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Research

The era of molecular markers, which began in earnest 
with restriction fragment length polymorphism markers 

in the late 1980s, has evolved remarkably. Restriction fragment 
length polymorphism markers were followed by polymerase-
chain-reaction-based marker technologies such as randomly 
amplified polymorphic DNA, amplified fragment length poly-
morphism, and simple-sequence repeat markers in the late 1990s 
(Gupta et al., 2010). The discovery and implementation of these 
marker systems facilitated the mapping of genes controlling many 
traits, including several stem rust resistance genes in wheat (Triti-
cum aestivum L.). Recently, SNP markers are increasingly being 
used in gene and QTL mapping approaches, primarily because 
of the lower cost per data point and the relative ease in assay 
design as well as in scoring and interpretation of the results. The 
SNP-chip-based genotyping is often preferred, as it is adaptable 
to high-throughput systems.

The SNP markers on SNP chips or arrays are discovered on a 
diversity panel and selected to be included on the genotyping chip 
based on allele frequency, polymorphism information content, 
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Abstract
Array- or chip-based single nucleotide poly-
morphism (SNP) markers are widely used in 
genomic studies because of their abundance in 
a genome and lower cost per data point than 
older marker technologies. Genotyping-by-
sequencing (GBS), a relatively newer approach 
of genotyping, suggests equal appeal because 
of its lesser cost per data point and the avoid-
ance of ascertainment bias during genotyping. In 
this study, we compared the results from quan-
titative trait loci (QTL) mapping, marker distribu-
tion on linkage maps, genome size, recombina-
tion sites covered by the markers, and cost per 
polymorphic marker, as well as the methodol-
ogy and workflow between the Illumina Infinium 
9000 SNP-chip genotyping with GBS. Results 
indicate that while GBS offers similar genome 
coverage at almost one-fourth the cost of SNP 
chip, the SNP-chip method is less demanding 
of computational skills and resources. Eight and 
nine QTL were detected in the GBS and SNP-
chip datasets, respectively, with one QTL com-
mon between the systems. Additionally, imputa-
tion accuracy of the GBS dataset was examined 
by introducing missing values randomly and 
imputing the missing alleles using a probabi-
listic principal components algorithm. Impu-
tation results suggest recovery of the missing 
alleles with reasonable accuracy in datasets 
with low (up to 40%) amount of missing data 
is possible and can provide acceptable accu-
racy in gene mapping. Overall, the comparative 
results indicate that both approaches provide 
good genome coverage and similar mapping 
results. The choice of the genotyping platform 
is decided by the nature of the study and avail-
able resources.
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and marker segregation. However, they introduce ascer-
tainment bias in downstream applications (Albrechtsen et 
al., 2010; Li and Kimmel, 2013). This bias can impact the 
study of genetic relationships among individuals that may 
not be easily corrected (Moragues et al., 2010; Frascar-
oli et al., 2013). Genotyping-by-sequencing, conducted 
directly on the population of interest, is one such method 
free from ascertainment bias (Poland et al., 2012).

The GBS procedure allows the discovery of popu-
lation-specific SNPs from sequencing of DNA libraries 
obtained after restriction digest of samples. The usabil-
ity of this approach in genotyping a crop species was 
first demonstrated in maize (Zea mays L.) (Elshire et al., 
2011), and has been successfully used in other crop species 
including wheat (Saintenac et al., 2013), and barley (Hor-
deum vulgare L.) (Liu et al., 2014). In addition to the high-
quality polymorphism data free of ascertainment bias pro-
duced by GBS, the lower cost per sample (and also cost per 
polymorphic marker) gives this approach greater appeal 
for genomic studies in crops and noncrop species. Because 
the GBS approach yields sequence data as opposed to only 
the allele calls in other existing genotyping approaches, 
the likelihood of using the sequences for in silico annota-
tion for functional polymorphism adds to the functional-
ity of this genotyping approach.

One potential problem of the GBS approach, how-
ever, is the generation of missing allele calls when a large 
number of lines are multiplexed during sequencing (Wil-
liams et al., 2010; Poland et al., 2012; Fu et al., 2014). As 
more samples are multiplexed for sequencing, the number 
of reads per sample decreases, leading to a higher frequency 
of missing allele calls during SNP detection in the popula-
tion. Construction of accurate linkage maps may not be 
possible with a genotype matrix with a large proportion 
of missing allele calls. There are two ways of solving this 
problem: (i) increasing the sequencing depth either by mul-
tiplexing fewer individuals to generate DNA libraries or by 
sequencing the libraries multiple times and (ii) by imputa-
tion of missing genotyped calls using relationship among 
lines in a population. Of the two, the former requires 
additional time and resources to sequence and analyze 
the DNA libraries multiple times and may be less desired. 
The latter is increasingly preferred because of the richness 
in data mining offered by the GBS procedure expands to 
imputation of missing haplotypes in related individuals 
with low read coverage during sequencing. Recent studies 
in several crop species, including wheat, have shown that 
imputing markers to construct missing haplotypes can be 
done with relatively high accuracy (Rutkoski et al., 2013; 
Fu, 2014). Thus, in populations where the individuals are 
either linked in families (F2, recombinant inbred line [RIL] 
populations) or via population structure (association map-
ping panels), imputation offers promising results. Imputa-
tion of missing genotypes might be mostly beneficial in 

populations where the allelic origin based on the parents 
is known or if coancestry information can be used. How-
ever, caution must be applied in datasets with too much 
missing data or in panels with unrelated individuals.

The main objective of this study was to compare the 
GBS approach with the 9000 Infinium iSelect SNP assay 
(9K)-based (Cavanagh et al., 2013) genotyping method in 
mapping QTL associated with resistance to stem rust of 
wheat. We also investigated the effect of missing alleles 
in GBS dataset on QTL mapping. Attributes such as 
recombination frequency and genome coverage between 
these two high-throughput genotyping methods were 
compared. Additionally, difference in the power of QTL 
detection on simulated trait data and the practicality of 
using one approach over another were explored.

Materials and Methods
Molecular Marker Assay
A RIL population comprising 141 F6:7 RILs derived from the 
cross RB07/MN06113-8 was used in this study (Bajgain et 
al., 2015). Genomic DNA was extracted from ground seeds of 
the parents and all RILs using a modified cetyltrimethylam-
monium bromide protocol (Kidwell and Osborn, 1992). The 
extracted DNA was quantified using an ND 1000 Spectro-
photometer (NanoDrop Technologies). The population was 
genotyped using two approaches: (i) 9K (Cavanagh et al., 2013) 
and (ii) SNP markers obtained from GBS (Elshire et al., 2011).

