at
the summit and sideslope landscape positions were not signifi-
cantly different, although grain yields and crop residue amounts
at the sideslope landscape position were slightly higher than corre-
sponding grain yields and amounts at the summit landscape posi-
tion. Overall, the observed grain yield data exhibited a general
trend towards increased productivity downslope across the land-
scape catena, i.e., going from the summit to the sideslope to the
toeslope landscape positions. Again, this trend is likely due to the
greater amounts of C, N, and PAW found at the toeslope landscape
position (Fig. 2). Under semi-arid conditions or dry years, yields are
generally lowest at the summit and increase downslope (Kosmas
et al., 1993; Rockström et al., 1999) because of downslope water
movement and better toeslope soil conditions (Peterson et al.,
1993). For the ‘‘All Locations” data set, GPFARM reproduced ob-
served landscape position trends for winter wheat, corn, and sor-
ghum grain yields. However, in contrast to observed data,
GPFARM predicted no significant differences in mean proso millet



Table 4
Observed and simulated mean and coefficient of variation (CV) across landscape positions for simulated grain yield, crop residue, total soil profile water content, and total residual
soil profile NO3–N at the DAP experimental locations in eastern Coloradoa.

Experimental
location

Observed GPFARM simulated

Summit landscape
position

Sideslope landscape
position

Toeslope landscape
position

Summit landscape
position

Sideslope landscape
position

Toeslope landscape
position

Mean
(kg�ha�1)

CV
(%)

Mean
(kg�ha�1)

CV
(%)

Mean
(kg�ha�1)

CV
(%)

Mean
(kg�ha�1)

CV
(%)

Mean
(kg�ha�1)

CV
(%)

Mean
(kg�ha�1)

CV
(%)

Winter wheat grain yield
Sterling 2063a 26 2129a 25 2727b 23 2222a 11 2339ab 9 2569b 11
Stratton 2433a 21 2274a 23 3467b 25 2166a 29 2457a 34 2493a 29
Walsh 1876a 24 2082ab 23 2541b 22 1471a 31 1652b 25 2218c 33
All locations 2140a 25 2169a 23 2955b 27 1959a 30 2159a 31 2434b 26

Corn grain yield
Sterling 3184a 22 4124b 24 5048b 23 3854a 31 4040a 25 4416b 21
Stratton 3908a 39 3568a 35 5299b 24 3822a 38 3991a 40 4270a 36
All locations 3518a 34 3871a 29 5164b 24 3839a 33 4018a 32 4348b 28

Proso millet grain yield
Sterling 1810a 22 1944a 34 2227b 30 2031 12 1951 7 2048 16
Stratton 1554b 28 1676a 12 2161a 29 1994 47 1788 59 2602 19
Walsh 814a 0.7 1266a 20 1861a 13 1403 49 1451 10 1908 3
All locations 1538a 33 1719a 29 2139b 27 1911 35 1800 37 2256 21

Sorghum grain yield
Walsh 2264a 33 2453a 27 3165b 39 1937a 38 2507 28 2919b 32

Crop residue
Sterling 3234a 49 3620ab 53 4319b 42 3898a 41 4104a 40 4481a 37
Stratton 3081a 62 2998a 63 3938b 62 4113a 49 4286ab 48 4623b 49
Walsh 1753a 66 1945a 72 2976b 61 3059a 53 3195a 54 3988b 49
All locations 2634a 65 2797a 67 3658b 59 3674a 50 3845b 49 4347b 47

Total soil profile water content
(mm) (%) (mm) (%) (mm) (%) (mm) (%) (mm) (%) (mm) (%)

Sterling 247a 19 241a 22 328b 21 298b 18 260a 23 279c 21
Stratton 284b 20 247a 21 390c 25 291a 17 324b 19 329b 17
Walsh 294a 16 287a 16 326b 15 224a 19 316b 21 327b 18
All locations 274b 20 258a 21 350c 24 276b 21 302a 23 308c 20

Total soil profile residual NO3–N
(kg�ha�1) % (kg�ha�1) % (kg�ha�1) % (kg�ha�1) % (kg�ha�1) % (kg�ha�1) %