For genotyping using the 9K, DNA suspended in ddH2O 
at approximately 80 ng L−1 was submitted to the USDA–ARS 
Small Grain Genotyping Center in Fargo, ND. The data gen-
erated was manually called using Illumina’s GenomeStudio 
2011.1 (Illumina Inc.). Briefly, each SNP call across the RIL 
population was manually analyzed, curated, and exported in 
diploid format (AA/AB/BB). Monomorphic markers, mark-
ers with the same calls for the entire population, markers with 
more than 10% missing data, and markers that deviated from 
1:1 segregation ratio were discarded. Markers with 5% or less 
heterozygous calls were retained to avoid false purging of het-
erozygous loci. This resulted in 1050 high-quality markers that 
were retained for linkage mapping.

In the GBS approach, a double-digested library was cre-
ated using the restriction enzymes PstI and MspI on 200 ng of 
DNA per sample following Poland et al. (2012). Each library 
was 76-plexed with the parents repeated six times each. The 
libraries were sequenced in two lanes of Illumina HiSeq 2000, 
generating 100-bp paired-end sequences. The sequences were 
processed using the UNEAK pipeline (Lu et al., 2013) using 
the parameters -c 10 -e 0.025 to obtain de novo SNPs. Reads 
containing SNPs were used as query sequences and BLASTn 
searched against the wheat chromosome survey sequences (CSS) 
to assign SNPs to unique chromosomes. The wheat CSS were 
obtained by assembling reads obtained from sequencing flow-
sorted wheat chromosomes from the ‘Chinese Spring’ variety 
(International Wheat Genome Sequencing Consortium, http://
wheaturgi.versailles.inra.fr/Seq-Repository/). To ensure that 
correct SNPs were obtained, only the full-length alignment 
of a query sequence with the survey sequences allowing either 
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with missing data. Prediction values <2 were assigned the 
homozygous genotype, 1, to represent alleles originating from 
the first parent; values equal to 2 were assigned the heterozy-
gous genotype, 2; and values >2 were assigned the homozygous 
genotype, 3, to represent alleles originating from the second 
parent. These values were assigned after careful and replicated 
manual scans of the imputed data to predict the true genotypes 
as accurately as possible.

Summary Statistics of Genotype Matrices
The number of recombinations in each RIL on all datasets (9K, 
GBS nonimputed, and GBS imputed) was estimated using the 
R package hsphase (Ferdosi et al., 2014). Both imputed and 
nonimputed GBS datasets were analyzed using PowerMarker 
V3.25 (Liu and Muse, 2005) to estimate population attri-
butes. The method of moments estimator was used to estimate 
the within-population inbreeding coefficient and related-
ness between the individuals (Ritland, 1996). Polymorphism 
information content (PIC), a diversity measure among the indi-
viduals in a population, was calculated according to Botstein et 
al. (1980). Estimation of these population parameters was done 
with 10,000 nonparametric bootstraps across different loci at a 
confidence interval of 95% ( = 0.05).

Methodology and Workflow Comparison
The cost, time, and resources required to genotype the RIL 
population using both (9K and GBS) methods were compared 
so that some characteristics between the two methods could be 
understood to determine their usability in programs and proj-
ects that are similar to ours. The discussed cost estimate strictly 
pertains to the genotyping cost and does not include the cost 
of the manual labor involved. The amount of time required to 
genotype the population is the active time used in preparation 
of the DNA samples, sequencing, and data analysis and does 
not include the latent time between procedures. Computational 
resources and skills needed to analyze the data obtained from 
both procedures are also briefly discussed.

Results and Discussion
Genotype Properties
Genotype calls obtained for both the 9K SNPs and GBS 
SNPs were first analyzed for deviation from expectation 
segregation ratio of 1:1. However, as described in the Mate-
rials and Methods section, the 9K dataset (1050 SNPs) was 
devoid of markers deviating from the 1:1 segregation ratio, 
as markers that deviated from the ratio were discarded. Of 
the 932 GBS SNP markers, 164 were found to be skewed 
toward either parental genotype. Of these 164 markers, 
48 were overrepresentative of the MN06113-8 genotype, 
whereas 116 were overrepresentative of the RB07 geno-
type. Overall, 49.5% of marker genotypes were inherited 
from MN06113-8 in the 9K dataset, 50% from RB07, 
and 0.5% were heterozygous. In the GBS dataset, 46% of 
the marker genotypes originated from MN06113-8, 49% 
from RB07, and 3% were heterozygotes, with 2% miss-
ing data. The RILs used for genotyping were inbred to 

one base mismatch or one gap was permitted. To circumvent 
retaining redundant SNPs on paralog sequences and dupli-
cated regions among the A, B, and D subgenomes, SNPs thus 
obtained were filtered to remove SNPs that mapped more than 
once to multiple chromosomes. The SNPs that were monomor-
phic, had no allele calls for >10 individuals (>7% missing data), 
or were heterozygous in >10 individuals (7% heterozygosity) 
were also discarded. The SNPs obtained after these steps were 
converted to diploid format (AA/AB/BB) from allelic phases 
(A/C/G/T). This process resulted in 932 high-quality SNP loci 
that were retained for linkage mapping.

Linkage Map Construction and Quantitative 
Trait Loci Mapping
Linkage groups were constructed from SNPs obtained from 
both genotyping approaches (9K and GBS) using Mapdisto ver-
sion 1.7.7.0.1 (Lorieux, 2012) and using a minimum logarithm 
of odds (LOD) values of 3.0. Genetic distances between the 
markers were calculated based on the Kosambi mapping func-
tion (Kosambi, 1943). Phenotypic data (stem rust severity) were 
collected on the RB07/MN06113-8 RIL population (Bajgain et 
al., 2015). The program Windows QTL Cartographer 2.5_011, 
which implements composite interval mapping (CIM) method 
to identify QTL, was used to analyze marker–trait associations 
(Wang et al., 2012). A walk speed of 1 cM was used for QTL 
detection on linkage groups, and a QTL was declared to be pres-
ent if the LOD threshold was calculated by 1000 permutations at 
 = 0.05. The QTL effects were estimated as the proportion of 
phenotypic variance explained (PVE) by the QTL.

Imputation of Genotyping-by-Sequencing 
Single Nucleotide Polymorphisms
Construction of linkage maps for genome mapping can be a diffi-
cult task if a dataset is missing a significant portion of allele calls. In 
this dataset, the samples were 76-plexed, and therefore the issue of 
missing data was not egregious (<7% missing data; Bajgain et al., 
2015). However, to simulate scenarios where missing data could 
be a problem, the genotype matrix comprising 932 GBS SNPs 
for the RIL population was modified to introduce missing allele 
calls. Missing values were introduced randomly in the GBS data-
set using R 3.0.2 (R Development Core Team, 2013) to simulate 
the genotype matrix with 20, 30, 40, 50, 60, 75, and 90% miss-
ing data. These datasets are hereafter referred as GBS20, GBS30, 
GBS40, GBS50, GBS60, GBS75, and GBS90, respectively.

Imputation of missing SNPs on the simulated data was done 
using principal component analysis (PCA)-based imputation 
using the probabilistic PCA (ppca) algorithm in the R pack-
age pcaMethods (Stacklies et al., 2007). The ppca algorithm 
first assigns row average values to the missing values and then 
uses the singular value decomposition of the SNP matrix to 
create orthogonal principal components. In turn, the principal 
component values corresponding to the largest eigenvalues are 
used to reconstruct the missing SNP genotypes in the genotype 
matrix. The algorithm ppca was chosen for its high imputation 
accuracy and efficiency in regards to the use of computational 
resources compared with other imputation algorithms of sim-
ilar caliber (Moser et al., 2009; Fu, 2014). In the algorithm, 
25 PCA values were used to reconstruct all genotype matrices 
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F6:7 generation, and as such, only 1.6% of genotype calls 
in the population were expected to be heterozygous, and 
these numbers observed in both genotyping methods are 
expected of a highly inbred population. The results also 
indicated a higher proportion of heterozygous and miss-
ing allele calls in the GBS dataset, as permitted during the 
filtering of genotype calls.

Linkage Groups Construction
Construction of linkage groups for both 9K and GBS 
datasets was done using the same parameters in Mapdisto 
version 1.7.7.0.1 (Lorieux, 2012). Of 1050 9K SNP mark-
ers, 964 were placed in 30 linkage groups representing 18 
wheat chromosomes (Table 1). Chromosomes 2D, 4D, and 
7D were not represented by any marker. The number of 
markers per linkage group ranged from two (chromosomes 
2A, 3D, and 6B) to 145 (chromosome 5B) with an average 
of 32 markers per linkage group. The 964 markers distrib-
uted over the 30 linkage groups covered a total of 1294 
cM of the wheat genome. The sizes of the smallest and 
the largest linkage groups were 0.4 and 168 cM, respec-
tively, with an average size of 43 cM. The average centro-
meric range (distance between the last SNP marker on the 
short arm and the first SNP marker on the long arm of the 
linkage groups) was 21 cM and varied from 12 to 28 cM. 
Several chromosomes were represented by two or more 
linkage groups that constituted of markers from either arm 
only, and therefore, it was not possible to determine the 
position of the centromere in these chromosomes.

Similarly, 925 of the 932 GBS SNP markers were 
assigned to 31 linkage groups that represented all 21 wheat 
chromosomes (Table 1, 2). The marker number in these 
linkage groups ranged from two (chromosomes 4A, 6B, 
6D, and 7D) to 131 (chromosome 2B) with an average of 30 
markers per linkage group. The smallest linkage group was 

0.8 cM, the largest group was 147 cM long, and the average 
size of all linkage groups was 42 cM. The size of the wheat 
genome covered by the 31 linkage groups constructed using 
925 GBS SNP markers was comparable with that of the 9K 
dataset at 1305 cM. The average centromeric range was 20 
cM and varied from 6 to 31 cM. Similar to linkage groups 
constructed using 9K dataset, position of the centromere 
was not determined for several chromosomes as the linkage 
groups consisted of markers from either arm only.

One immediately obvious advantage of GBS over the 
SNP-chip genotyping was the slightly better coverage of 
the wheat D genome. The D genome of wheat is often 
the least represented in genotyping platforms, owing to 
its lower frequency of polymorphic sequences (Chao et 
al., 2009; Allen et al., 2011). While the number of mark-
ers mapped to the D genome in our GBS dataset is not as 
large as the A and B genomes, the retrieval of all seven D 
chromosomes during construction of linkage groups was a 
good indication that the GBS approach can be manipulated 
to obtain more SNP markers from the D genome. One 

Table 1. Results of linkage group formation using the 9000 Infinium iSelect single nucleotide polymorphism (SNP) assay (9K) 
and genotyping-by-sequencing (GBS) SNPs.

Chromosome

Total1A 2A 3A 4A 5A 6A 7A 1B 2B 3B 4B 5B 6B 7B 1D 2D 3D 4D 5D 6D 7D

(A) 9K method 

Linkage groups† 2 4 1 1 3 2 1 2 1 1 1 1 4 1 1 0 1 0 1 2 0 30

SNPs‡ 76 32 138 26 23 121 43 17 110 7 82 145 12 66 23 0 2 0 21 18 0

Size (cM)§ 75 38 156 61 31 76 105 57 141 47 94 168 34 95 73 0 1 0 24 18 0

SNPs per subgenome 459 439 64 962

Size per subgenome 542 636 116 1294

(B) GBS method 

Linkage groups† 1 2 1 2 1 3 1 2 1 1 1 1 2 1 1 1 1 2 2 2 2 31

SNPs‡ 61 29 56 63 15 87 80 62 131 40 61 117 11 46 10 16 3 11 13 9 4

Size (cM)§ 95 45 146 58 23 36 98 80 111 43 90 147 25 83 29 44 23 35 64 12 18

SNPs per subgenome 391 468 66 925

Size per subgenome 501 579 225 1305
† Number of linkage groups formed for each wheat chromosome.
‡ Number of SNPs that mapped to all linkage groups representing each chromosome.
§ Size of the linkage groups combined if more than two linkage groups were observed for a chromosome.

Table 2: Comparison of linkage mapping results among the 9000 
Infinium iSelect single nucleotide polymorphism (SNP) assay 
(9K) dataset, nonimputed genotyping-by-sequencing (GBS) 
dataset, and datasets with 40 and 75% missing allele calls.

Method† SNPs‡
Linkage 
groups

SNPs in  
linkage 
groups

Unlinked 
SNPs

Genome 
size QTL

 ————— % ————— cM

9K 1050 30 91.8 8.2 1295 9

GBS 932 31 99.2 0.8 1306 8

GBS40 932 29 98.8 1.2 4785 8

GBS75 932 30 89.2 10.8 14,879 7
† GBS40, imputed GBS dataset with 40% missing allele calls; GBS75, imputed GBS 
dataset with 75% missing allele calls.