Sterling 68a 43 62a 56 68a 55 45a 56 40a 40 47a 49
Stratton 67a 38 57a 40 104b 42 50a 60 50a 65 76b 63
Walsh 60a 51 76b 62 68a 78 29a 51 33a 61 60b 53
All locations 65a 44 65a 57 81b 60 42a 62 41a 62 62b 62

a Within-row observed and GPFARM simulated means followed by the same letter are not significantly different using Tukey’s LSD at P 6 0.05.
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grain yields across landscape positions and simulated mean crop
residue at the sideslope landscape position was significantly differ-
ent than at the summit landscape position. With the exception of
proso millet grain yield, GPFARM simulations for the ‘‘All Loca-
tions” data set were in agreement with the observed general trend
towards increased yield productivity and crop residue amounts
downslope across the landscape catena. In general, GPFARM esti-
mation of crop grain yield coefficient of variability (CV) produced
mixed results, i.e., there were no strong tendencies toward under-
estimation or overestimation. However, there was a strong ten-
dency for GPFARM to underestimate crop residue CVs across all
locations and landscape positions (Table 4) due to the fact that
GPFARM consistently overestimated crop residues and could not
simulate low residue values. Also, the smaller range in simulated
crop residues resulted in smaller standard deviations.

3.2. Trend analysis – total soil profile water content and soil residual
NO3–N

Similar to observed grain yield data, observed data for total soil
profile water content and soil profile residual NO3–N showed sta-
tistically significant differences (P 6 0.05) between the summit
and toeslope landscape positions across all locations (Table 4).
The only exception was for observed total soil profile residual
NO3–N at Sterling where no significant differences were observed
between landscape positions. This finding is confirmed by Fig. 2c
which shows very little difference in total N in the Ap horizon
between landscape positions at Sterling. At all locations, observed
total soil profile water contents were significantly greater at the
toeslope landscape position than at the summit or sideslope
landscape positions. Mean total soil profile water content at the
summit landscape position was greater than at the sideslope
landscape position, although the difference was only significant
at Stratton (Table 4). In addition, residual NO3–N at the toeslope
landscape position was significantly greater than at the summit
and sideslope landscape positions for only the Stratton location
and not Sterling or Walsh. Again, Fig. 2c shows a large difference
between toeslope and summit/sideslope total N in the Ap horizon
at Stratton but not at the other two experimental locations.
GPFARM was able to reproduce observed trends across landscape
positions for total soil profile water content and residual NO3–N
except for the inability to predict significant differences between
the summit and toeslope landscape positions for total soil profile
water content at Stratton and total residual NO3–N at Sterling.
Converging flow from two upslopes that directly contribute
run-on water to the toeslope is a probable reason that GPFARM



578 J.C. Ascough II et al. / Agricultural Systems 103 (2010) 569–584
underpredicted total soil profile water content at Stratton. Predict-
ing residual NO3–N levels within a profile has several factors that
could be interacting to cause this level of discrepancy between
observed and predicted values. For example, GPFARM overestima-
tion of corn yields would lead to greater stover additions that
would tie up more residual NO3–N during decomposition.

GPFARM predicted trends for total soil profile water content
were similar to observed trends at Stratton and Walsh, with mean
amounts greatest at the toeslope landscape position and least at
the sideslope landscape position (Table 4). Unlike the observed
data, GPFARM predicted mean water content at Sterling was great-
est at the summit. In addition, except for Sterling, GPFARM was un-
able to reproduce the observed trend of lower soil water content at
the sideslope landscape position for all locations. Because GPFARM
generally overpredicts sideslope and underpredicts toeslope soil
water content (Table 4), this may be an indication that it is not
fully accounting for surface runoff or lateral subsurface flow from
the sideslope to toeslope landscape positions. However, specific
reasons for this are difficult to identify since observations of these
water balance components are unavailable. Furthermore, the mag-
nitude of the prediction differences is not dramatic with the excep-
tion of the toeslope at Stratton. GPFARM simulated trends of total
soil profile residual NO3–N were similar to observed trends at Ster-
ling and Stratton, with mean amounts greatest at the toeslope
landscape position and least at the sideslope landscape position
(Table 4).