‡ Number of polymorphic markers used in linkage mapping and imputation of miss-
ing genotype data.
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across the population is the reason behind the observation 
of incongruous recombination patterns.

To uncover the genetic architecture controlling the 
traits of interest, the use of molecular markers representa-
tive of the genome is important in gene mapping stud-
ies. Markers that are significantly linked to the trait can 
provide remarkable improvements in breeding for allele 
enrichment and trait improvement. Since the choice of 
genotyping platform can impact the quantity of molec-
ular markers and their distribution in different genomic 
regions, understanding the differences in marker-related 
genome properties can assist in such choice among the dif-
ferent available genotyping approaches. In our investiga-
tion of such properties between the two genotyping meth-
ods discussed here, the difference in number of polymor-
phic markers identified and used in creating linkage groups 
was not strikingly different; whereas, the distribution of 
those markers in different genomic regions as shown by 
the difference in sites of recombination was noteworthy. 
The difference in genome coverage is also supported by 
the observed differences in properties of the linkage groups 
constructed using SNPs obtained from the two methods 
and the failure to detect the same QTL between the two 
methods, as described in upcoming sections.

Quantitative Trait Loci Mapping  
with Field Data
Mapping of QTL associated with resistance to stem rust of 
wheat was performed in the RIL population using stem rust 
severity data collected at three locations over four seasons. 
This was done to assess the impact on QTL mapping using 
linkage groups constructed from markers obtained from the 
two genotyping approaches. For detailed information on dis-
ease phenotyping and data statistics, see Materials and Meth-
ods in the recently published study by Bajgain et al. (2015).

The CIM method of QTL mapping detected nine 
QTL in the 9K dataset on linkage groups representing the 
chromosomes 2B, 3A, 4A, 4B, 5B, and 6D (Table 3). Sim-
ilarly, eight QTL distributed on chromosomes 1A, 2A, 
2B, 2D, 4A, 4B, and 7A were detected in the GBS dataset 
(Table 4). One QTL was common in both datasets, that 
is, the QTL detected on the short arm of chromosome 
2B (Fig. 2). This QTL was detected in all environments 
in both datasets and also explained the largest amount of 
explained phenotypic variation in both datasets. The addi-
tive effects of the parental alleles toward disease resistance 
were estimated quite accurately by markers in both datas-
ets. Taking the example of the common QTL (2B.2), the 
range of difference in estimation of allelic effects between 
the two datasets was found to be within 1% (−0.8 to 
+0.6%). This suggests that the adoption of either marker 
system for QTL mapping should not significantly influ-
ence prediction of allelic effects of the detected QTL.

possible way to achieve this is to use less stringent filtering 
parameters than the ones used in our study. However, a 
more reliable approach may be to map the reads obtained 
from sequencing of GBS libraries to the respective subge-
nomes of wheat to obtain subgenome-specific polymorphic 
markers. With two of three of wheat’s subgenomes already 
sequenced—A genome from wheat’s diploid ancestor Triti-
cum urartu Tumanian ex Gandilyan (Ling et al., 2013) and D 
genome from Aegilops tauschii Coss. ( Jia et al., 2013)—sub-
genome-specific mapping of sequence reads would help to 
retain reads that would otherwise be discarded during SNP 
calling as a result of mismatches among the reads originat-
ing from the A, B, and D subgenomes.

Recombinations and Genome Coverage
The highest number of recombinations among all three sub-
genomes in the 9K dataset was observed in the A genome 
(1791) whereas the B genome recorded the most recom-
binations in the GBS dataset (1608). In both datasets, the 
D genome had the fewest recombination events with 369 
recombinations in the 9K dataset and 691 in the GBS dataset.

The average number of recombinations per RIL in 
both 9K and GBS genotype matrices was found to be 27. 
Sixty-five individuals (46.1%) had more recombinations 
than the average in 9K dataset, compared with 78 (55.3%) 
in the GBS dataset. Only two individuals had the same 
number of recombinations in both datasets. The total 
number of recombinations in the 9K matrix was 3746, 
slightly lower than that in the GBS matrix at 3790.

To visualize these results, recombination blocks per 
line observed in both genotype matrices were plotted 
against the SNPs in each chromosome (Fig. 1). As seen 
in the figure, both congruous and incongruous patterns 
of recombination blocks exist in the two genotype matri-
ces. The difference in reported recombination break-
points likely arises from the difference in assay design 
between the two genotyping methods as different parts 
of the genome might have been sampled, which alters the 
genome coverage in these two genotyping methods. This 
can potentially lead to representation of different haplo-
type matrices, which results in the detection of different 
sites and number of recombination events. The difference 
in genome coverage is also corroborated by the differ-
ence in properties of the linkage groups constructed using 
SNPs obtained from the two methods. This is illustrated 
in Fig. 1C where the portions of the genome captured 
by the two methods are compared. The figure shows the 
differences in genome sampling between the two geno-
typing methods in one RIL (MN06_01) on all 21 chro-
mosomes. Such difference is also observed in a larger set 
of RILs (randomly chosen and inspected) in the popu-
lation in general (data not shown). We believe that the 
accumulation of such differences over the whole genome 
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Figure 1. (continued on next page) Recombination blocks observed in (A) 9000 Infinium iSelect single nucleotide polymorphism (SNP) 
assay (9K) and (B) genotyping-by-sequencing (GBS) genotype datasets. The population is arranged in descending order on the y-axis 
and SNPs are arranged by the chromosomes they belong to on the x-axis separated by the white vertical bar. Panel (C) represents an 
example of the difference in genome coverage between the 9K and GBS methods in the recombinant inbred line (RIL) ‘MN06_1’ across 
all 21 chromosomes. The size difference within each chromosome (for example, within 1A_9K and 1A_GBS) is due to the differences 
in number of SNP markers between the two methods that are distributed along the chromosome. No linkage groups were obtained for 
chromosomes 2D, 4D, and 7D using the 9K SNPs. In all panels, the colors gray and black represent MN06113-8 and RB07 haplotype 
blocks, respectively, whereas the white dots (white vertical lines on panel C) indicate missing data. 
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Figure 1. Continued.
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Nonetheless, as most QTL were different between the 
two datasets, each QTL was studied to understand the 
underlying differences in QTL detection. Based on their 
presence or absence, the QTL have been divided into 
three groups, as discussed below. For better elucidation 
behind this discrepancy, the results were also compared 
with QTL detected on the combined map reported by 
Bajgain et al. (2015) that used both 9K and GBS markers 
from this study. In general, marker density and distribu-
tion of markers across the linkage groups are considered to 
be the causes for the discrepancy in QTL detection.

Group 1: Quantitative Trait Loci Present  
in the 9K Dataset but Absent in the Genotyping- 
by-Sequencing Dataset
The 9K marker wsnp_Ex_c742_1458743 was significantly 
associated with a QTL located at 60 cM on chromosome 
3A in Ethiopia 2013 environment. No QTL was detected 
on 3A in the GBS dataset, but the LOD curve was observed 
slightly below the threshold (Fig. 3A). The LOD values 
for the 9K marker wsnp_Ex_c742_1458743 and the GBS 
marker TP1862, which are colocalized in the combined 
map, are 2.8 and 1.6, respectively. The 9K linkage map 
representing 3A is 156 cM long with marker density of 
one SNP per 1.1 cM, whereas the 146 cM long GBS 3A 

Table 3. Quantitative trait loci (QTL) conferring resistance to stem rust detected in the RB07/MN06113-8 population by compos-
ite interval mapping in four environments in the 9000 Infinium iSelect single nucleotide polymorphism (SNP) assay (9K) dataset.

Environment QTL† Chromosome Marker Position LOD‡ PVE§ Add¶

cM %
Kenya 2012 2B.2 2B wsnp_Ex_rep_c68623_67474935 24.7 15.7 32.6 6.2

2B.1 2B wsnp_Ku_c48694_54811376 122.5 3.1 6.0 −2.6

4A 4A wsnp_Ex_c30695_39579408 9.2 3.4 6.6 2.8

6D 6D wsnp_Ex_c37749_45436366 2.4 2.9 5.1 −2.4

Kenya 2013 2B.2 2B wsnp_Ex_c19371_28311667 14.2 4.8 23.7 5.0

4B.1 4B wsnp_Ex_c30695_39579408 25.8 2.6 11.0 3.3

5B 5B wsnp_RFL_Contig2791_2558632 0.4 4.0 18.5 −5.3

Ethiopia 2013 2B.2 2B wsnp_Ex_rep_c68623_67474935 24.7 17.0 57.6 11.2

3A 3A wsnp_Ex_c742_1458743 60.3 2.8 6.1 3.7

St. Paul, MN 2013 2B.2 2B wsnp_Ex_c2388_4476302 21.4 3.8 9.8 2.6

4B.1 4B wsnp_Ex_c30695_39579408 24.8 2.6 5.7 −2.1

4B.2 4B wsnp_Ku_c5502_9765942 49.0 4.7 10.4 3.0

4B.3 4B wsnp_Ex_c48922_53681502 62.1 3.0 12.1 3.0
† For simplicity, QTL have been named by the chromosome where detected; the chromosome name is followed by a number if more than one QTL were detected on the 
same chromosome.

‡ LOD, logarithm of odds; values are the peak LOD score for the given QTL.
§ Value indicates the phenotypic variation explained (PVE) by the QTL.
¶ Value indicates the estimated additive effect of the QTL; negative value means that the allele was contributed by RB07.

Table 4: Quantitative trait loci (QTL) conferring resistance to stem rust detected in the RB07/MN06113-8 population by com-
posite interval mapping in four environments, in the GBS dataset.

Environment QTL† Chromosome Marker Position LOD‡ PVE§ Add¶

cM %
Kenya 2012 2B.1 2B TP46799 15.0 4.1 7.1 −2.9

2B.2 2B TP24441 93.9 15.4 32.1 6.2

7A 7A TP27831 0.8 4.1 6.7 −2.8

Kenya 2013 1A 1A TP21885 92.9 3.4 14.3 3.8

2B.2 2B TP17690 95.7 5.2 29.6 5.6

2D 2D TP8148 32.2 3.3 14.7 −3.8

Ethiopia 2013 2A 2A TP29711 30.6 2.8 7.4 3.9

2B.2 2B TP48796 94.5 13.8 49.6 10.4

4B 4B TP12718 33.6 2.7 5.7 3.6

St. Paul, MN 2013 2B.2 2B TP23420 107.1 3.8 8.8 2.5

4A 4A TP49560 21.8 2.6 6.0 2.1
† For simplicity, QTL have been named by the chromosome where detected; the chromosome name is followed by a number if more than one QTL were detected on the 
same chromosome.

‡ LOD, logarithm of odds; values are the peak LOD score for the given QTL.
§ Value indicates the phenotypic variation explained (PVE) by the QTL.
¶ Value indicates the estimated additive effect of the QTL; negative value means that the allele was contributed by RB07.
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Figure 3. Logarithm of odds (LOD) curves of quantitative trait loci (QTL) detected on a given chromosome in a dataset but absent in an-
other dataset because of lack of enough QTL detection power. (A) QTL detected on 3A in Ethiopia 2013 environment in the 9000 Infinium 
iSelect single nucleotide polymorphism assay (9K) dataset but absent in the genotyping-by-sequencing (GBS) dataset. (B) QTL detected 
on 4B in St. Paul 2013 environment in the 9K dataset but absent in the GBS dataset. (C) QTL detected on 7A in Kenya 2012 environment 
in the GBS dataset but absent in the 9K dataset. In all three panels, the dotted horizontal line represents the threshold LOD score of 2.5.
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test this hypothesis, we used wsnp_Ex_c38203_45790396 
as a background marker and reran the CIM algorithm. As 
expected, a QTL was detected on 1A_2 at 0 cM (location 
of wsnp_Ex_c1137_2182795) with LOD score of 3.2, PVE 
of 10.04%, and additive effect of 3.9. These values are simi-
lar to those of the GBS 1A QTL (Table 3).

A QTL associated with the GBS marker TP49560 was 
detected on 4A (linkage group 4A_1) with LOD value of 2.6 
in St. Paul 2013 environment. The QTL was also detected 
in the combined dataset but was absent in the 9K dataset. 
The LOD curve in the 9K dataset did not resemble that of 
the GBS QTL curve, and no 9K markers colocalize with 
TP49560 in the combined map. Lack of enough markers is 
likely the primary reason behind why the QTL went unde-
tected, as only 26 markers are present on the 9K 4A map 
with marker density of a marker every 2.4 cM. Compared 
with the 9K dataset, the GBS dataset has 63 markers on 4A, 
with a marker at an average distance of every 0.9 cM.