Examination of observed trends for the ‘‘All Locations” data set
showed that mean total soil profile water contents were signifi-
cantly different across all landscape positions (Table 4). Overall, to-
tal soil profile water content was greatest at the toeslope landscape
position and least at the sideslope landscape position. The ob-
served mean of total soil profile residual NO3–N was significantly
greater at the toeslope landscape position than at the summit
and sideslope landscape positions; however, mean total soil profile
residual NO3–N values at the summit and sideslope landscape
positions were not significantly different. GPFARM reproduced ob-
served trends with predicted total soil profile water content signif-
icantly greatest at the toeslope landscape position and significantly
lowest at the sideslope landscape position (Table 4). Also similar to
observed data, GPFARM simulated mean total soil profile residual
NO3–N was significantly greater at the toeslope landscape position
than at the summit and sideslope landscape positions. Analysis of
observed total soil profile water content and soil profile residual
NO3–N variability for the ‘‘All Locations” data set showed that ob-
served CVs across landscape positions ranged from 20% to 24% for
total soil profile water content and 44% to 60% for total soil profile
residual NO3–N (Table 4). GPFARM simulated variability across
landscape positions was very close to observed for total soil profile
water content (20–23%), but not quite as good for total soil profile
residual NO3–N (62% for all landscape positions).

3.3. GPFARM performance evaluation – crop grain yield and residue
amount

Long-term trends in overprediction and underprediction are
manifested in the relative error (RE) statistics presented in Table 5.
The REs in GPFARM simulated winter wheat grain yield for the
experimental locations and landscape positions were generally less
than ±20%, with REs ranging from �28% (Stratton toeslope) to 10%
(Sterling sideslope). Mean winter wheat grain yields were mostly
underpredicted by GPFARM at the summit and toeslope landscape
positions (Table 5 and Fig. 3a) as the model tended to underpredict
winter wheat harvest index (HI) in most years (data not shown).
This may also explain the overpredictions in crop residue, as HI
is used in the model to partition above-ground biomass into grain
yield and remaining plant biomass that contributes to crop resi-
dues. Similar to RE, high normalized objective function (NOF) val-
ues typically indicate either strong overprediction/underprediction
or considerable scatter when observed data are plotted against
simulated model output response. The lowest (best) and highest
(worst) NOF values were at the Sterling and Stratton toeslope land-
scape position; however, NOF values were less variable and very
similar for the summit and sideslope landscape positions across
locations (Table 5). Index of agreement (d) values for winter wheat
grain yield were slightly better for the summit landscape position
and ranged from a low of 0.40 (Sterling – all landscape positions) to
a high of 0.67 (Walsh summit).

The REs for proso millet grain yield simulations were extremely
variable, ranging from a low of 0.40% at the Sterling sideslope land-
scape position to a high of 72% at the Walsh summit landscape po-
sition (Table 5). The evaluation statistics at Walsh are questionable
because of the very limited number of observations across land-
scape positions at that location (due to consistently low yields,
proso millet at Walsh was replaced by forage sorghum beginning
in 1993). GPFARM consistently overpredicted proso millet grain
yield at the summit and sideslope landscape positions, however,
this trend was less prominent for the toeslope landscape position
(Fig. 3b). Overprediction in proso millet grain yield at Stratton
and Walsh may again be due to the inability of the GPFARM crop
growth model to sufficiently respond to soil water deficits during
critical growth periods. Similar to predictions for corn grain yield,
the NOF range for proso millet grain yield at the toeslope landscape
position across experimental locations (0.07–0.39) was much low-
er than for the sideslope and summit landscape positions (Table 5).
Agreement between observed and GPFARM simulated values
showed the most variability among all crops, with d ranging from
a low of 0.01 (Walsh summit and Stratton sideslope landscape
positions) to a high of 0.59 (Walsh toeslope position).

GPFARM simulated corn grain yield REs were similar to simu-
lated wheat grain yield REs, ranging from underprediction of
�19% to overprediction by 21% at the Stratton sideslope and Ster-
ling summit landscape positions, respectively (Table 5 and Fig. 3c).
GPFARM underpredicted corn grain yield at the toeslope landscape
position; however, Fig. 3c shows general overprediction of corn
yield by GPFARM at the summit and sideslope landscape positions.
Corn is very sensitive to water deficits and water stress during tas-
seling, silking, and early grain filling. Using long-term on-farm re-
cords (32–88 years) at five locations in northeastern Colorado,
Nielsen (1996) showed a strong correlation between precipitation
and corn grain yield during the 6-week period of July 15 to August
25. Corn grain yield NOF values for the summit and sideslope land-
scape positions were generally higher than NOF values for the toes-
lope position. In general, agreement (d) between simulated and
observed corn grain yields was somewhat lower than that for win-
ter wheat, with corn grain yield index of agreement values ranging
from a low of 0.29 (Sterling toeslope) to a high of 0.61 (Stratton
toeslope). For sorghum, which was planted only at Walsh, the RE
was less than 15% across all landscape positions with a slight ten-
dency towards underprediction (Fig. 3c). Sorghum grain yield NOF
values across all landscape positions were comparable to winter
wheat grain yield NOF values, and sorghum grain yield index of
agreement (d) values across landscape positions were the highest
for all crops.