Though the QTL detected at 0.8 cM (GBS marker 
TP27831) on 7A in Kenya 2012 environment was not 
detected in the 9K dataset, a comparison of the LOD curves 
suggests that lack of enough power failed to detect the QTL 
(Fig. 3C). The highest LOD value observed in the 9K data-
set was 1.5 at the marker wsnp_Ex_c35_77935, also located 
at the proximal end of the linkage group. The QTL was 
contributed by RB07, yet the difference in the representa-
tion of RB07 alleles was not very large: 41% in 9K and 38% 
in GBS. The marker density in the 105-cM-long 9K map 
is 2.4 cM on average, whereas that in the 98 cM long GBS 
map is one SNP per 1.2 cM. A denser map, especially with 
more markers on the proximal end of the linkage map could 
provide enough power to detect the QTL in the 9K map.

Group 3: False Quantitative Trait Loci  
in both datasets
The QTL detected at the 9K marker wsnp_Ex_
c57209_59016692 with LOD value of 4.0 on 5B was 
detected neither in GBS dataset nor in the combined 
dataset. Bootstrapping of the trait data with 10,000 data 
points around the detected QTL to estimate the confi-
dence interval showed that the highest LOD score peaked 
out at 2.1. Similarly, the QTL detected at the GBS marker 
TP19076 with LOD value of 2.8 on 2A (linkage group 
2A_2) was undetected in both 9K and combined datas-
ets. We performed 10,000 bootstraps to get an estimated 
confidence interval on the QTL location but were unable 
to validate the presence of this QTL as the highest LOD 
value observed after bootstrapping was only 0.9. As we 
were unable to validate both these QTL in their respective 
datasets, we suspect that these QTL likely are false QTL.

map has marker density of a SNP marker every 2.6 cM, on 
average. In addition, the proportion of genotypes with the 
RB07 allele (the parent contributing the QTL) was found 
to be 55% for the 9K marker, whereas it was 45% for the 
GBS marker. Therefore, disproportionate representation of 
the parental alleles as well as the lack of a denser linkage 
map could have led to a lower power in QTL detection in 
the GBS map relative to that in the 9K map.

Similarly, an LOD curve in the GBS dataset similar to 
that of the 9K QTL detected at 49 cM (marker wsnp_Ku_
c5502_9765942) with LOD value of 4.7 on 4B in St. Paul 
2013 environment was found below the threshold (Fig. 
3B). This 9K marker colocalizes with several GBS markers 
at position 44 cM in the combined map, and both marker 
systems represent the parental alleles almost equally: 
RB07 by 55 and 54% markers from 9K and GBS data-
set, respectively, and MN06113-8 by 44 and 42% markers 
from 9K and GBS dataset, respectively. The marker den-
sity in the 9K map (94 cM long) is one SNP per 1.1 cM, 
whereas the marker density in the GBS map (90 cM long) 
is a marker every 1.5 cM. While the difference in marker 
density between the two maps is not very large, perhaps 
a better marker distribution similar to that of the 9K map 
could have provided enough power for the LOD curve to 
rise above the threshold in the GBS dataset.

On chromosome 6D (linkage group 6D_2), the 9K 
marker wsnp_Ex_c37749_45436366 was found to be 
associated with a QTL at 2 cM in Kenya 2012 environ-
ment with an LOD value of 2.9. The QTL was absent in 
the GBS dataset, yet was detected in the combined dataset 
albeit no GBS marker colocalized with this 9K marker. 
The marker density is quite similar between the two data-
sets: one SNP marker per 1 and 1.3 cM in the 9K and 
GBS datasets, respectively. We suspect that the difference 
in QTL detection occurred from lack of enough markers 
on the 6D GBS linkage group, which has only nine mark-
ers compared with 18 markers in the 9K dataset.

Group 2: Quantitative Trait Loci Present  
in the Genotyping-by-Sequencing Dataset  
but Absent in the 9K Dataset
On chromosome 1A, a QTL linked to the GBS marker 
TP21885 was detected, but no QTL was observed in the 
9K dataset. In the combined map, TP21885 is colocalized 
with 9K markers wsnp_Ex_c38203_45790396 and wsnp_
Ex_c1137_2182795. Both these 9K markers are located at 
0 cM on the linkage group 1A_2 in the 9K dataset. It is 
known that the CIM algorithm uses a prespecified number 
of markers as cofactors to account for background marker 
noise while detecting a QTL. Hence, the algorithm cannot 
always ensure that the QTL at the current testing interval is 
not absorbed by the background marker variables and may 
result in biased estimation (Zeng, 1994; Li et al., 2007). To 
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Quantitative Trait Loci Mapping with Altered 
and Simulated Data
We also investigated if the large-effect QTL 2B (i) had a 
masking effect on other small-effect QTL and (ii) played 
a role in difference behind QTL detection between the 
two datasets. Composite interval mapping performed with 
SNP markers associated with the 2B locus as cofactors in 
both datasets led to identification of two additional QTL in 
the 9K dataset: one each in Kenya 2012 and St. Paul 2013 
environments (Table 1; Supplemental File S1). The QTL in 
Kenya 2012 environment was detected on 7B at position 90 
cM and was not observed during regular mapping before. 
The QTL on 4B (marker wsnp_Ku_c8128_13866660 at 
position 50 cM) is located 1.3 cM away from the QTL 
detected at wsnp_Ku_c5502_9765942 during regular 
mapping and is likely the same QTL as detected before.

Similarly, in the GBS dataset, three additional QTL 
were detected: one in Kenya 2012, two in St. Paul 2013, 
and none in remaining environments (Table 1; Supple-
mental File S1). The QTL in Kenya 2012 was detected at 0 
cM on 7A at a distance of 0.75 cM from the QTL detected 
during regular mapping. The QTL detected on linkage 
group 4A_1 in St. Paul 2013 is located 4.6 cM away from 
the 4A QTL detected during regular mapping. The second 
QTL detected in St. Paul 2013 environment was on 4B 
and was the same marker (TP48810) as detected during 
regular mapping; however, the peak shifted by 0.6 cM. As 
the PVE and additive values are quite similar to that from 
regular mapping, these QTL are likely identical. Also, 
based on the combined map, TP48810 is located only 1.5 
cM away from the 9K marker wsnp_Ku_c8128_13866660 
(discussed above) and, therefore, might be the same QTL.

Except for the detection of a new QTL on 7B in the 
9K dataset, no differences were observed between regu-
lar mapping and mapping with 2B SNP markers used as 
cofactors. The masking effect of 2B was therefore not as 
influential on QTL detection. This also suggests that both 
datasets can detect QTL of varying effects in the presence 
of a large QTL. Despite this observation, we simulated trait 
data with known QTL positions and effects to understand 
how each dataset would detect QTL of different effects. 
For this purpose, six QTL located on six different chromo-
somes were simulated on a phenotypic dataset of six traits 
(Table 1; Supplemental File S2). Quantitative trait loci were 
simulated on the same chromosomes for both genotypic 
datasets, if possible. Each simulated QTL was assigned a 
different additive effect: 0.25, 0.5, 1, 2, 5, and 10.

In the 9K dataset, all but the smallest-effect QTL (addi-
tive value of 0.25) were detected (Supplemental Table S2A 
within Supplemental File S2). For each SNP marker asso-
ciated with the QTL, the estimated additive effects were 
very close to the values assigned during QTL simulation. 
Two likely false QTL were detected on chromosomes 3A 
and 4A where no QTL were simulated. A similar trend 

was observed in the GBS dataset where all simulated QTL 
were detected except for the QTL with additive effect of 
0.25 (Supplemental Table S2B within Supplemental File 
S2). As a nonsimulated QTL was detected on 7B, this 
QTL is likely false.

In general, both genotype matrices were able to detect 
QTL with large and small effects in simulated datasets. 
Taking together the mapping results using real and simu-
lated data, it can be concluded that our genotype matrices 
and the linkage groups constituted thereof provide suffi-
cient power to detect small effect QTL without interfer-
ence from large QTL.

Imputation of Genotyping-by- 
Sequencing Markers
To our knowledge, an imputation study using GBS mark-
ers has not yet been conducted in an RIL population; 
therefore, we looked at the effect and accuracy of geno-
type imputation in the GBS dataset after simulating data-
sets with several successive missing proportions.

The highest imputation accuracy was observed when 
the proportion of missing data was the lowest (Fig. 4). The 
missing genotypes were predicted with accuracy of 96% 
when the dataset was missing 20% of the genotypes. The 
accuracy of genotype imputation was reduced as datasets 
had higher proportion of missing data, with a major drop-
off in datasets with more than 60% missing data, which 
had imputation accuracies of less than 84%. The effect of 
missing data on PIC, and the amount of heterozygosity 
was not significant. An overall decreasing trend for each of 
these population characteristics can, however, be observed 
with increasing missing values in the dataset. The inbreed-
ing coefficient had an overall increasing trend as datasets 
had more missing proportion of genotype calls. There was 
no significant change in the allele type from imputation in 
the imputed datasets, except in the GBS90 dataset where 
the proportion of RB07 alleles increased by 3%.

Our GBS dataset contained 932 high-quality SNP 
markers, which is sufficient for gene mapping studies 
given the high linkage disequilibrium of hexaploid bread 
wheat (Chao et al., 2007, 2009). However, the marker 
imputation results presented here show that more markers 
are necessary to perform high-resolution mapping studies. 
With as much as 40% missing data, the genotype matrix 
can be predicted with imputation accuracy of 90% or 
higher. While this may potentially introduce some biases 
in the study, the level of PIC and heterozygosity were 
not significantly altered, implying that the population 
does not deviate significantly from the expected levels of 
inbreeding. This is illustrated in Fig. 4, where the inbreed-
ing coefficient increases negligibly from nonimputed GBS 
dataset to GBS90 dataset. The observed slight increase 
most likely is due to introduction of false genotype calls in 
imputed datasets with higher proportion of missing data. 
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Higher level of inbreeding is desired in most crops so that 
desired traits can be preserved in the breeding program. 
Yet, the consistency in inbreeding levels observed among 
the imputed datasets should not be the only determinant 
behind the use of a dataset with large amount of missing 
allele calls. Datasets with large amount of missing data 
introduce severe problems such as inaccurate and inflated 
linkage groups and erroneous QTL detection.

Quantitative Trait Loci Mapping  
Using Imputed Genotyping-by- 
Sequencing Datasets
The effect of marker imputation in construction of linkage 
groups and QTL mapping in a biparental population has not 
been investigated yet. Thus, we used imputed GBS datas-
ets, as described in the Materials and Methods section, to 
investigate QTL mapping. Construction of linkage groups 
and QTL mapping, however, were performed using the 
imputed datasets with 40 and 75% missing data only, which 
had imputation accuracies of 90 and 71%, respectively.

Twenty-nine linkage groups were formed in the 
GBS40 dataset and covered 4785 cM of the genome (Table 
2). Similarly, 30 linkage groups were formed in the GBS75 
dataset, covering 14,879 cM of the genome. Genome sizes 
represented by these linkage groups are approximately 3.5 
and 11 times larger than the size covered by the original, 
nonimputed GBS dataset. This increase in genome size 
most likely is due to the introduction of inaccurate geno-
type calls with a large proportion of missing values. Infla-
tion of linkage groups from introduction of false geno-
type calls is also supported by the average marker interval 

distance of 5 cM in the GBS40 dataset and 19 cM in the 
GBS75 dataset. Therefore, marker imputation in datasets 
with large proportion of missing data appears to intro-
duce errors, and as such, avoiding the use of such datasets 
is pragmatic. As the imputation accuracy dropped, more 
markers were also unlinked to any linkage group (Table 
2). Two linkage groups (chromosomes 3D and 7D) were 
not detected in the GBS75 dataset.