GPFARM simulation results for crop residue were noticeably
poor compared to crop grain yield simulation results. Table 5
shows that crop residue amounts were strongly overpredicted by
GPFARM at all locations; however, GPFARM crop residue predic-
tions were much better for Sterling than for Stratton or Walsh. This
may be due to the ET gradient of the DAP experiment, i.e., cooler
temperatures and lower ET (Table 1) mean that residue remains
longer at Sterling than at Stratton or Walsh (where the higher tem-
peratures and increased ET accelerate residue decomposition).



Table 5
Relative error (RE), normalized objective function (NOF), and index of agreement (d) model evaluation statistics for simulated grain yield, crop residue, total soil profile water
content, and total residual soil profile NO3–N across landscape positions at the DAP experimental locations in eastern Colorado.

Experimental location Summit landscape position Sideslope landscape position Toeslope landscape position

RE (%) NOF (unitless) d (unitless) RE (%) NOF (unitless) d (unitless) RE (%) NOF (unitless) d (unitless)

Winter wheat grain yield
Sterling 8 0.27 0.40 10 0.27 0.40 �6 0.24 0.40
Stratton �11 0.27 0.58 8 0.33 0.63 �28 0.40 0.50
Walsh �22 0.29 0.67 �21 0.30 0.61 �13 0.31 0.61
All locations �8 0.28 0.63 �0.4 0.30 0.62 �18 0.34 0.52

Corn grain yield
Sterling 21 0.49 0.30 �2 0.28 0.57 �13 0.33 0.29
Stratton �2 0.42 0.60 12 0.54 0.39 �19 0.33 0.61
All locations 9 0.46 0.52 4 0.40 0.46 �16 0.33 0.49

Proso millet grain yield
Sterling 12 0.32 0.21 0.4 0.33 0.08 �8 0.31 0.41
Stratton 28 0.63 0.41 7 0.64 0.01 20 0.39 0.43
Walsh 72 0.94 0.01 15 0.27 0.20 3 0.07 0.59
All locations 24 0.52 0.50 5 0.48 0.23 6 0.33 0.43

Sorghum grain yield
Walsh �15 0.42 0.57 2 0.30 0.67 �8 0.32 0.75

Crop residue
Sterling 21 0.49 0.73 13 0.54 0.65 4 0.37 0.76
Stratton 34 0.64 0.75 43 0.80 0.66 17 0.66 0.66
Walsh 75 1.17 0.51 64 1.08 0.58 34 0.83 0.53
All locations 40 0.73 0.71 38 0.78 0.66 19 0.64 0.65

Total soil profile water content
Sterling 21 0.27 0.64 8 0.24 0.72 �15 0.23 0.68
Stratton 2 0.15 0.83 31 0.35 0.62 �16 0.29 0.57
Walsh �24 0.28 0.53 10 0.22 0.67 0.5 0.16 0.75
All locations 0.8 0.23 0.62 17 0.27 0.68 �12 0.25 0.63

Total soil profile residual NO3–N
Sterling �34 0.50 0.67 �36 0.62 0.56 �31 0.54 0.67
Stratton �26 0.57 0.52 �14 0.60 0.58 �27 0.61 0.53
Walsh �52 0.72 0.46 �56 0.84 0.45 �13 0.79 0.50
All locations �36 0.60 0.56 �37 0.73 0.48 �24 0.66 0.60
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GPFARM also overpredicted crop residue amounts across all land-
scape positions (Table 5), but especially for the summit and sides-
lope landscape positions. This level of variability was
demonstrated by Cantero-Martinez et al. (2006) in that the highest
CVs were found in the summit and sideslope positions. Cantero-
Martinez et al. (2006) also noted that crop residue variability
was reduced as cropping system intensity increased from a
wheat–fallow system to a wheat–corn–fallow or a wheat–corn–
millet–fallow system. As previously stated, HI is used to partition
total above-ground biomass into grain yield and vegetative bio-
mass in the GPFARM crop growth model. Unharvested vegetative
biomass contributes to the amount of crop residue, thus, overpre-
dictions of crop residues likely result from overprediction of total
above-ground biomass, underprediction of HI, or a combination
of both. Crop residue NOF values were also much higher compared
to grain yield NOF values, exceeding 1.0 for the Walsh summit and
sideslope landscape positions. Interestingly, crop residue agree-
ment was higher compared to grain yield agreement, ranging from
a low of 0.51 at the Walsh summit landscape position to a high of
0.76 at the Sterling toeslope landscape position.