The number of QTL discovered in both GBS40 and 
GBS75 datasets using the CIM approach was eight and 
seven, respectively (Table 2). However, most of the QTL 
detected in these datasets were different relative to the non-
imputed dataset, with only one consistent QTL between all 
datasets (Supplemental Table S1C, S1D within Supplemen-
tal File S3). The large-effect QTL observed on chromosome 
2B in the nonimputed GBS datasets was the only consistent 
QTL in GBS40 and GBS75 datasets, with lower accuracy 
of the QTL positions in the imputed datasets (Fig. 5A–C). 
Only the GBS40 dataset correctly predicted the same SNPs 
(TP24441 and TP17690) linked to the large-effect QTL as 
predicted in the nonimputed GBS dataset. Both imputed 
datasets predicted the percentage of phenotypic variation 
and allelic effect similarly to the nonimputed dataset. The 
small-effect QTL observed in the Kenya 2012 environ-
ment was detected in both imputed datasets, although their 
positions and the markers they are linked with were dif-
ferent than that observed in the nonimputed dataset. It is 
likely, given the inflation in size of linkage groups expe-
rienced with imputing, that most of the QTL detected in 
the imputed datasets are inaccurate. While validation of 
the detected QTL would provide a definitive answer, the 

Figure 4. Characteristics of genotype matrices in imputed and nonimputed datasets. Zero represents the original genotyping-by-se-
quencing (GBS) dataset with no missing allele calls introduced. The genome sizes (sizes of linkage groups summed together) of imputed 
and nonimputed GBS datasets are shown on the secondary y-axis to the right.
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Figure 5. (continued on next page) A comparison of the logarithm of odds (LOD) peaks for the quantitative trait loci (QTL) on 2B among 
the three genotyping-by-sequencing (GBS) datasets. (A) The nonimputed dataset is labeled as GBS; (B) the imputed dataset with 40% 
missing allele calls as GBS40; and (C) the imputed dataset with 75% missing allele calls as GBS75. The significant single nucleotide 
polymorphism markers (TP24441 and TP17690) in nonimputed GBS dataset are labeled in red color in all three panels to indicate their 
positions relative to the QTL peaks. Note the increase in sizes of the GBS40 and GBS75 linkage groups compared with that of nonim-
puted GBS dataset. In comparison with the nonimputed GBS dataset, the order of the SNP markers also changes in linkage groups 
constructed using genotype information in imputed datasets with higher proportion of missing alleles. Ken12, Kenya 2012; Ken13, Kenya 
2013; Eth13, Ethiopia 2013; StP13, St. Paul 2013.
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results indicate that large-effect QTL can be detected if the 
dataset comprises large proportion of imputed genotypes. 
The small-effect QTL may also be detected, but such pre-
diction might not necessarily be accurate.

Comparison of Methodology and Workflow
With regard to the methodologies and workflow, chip-
based genotyping is relatively easier than the GBS 
approach, though the latter had a faster turnaround 
time in our case. The 9K genotype calls were obtained 
from the USDA Genotyping Facility at Fargo, ND, that 
needed manual inspection using Illumina’s GenomeStu-
dio program version 2011.1 (Illumina Inc.) before use. 
In the GBS method, DNA libraries for sequencing were 
generated in-house in <2 d. The sequences were filtered 
based on barcodes and trimmed before calling SNPs in 
the population. In addition, sequence alignment to the 
wheat CSS and further data parsing was required. Thus, 
the need for high-end computational resources and 
bioinformatic expertise (ability to work in the UNIX 
environment as well as programming skills) is essen-
tial in the GBS approach to manage and work with the 
large amount of sequence data generated from parallel 
sequencing. On average, 256 gigabytes (gb) of memory 
was requested on any available node with the Minnesota 
Supercomputing Institute (https://www.msi.umn.edu/) 

while working with the GBS procedures such as qual-
ity control of the sequences, SNP calling, and sequence 
alignment. Similarly, several hundred gigabytes of hard 
disk space was needed to store the sequence files and any 
output files created during the procedures mentioned 
above. The SNP-chip-based method, however, required 
less computational resources, but a proprietary program 
(GenomeStudio) was needed to visualize and analyze the 
data generated from the genotyping assay. The program 
was run on a Windows platform with 64 gb of available 
memory. The hard disk space requirement to store the 
data files was <50 megabytes.

One particular advantage of the GBS approach is per-
haps the economical aspect of this method. In our study, we 
obtained a comparable number of usable SNP markers for 
QTL mapping from both genotyping approaches (964 from 
9K and 925 from GBS). The cost per 9K SNP marker used 
for mapping was approximately $8.20, whereas the cost per 
GBS SNP marker used in QTL mapping was approximately 
$2.10. These figures are exclusive of the labor cost, in which 
the GBS method is also advantageous over the chip-based 
genotyping method. Although several filters can be applied 
within the program GenomeStudio to parse the genotype 
calls obtained using the 9K chip, the genotypes still need to 
be manually inspected for each SNP between the two par-
ents to recluster the individuals to distinct genotype groups. 

Figure 5. Continued.
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In our dataset, 2524 polymorphic SNPs were obtained after 
applying the filter to remove monomorphic SNPs between 
the two parents. Each of these SNPs had to be inspected 
to assign the correct genotype calls to the RILs. At the 
inspection rate of approximately three SNPs every 2 min, 
the total time required to tag the population with correct 
genotype calls was approximately 28 h. As the program did 
not allow for correction of incorrect genotype calls, the 
exported data had to be edited to assign final genotypes 
to each individual. On the other hand, the GBS procedure 
required less than 3 h to obtain the final genotype calls. 
Creating the input file with each individual labeled with 
the barcode used during library preparation was essential 
before running the SNP-calling program UNEAK. This 
task was completed in about 30 min followed by approxi-
mately 1 h to obtain the SNPs from UNEAK. As the allele 
calls were reported in base format (AA/CC/GG/TT), they 
were converted to biallelic format (AA/BB), which was 
accomplished in about 30 min. While the time needed to 
troubleshoot errors that appeared during both procedures 
has not been discussed here, the GBS approach was more 
efficient because of its lower economic burden and advan-
tages in automated data processing. Yet, as we indicated in 
the results, the genome areas targeted by these approaches 
are slightly different, which may lead to detection of dif-
ferent QTL between the two methods. If marker cover-
age was better—and perhaps uniform—between the two 
methods, these differences should disappear. We would also 
like to state that the comparative analysis presented here is 
a product of our own experiences and may be different for 
other research groups.

Conclusion
Highly economical genotyping approaches provide a user 
with the option of using different types of high-through-
put genotyping methods, ranging from simple-sequence-
repeat-based genotyping to sequence-based genotyping. 
In our study, we compared two high-throughput geno-
typing methods used in genomic studies of wheat. The 
results showed that both methods are powerful means of 
studying the genome and provide enough resolution to 
carry out marker–trait association studies. The key attri-
butes of high interest to a researcher might be the cost 
and data turnaround time, in which the GBS approach 
bests the SNP-genotyping method. The GBS approach 
was also able to provide a broader coverage of the wheat 
genome including that of the often poorly represented 
D genome. The SNP-chip-based genotyping, however, 
requires less computational knowledge and resources to 
process the data. The choice of the genotyping platform 
for gene mapping and other genome studies may come 
down to the question of cost and available resources.
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