Additional statistical evaluation of crop grain yields and residue
amounts for the ‘‘All Locations” combined data set (excluding sor-
ghum grain yield at Walsh) are shown in Table 5 and Fig. 4. The RE
values were generally within a range of ±20% or better with the
exception being proso millet grain yield at the summit landscape
position. For all crops, Fig. 4 shows that the lowest RE was obtained
with winter wheat grain yield at the sideslope landscape position
and the highest RE was found for proso millet grain yield at the
summit landscape position. The NOF values ranged from a low of
0.28 for winter wheat grain yield to high of 0.52 for proso millet
grain yield, both at the summit landscape position. Index of agree-
ment (d) values ranged from a low of 0.23 for proso millet grain
yield at the sideslope landscape position to a high of 0.63 for win-
ter wheat grain yield at the summit landscape position (Table 5).
The REs for crop residue were very high, up to 40% across all land-
scape positions (Fig. 4). NOF values for crop residue were similarly
high (0.64–0.78) compared to crop grain yield NOF values, and d
values for crop residue ranged from 0.65 to 0.71. In general,
Fig. 4 shows a tendency for GPFARM to underpredict crop grain
yield at the toeslope landscape position. This is consistent with
underpredictions in total soil profile water content and residual
NO3–N at the toeslope (Table 5) which in turn may be related to
GPFARM inability to simulate water and chemical movement
across the landscape catena. In addition, the toeslopes have higher
residue levels that reduce the amount of soil surface evaporation.

In analyzing the grain yield simulation results, GPFARM crop
growth model prediction errors may be a consequence of the lack
of varietal-specific parameterization, insufficient characterization
of soil water content across the catena, crop growth component
process representation (e.g., simplified algorithms for phenology,
water stress calculations, etc.) or a combination of these. The ten-
dency towards overprediction of proso millet and corn grain yields
(Fig. 3b and c, respectively) at the summit and sideslope landscape
positions may illustrate the need for better corn and proso millet
parameterization of the GPFARM crop growth model across the en-
tire landscape catena. Kiniry et al. (1995) observed that EPIC can
give reasonable mean yield simulations for the major crops and
forages in the Great Plains, but was unable to adequately simulate
yield in dry low-yielding years. Andales et al. (2003) concluded
that errors in prediction of biomass seem to be the major reason
for errors in simulated grain yield for corn, whereas in winter
wheat, the contribution of HI to error in simulated grain yields
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Fig. 4. GPFARM simulated dry mass grain yield, crop residue, total soil profile water content, and total soil profile residual NO3–N relative error (RE) for the ‘‘All Locations”
landscape catena data set combined across the DAP experimental locations in eastern Colorado.

Fig. 3. Simulated against observed dry mass grain yield values across landscape positions for winter wheat (a), proso millet (b), and corn/sorghum (c) for the DAP
experimental locations in eastern Colorado. NOF is the normalized objective function; additional model evaluation statistics are given in Table 5.
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was the dominant factor. Cabelguenne et al. (1999) also confirmed
that EPIC overestimated vegetative biomass and grain production,
especially under conditions of pronounced water stress. Andales
et al. (2003) also suggested that the dryland conditions in eastern
Colorado, which are characterized by periods of extreme water and
temperature stresses, may be outside the validity domain of the
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EPIC crop growth model. This finding was echoed by Kiniry et al.
(1995) and Jara and Stockle (1999). Based on the above evaluation
statistics, the EPIC-based crop growth model in GPFARM seems
more suited for estimating long-term average crop yields or trends
in yields rather than simulating year-to-year variability in crop
yields. Other researchers who have evaluated the EPIC crop growth
model or its implementation in GPFARM have reported similar re-
sults (e.g., Kiniry et al., 1995; Jara and Stockle, 1999; Cabelguenne
et al., 1999; Andales et al., 2003).

3.4. GPFARM performance evaluation – total soil profile water content
and soil residual NO3–N

GPFARM total soil profile water content simulations were much
better at the toeslope landscape position with lower REs, lower
NOF values, and higher index of agreement values across all loca-
tions. The REs for total soil profile water content simulations were
quite variable, ranging from a low of 0.50% at the Walsh toeslope
landscape position to a high of 31% at the Stratton sideslope land-
scape position (Table 5). GPFARM total soil profile water content
simulations are interesting in that model performance was erratic
across all landscape positions (Fig. 5a), e.g., total soil profile water
content was both underpredicted and overpredicted at the summit
landscape position, strongly overpredicted at the sideslope land-
scape position, and underpredicted at the toeslope landscape posi-
tion. Again, not accurately accounting for water movement from
the summit and sideslope landscape positions to the toeslope land-
scape position could explain these results; however, additional
experimental data is necessary to fully test this hypothesis. It is
Fig. 5. Simulated against observed values across landscape positions for total soil profile
locations in eastern Colorado. NOF is the normalized objective function; additional mod
important to note that in addition to the severe ET gradient, phys-
iographic (e.g., changes in physical properties between soil hori-
zons across locations and landscape as shown in Table 2) and
topographic (e.g., varying potentials for surface and lateral flow
across the landscape catena at the experimental locations) com-
plexities render the modeling of soil water content in this study
a very difficult task. However, GPFARM simulated the correct tim-
ing for most of the observed drying and wetting events over time
for all experimental locations (detailed data not shown). The NOF
range for total soil profile water content at the toeslope and sum-
mit landscape positions were quite similar and lower than for the
sideslope landscape position across experimental locations (Ta-
ble 5). GPFARM simulations of total profile soil water content were
comparable in accuracy to those of other agricultural system mod-
els, including the RZWQM which simulates the soil water balance
with much greater process detail. The index of agreement values
between GPFARM and observed total soil profile water content
ranged from 0.53 to 0.83 across locations and landscape positions
with the majority of d values greater than 0.60. In comparison, Wu
et al. (1999) reported lower d values (0.54 and 0.59) for total water
content simulations of the RZWQM during two seasons in a sandy
soil near Princeton, Minnesota. In addition, Farahani et al. (1999)
applied the RZWQM at the Sterling and Stratton locations and re-
ported soil water depletion RE values ranging from �18% (Sterling
summit) to 195% (Stratton toeslope). The errors in soil water con-
tent simulations are possibly well within the range of spatial var-
iability considering that only two point measurements were
taken per treatment (1500 m2 average plot area per treatment),
although the point measurements are in close agreement. Further-
water content (a) and total soil profile residual NO3–N (b) for the DAP experimental
el evaluation statistics are given in Table 5.



Table 6
Catena landscape positions where GPFARM performed best according to relative error
(RE), normalized objective function (NOF), and index of agreement (d) model
evaluation statistics.

Location Evaluation statistic

RE NOF d

Winter wheat grain yield
Sterling Toeslope Toeslope All positions equal
Stratton Sideslope Summit Summit
Walsh Toeslope Summit Summit
All Sideslope Summit Summit

Corn grain yield
Sterling Sideslope Sideslope Sideslope
Stratton Summit Toeslope Toeslope
All Sideslope Toeslope Summit

Proso millet grain yield
Sterling Sideslope Sideslope Toeslope
Stratton Sideslope Toeslope Toeslope
Walsh Toeslope Toeslope Toeslope
All Sideslope Toeslope Summit

Sorghum grain yield
Walsh Toeslope Sideslope Toeslope

Crop residue
Sterling Toeslope Toeslope Toeslope
Stratton Toeslope Summit Summit
Walsh Toeslope Toeslope Sideslope
All Toeslope Toeslope Summit

Total soil profile water content
Sterling Sideslope Toeslope Sideslope
Stratton Summit Summit Summit
Walsh Toeslope Toeslope Toeslope
All Summit Summit Sideslope

Total soil profile residual NO3–N
Sterling Toeslope Summit Summit/Toeslope
Stratton Sideslope Summit Sideslope
Walsh Toeslope Summit Toeslope
All Toeslope Summit Toeslope
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more, GPFARM assumes fixed (2-h) durations for all storms and the
use of actual storm intensities from breakpoint rainfall data would
almost certainly improve simulation of soil water content.

Total soil profile residual NO3–N REs ranged from a magnitude
of �13% (Walsh toeslope landscape position) to �56% (Walsh
sideslope landscape position), and were generally lower at the
toeslope landscape position (Table 5). Simulated total soil profile
residual NO3–N means were consistently underestimated across
all landscape positions (Fig. 5b), and NOF values ranged from a
low of 0.50 (Sterling summit landscape position) to a high of
0.84 (Walsh sideslope landscape position). The highest d value
was obtained at the Sterling summit and toeslope landscape posi-
tions, while d values were much lower for other landscape posi-
tions and locations. Predicted total soil profile residual NO3–N
was highly sensitive and positively correlated to the amount of
organic matter (Table 2) in the soil and negatively correlated to
crop leaf area index (Table 3). Numerous interrelated plant–
soil–environment factors that influence N cycling in the soil make
prediction of residual soil profile NO3–N a difficult task. Predicting
NO3–N amounts over an extended number of years is an even
greater challenge, e.g., a lack of within-season residual NO3–N data
collection prevented year-to-year evaluation of NO3–N root up-
take. Sherrod et al. (2003) offer key insights concerning N variabil-
ity across the landscape catena for the three eastern Colorado
experimental locations. Total soil N on the sideslopes was found
to be significantly lower than summits with the toeslopes having
the highest levels and cropping intensity also positively impacting
surface soil total N. In addition, the largest REs for total soil profile
NO3–N were found at the summit and sideslope soils at Walsh
which have the highest sand content profiles in this study (Table 2).
Sherrod et al. (2005) found the highest particulate organic matter
(the source material for N mineralization and resultant nitrifica-
tion) levels in the toeslope soils at the experimental locations with
no significant difference between the summit and sideslope soils.
Total soil profile residual NO3–N may be inversely related to in-
creases in total N due to cropping intensity since immobilization
of nitrates by microbes (which decomposes surface residues) is
more of a factor in no-till surface soils (Sherrod et al., 2005).
The above insights could help lead to further improvements in
GPFARM modeling of crop NO3–N uptake and N dynamics for the
experimental conditions in this study.

Additional analysis of the ‘‘All Locations” data set for total soil
profile water content and soil profile residual NO3–N is presented
in Table 5 and Fig. 4. Fig. 4 clearly illustrates GPFARM underpredic-
tion of both total soil profile water content at the toeslope land-
scape position and total soil profile residual NO3–N at all
landscape positions, and also reveals that REs were much lower
for total soil profile water content (±20% or better) than for total
soil profile residual NO3–N (�20% to �40%). Correspondingly,
Table 5 shows that NOF values were much better for total soil
profile water content than for total soil profile residual NO3–N.
Index of agreement values were also slightly better for total soil
profile water content than for total soil profile residual NO3–N.

3.5. GPFARM performance evaluation – landscape position analysis

A secondary objective of this study was to determine whether
the predictive performance of GPFARM was impacted by landscape
position within the catena. As a synthesis of Table 5, the landscape
positions where GPFARM performed the best for each model eval-
uation statistic (i.e., lowest absolute RE value, lowest NOF value,
and highest d value) are shown in Table 6. As previously discussed,
the NOF and d model evaluation statistics indicate the average
event-by-event (short-term) prediction errors and should be con-
sidered more robust indicators of model performance. Focusing
on the NOF and d evaluation statistics and the ‘‘All Locations” data
set, GPFARM performed best at the summit or sideslope landscape
positions for the majority of output response variables. As ex-
pected, much more variability in GPFARM performance for each
evaluation statistic is evident when location is individually exam-
ined. With the d evaluation statistic as an example, for crop residue
and total soil profile water content GPFARM performed the best
at a different landscape position for each experimental location
(Table 6). Furthermore, for corn grain yield and the ‘‘All Locations”
data set, the sideslope position had the lowest RE, the toeslope
position had the lowest NOF, and the summit landscape position
had the highest index of agreement.

Table 6 illustrates that different interpretations of GPFARM (and
perhaps any agroecosystem model) performance across the land-
scape catena can be made depending on the evaluation statistic
of interest. This finding seems self-evident but differences in model
evaluation statistics are rarely pointed out in the literature. In
addition, the results strongly indicate that modelers must be aware
of the strengths, weaknesses, and general predictive capability of
selected evaluation criteria in order to objectively assess model
performance. For example, it is important to remember that RE is
an arithmetic average over the duration of data, i.e., the RE shows
long-term bias and the simulated against observed deviations can
be cancelled out, especially if the model both overpredicts and
underpredicts with similar frequency. The NOF and d values, how-
ever, indicate the average event-by-event (short-term) prediction
errors and should be considered more robust indicators of model
performance, e.g., the index of agreement accounts for individual
simulated against observed deviations. The d statistic accounts
for variability of predicted and observed values around the ob-
served mean while the NOF does not. Thus, d values will tend to
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be higher when the variability of predicted and/or observed values
is high.
4. Conclusions

Given the simplifying assumptions inherent in many of the
GPFARM simulation model components, and bearing in mind the
specified purpose of GPFARM (to serve as a agricultural manage-
ment DSS for strategic, long-term planning), the model appears
to have reasonably simulated dry mass grain yield, crop residue,
total soil profile water content, and total soil profile residual
NO3–N across a catenary sequence at the eastern Colorado DAP
experimental locations. GPFARM simulations of total soil profile
residual NO3–N were less accurate than simulations of total soil
profile water content, although the use of actual storm intensities
from breakpoint rainfall data would almost certainly improve sim-
ulation of soil water content. Values of the RE evaluation statistic
suitably demonstrate GPFARM efficacy in quantifying long-term
(strategic) interactions between the environment and alternative
crop management systems, but the NOF and d evaluation statistics
show the simulation model may be lacking in accuracy for predic-
tions on a short-term (tactical) planning basis. With a few excep-
tions (e.g., Stratton toeslope), GPFARM successfully simulated
observed trends in grain yield, crop residue, total soil profile water
content, and total soil profile residual NO3–N at the DAP experi-
mental locations, in both the short- and long-term. It is important
to re-emphasize that GPFARM was developed to operate at the
field scale where both model input parameters and output re-
sponses represent conditions averaged over a fairly large area. On
the other hand, the observed data used in this study to evaluate
GPFARM were collected at the plot scale, which is typically subject
to much greater variability and may partly explain inadequacies in
GPFARM simulation of the four output response variables. It is dif-
ficult to single out specific GPFARM model deficiencies using ob-
served experimental data representing a high degree of temporal
and spatial variability. However, some model deficiencies were
expectedly magnified at different landscape positions, e.g., errors
in simulated plant water and N stress were greater at the summit
landscape position than at the toeslope where water status is more
favorable and plant stress is reduced.

For both experimental and simulation studies, the sideslope and
toeslope landscape positions had the uncertainty of receiving
unmeasured runoff from upslope areas. A key limitation of
GPFARM is the inability to simulate surface and subsurface move-
ment of water and chemicals across a landscape catena. GPFARM
overpredicted mean profile soil water content at the sideslope
landscape position across all locations and underpredicted mean
profile soil water content at the Sterling and Stratton toeslope
landscape positions. Based on GPFARM simulated results, this dif-
ference across landscape positions provides some evidence that
hydrologically significant runoff–runon events were occurring at
the DAP experimental locations. Addition of a spatially-distributed
water and chemical routing component to GPFARM should not
only improve characterization of soil spatial variability (and its
influence on soil water availability, fertility, and root distribution),
significant improvements due to hydrologic spatial interaction
across the catenary sequence should be realized as well. Another
important limitation of GPFARM is a potential lack of accuracy
for predictions on a short-term planning basis, especially for grain
yield. More thorough testing and enhancement of the EPIC-based
crop growth model in GPFARM is needed under dryland conditions
in eastern Colorado using detailed observations of soil water con-
tent at depth, biomass, LAI, phenology, harvest index and grain
yield for various crops. Additional evaluation and improvement
of the C and N cycling component is needed as well. Finally, addi-
tional application of GPFARM to extend the geographic area of con-
sideration to the entire Great Plains is being considered. This effort
will incorporate additional crops (e.g., soybeans, alfalfa, etc.) and
improvements in crop model response to water, temperature,
and N stress (and their interactions). It is anticipated that enhance-
ments in the crop growth and environmental components of the
GPFARM simulation model, including more robust parameteriza-
tion, will improve model accuracy for both strategic and tactical
applications, and result in a GPFARM DSS useful for real-time crop-
ping system management.
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